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Abstract

We determine the weight spectra of the Reed-Muller codes RM(m−
3,m) for m ≥ 6 and RM(m− 4,m) for m ≥ 8. The technique used is
induction on m, using that the sum of two weights in RM(r−1,m−1)
is a weight in RM(r,m), and using the characterization by Kasami
and Tokura of the weights in RM(r,m) that lie between its minimum
distance 2m−r and the double of this minimum distance. We also de-
rive the weights of RM(3, 8), RM(4, 9), by the same technique. We
conclude with a conjecture on the weights of RM(m− c,m), where c
is fixed and m is large enough.
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1 Introduction

For classical Coding Theory notation and terminology, see the next Section.
Determining the Hamming weights in Reed-Muller codes has been considered

∗The research of the author is partly supported by the Norwegian Research Council.
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an important research topic for more than half a century [6, Chapt. 15]. The
weights of the Reed-Muller codes of length 2m and orders 0, 1, 2,m− 2,m−
1,m are known (as well as their weight distributions). These weights equal
0, 2m for the order 0, with additionally 2m−1 for the order 1, and 2m−1 ± 2i

where m
2
≤ i ≤ m for the order 2, see e.g. [6]. The weights in RM(m,m)

are all integers between 0 and 2m since RM(m,m) = F2m

2 . The weights in
RM(m−1,m) are all even integers between 0 and 2m and those in RM(m−
2,m) (the extended Hamming code) are all even integers between 0 and 2m

except 2 and 2m−2: these two results (as well as the weight distributions) are
directly deduced from the Mac Williams identity (see e.g. [6, Chapt. 5] or
[3]), which says that the weight distribution of a linear code can be obtained
as a function of the weight distribution of its dual; the duals of RM(m−1,m)
and RM(m−2,m), namely RM(0,m) and RM(1,m), being such that A0 =
A2m = 1, and for the latter, A2m−1 = 2m+1 − 2, and all the other coefficients
being zero, the weight distributions of RM(m−2,m) and RM(m−1,m) are
easily deduced. Another method for determining the weight distribution of
RM(m−2,m) is given in [11], by induction on m; we do not give it here since
it is more complex than using the MacWilliams transform, but the idea of an
induction will be central for the other orders that we shall address. Indeed,
the weight distribution of RM(2,m) being already rather complex, because
its coefficient A2m−1 has no known compact expression, it seems impossible
to deduce the weight distribution of RM(m − 3,m) from that of its dual,
and this is still more true for RM(m− 4,m).
All the low Hamming weights are known in all Reed-Muller codes: Berlekamp
and Sloane [2] (see the Addendum in this paper) and Kasami and Tokura [4]
have shown that, for r ≥ 2, the only Hamming weights in RM(r,m) occurring
in the range [2m−r; 2m−r+1[ are of the form 2m−r+1 − 2i for some i; and
the latter have completely characterized the codewords: the corresponding
functions are affinely equivalent to{
x1 · · ·xr−2(xr−1xr ⊕ xr+1xr+2 ⊕ · · · ⊕ xr+2l−3xr+2l−2), for 2 ≤ 2l ≤ m− r + 2,

x1 · · ·xr−l(xr−l+1 · · ·xr ⊕ xr+1 · · ·xr+l), for 3 ≤ l ≤ min(r,m− r).

The functions whose Hamming weights are strictly less than 2.5 times the
minimum distance d = 2m−r have later been studied in [5].
Those possible weights of the codewords in the Reed-Muller codes of orders
3, . . . ,m− 4 whose values lie between 2.5 d and 2m− 2.5 d are unknown (but
when m = 2r + 1, they are known in some cases by using invariant theory,
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because the code is then self-dual, see [6, 10]).
In this note, we completely determine the weights in RM(m− 3,m), and

RM(m − 4,m). Note that our work is on a different track than works such
as [9] in which the authors consider some weights in some Reed-Muller codes
and look for all the functions having these weights, whereas we are looking
for the weights (all of them) in some Reed-Muller codes and we do not try
to find the functions having these weights. We first observe that the work of
[11, Theorem 16 (2)] can be made much more precise: this reference provides
some weights in RM(m − 3,m) and we show that these weights are in fact
all weights thanks to the result of Kasami-Tokura [4]. We extend then the
method to the codes RM(m− 4,m).

The material is arranged as follows. The next section recalls some basic
definitions and notions needed to understand the rest of the paper. Sections
3, and 4 study the weight spectra of RM(m−3,m), and RM(m−4,m) , re-
spectively. Section 5 describes some numerical examples. Section 6 concludes
the article.

2 Preliminaries

The Hamming weight (in brief, the weight) of an element x = (x1, . . . , xn) ∈
Fn2 is the number of indices i such that xi 6= 0. A binary linear code of length
n is an F2-subspace of Fn2 . Its dimension is its dimension as an F2-vector
space. Its minimum distance (in brief, distance) is the minimum Hamming
weight of a nonzero codeword.

The extension Ĉ of a linear code C of length n is the linear code of
length n+1 such that each codeword (c0, . . . , cn) ∈ Ĉ satisfies both following
conditions

1. (c0, . . . , cn−1) ∈ C,

2.
n+1∑
i=0

ci = 0.

The weights of a code are the Hamming weights of all its codewords.
The set of distinct weights (including the zero weight) is called the weight
spectrum1. The list of the numbers, classically denoted by Ai, of codewords

1Contrary to the spectra used for instance in Boolean function theory, the weight
spectrum in coding theory does not include the indication of the multiplicities of the
weights.
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of weight i for i ranging from 0 to n is called the weight distribution of the
code. The Magma notation for this quantity is the list of pairs < i,Ai >
where Ai 6= 0.

The Reed Muller codes are a family of binary linear codes of length n =
2m. Given the order r ∈ {0, . . . ,m} of such a code (usually denoted by

RM(r,m)), the dimension equals
r∑
i=0

(
m
i

)
and the minimum distance equals

2m−r. An explicit definition in terms of Boolean functions is as follows. Let
Bm denote the vector space of polynomials in m variables with coefficients in
F2, that is, of elements of F2[x1, x2, . . . , xm], in which the exponent of each
variable xi in each monomial equals 0 or 1. Write

Fn2 = {P1, P2, . . . , Pn}.

Let ev denote the evaluation map from Bm to Fn2 by the rule

ev(f) = (f(P1), . . . , f(Pn)).

With this notation we define the Reed-Muller code of order r by

RM(r,m) = {ev(f) | f ∈ Bm & deg(f) ≤ r},

where deg(f) is the global degree of the multivariate polynomial f (called
the algebraic degree of the Boolean function that f represents).

We will use repeatedly the following Lemma, which is the case q = 2 of
[11, Cor. 2].

Lemma 1. For all pairs of integers (r,m) with 0 ≤ r ≤ m, the weight spec-
trum of RM(r + 1,m+ 1) includes as a subset S + S, where S is the weight
spectrum of RM(r,m), and S + S = {s1 + s2 | s1, s2 ∈ S}.

The proof of this lemma is particularly simple in our framework: we know
(see [6]) that all codewords in RM(r+ 1,m+ 1) are obtained as the concate-
nation of a codeword u in RM(r+1,m) with a word of the form u+v, where
v is a codeword in RM(r,m) (this is called the “(u,u+v) construction”). If
u is itself taken in the subcode RM(r,m) of RM(r+ 1,m), then u and u+ v
are any codewords in this linear subcode and the result follows.

We shall refer to the following result as McEliece’s congruence.
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Theorem 1. The weights in RM(r,m) are multiples of 2b
m−1

r
c [7]. This

bound is tight in the sense that there is at least a codeword of RM(r,m) with

weight (2t+ 1)2b
m−1

r
c for some integer t [1].

We will call the following deep result the Kasami-Tokura bound. It is a
consequence of [6, Chapt. 15, th. 11], which also specifies explicitly Aw.

Theorem 2. Let w be a weight of RM(r,m) in the range 2m−r ≤ w <
2m−r+1. Let α = min(r,m− r), and β = m−r+2

2
. The weight w is of the form

w = 2m−r+1 − 2m−r+1−µ, for µ in the range 1 ≤ µ ≤ max(α, β). Conversely,
for any such µ, there is a w of that form in the range 2m−r ≤ w < 2m−r+1.

We will also require the notion of BCH code of length n and designed
distance d, hereby denoted by BCH(n, d). See [6, Chapt. 9] for a precise
definition.

3 The weights of the Reed-Muller codes of

length 2m and order m− 3

It is shown in [11, Theorem 16] by using Magma [8] and by induction on m
that all the integers in {0, 2, 4, ..., 2m}\{2, 4, 6, 10, 2m−2, 2m−4, 2m−6, 2m−
10} are weights in RM(m− 3,m) for m ≥ 6.
The method used consists in applying Lemma 1, which says that the set of
weights in RM(m − 3,m) contains A + A where A is the set of weights in
RM(m − 4,m − 1). The authors start then from RM(3, 6), whose weights
can be obtained by Magma [8]: {0, 2, 4, 6, 8, ..., 64}\{2, 4, 6, 10, 54, 58, 60, 62},
and they proceed very simply by induction on m. We shall detail a little their
proof (which is slightly informal) and show that the set above covers in fact
all weights in RM(m− 3,m).

Proposition 1. For every m ≥ 6, the weights in RM(m − 3,m) are the
elements of {0, 2, 4, ..., 2m} \ {2, 4, 6, 10, 2m − 10, 2m − 6, 2m − 4, 2m − 2} =
{0, 8, 12 + 2i, 2m− 8, 2m}, where i ranges over consecutive integers from 0 to
2m−1 − 12.

Proof. The result is correct for m = 6; assuming it is correct for m ≥ 6, then
denoting the set of weights byA, we have thatA contains {0, 8, 12, 14, . . . , 2m−
14, 2m−12, 2m−8, 2m} and therefore A+A contains {0, 8, 12, 14, . . . , 2m+1−
14, 2m+1− 12, 2m+1− 8, 2m+1}, since the case of 0, 8, 12, 14, . . . , 2m− 14, 2m−
12, 2m − 8, 2m is covered by adding 0 to an element of A, the case of 2m, 8 +
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2m, 12 + 2m, 14 + 2m, . . . , 2m+1 − 14, 2m+1 − 12, 2m+1 − 8, 2m+1 is covered by
adding 2m to an element of A, and the remaining numbers 2m−10, 2m−6, 2m−
4, 2m− 2, 2m + 2, 2m + 4, 2m + 6, 2m + 10 are easily covered as well. By an in-
duction using Lemma 1, all the numbers in {0, 8, 12+2i, 2m−12, 2m−8, 2m}
are then weights in RM(m − 3,m). To complete the proof we show that
these are the only possible weights in RM(m− 3,m).
The minimum distance of RM(m− 3,m) being 8, and the code being stable
under addition of the all-one vector (the constant Boolean function 1), the
numbers 2, 4, 6, 2m − 2, 2m − 4, 2m − 6 cannot be weights, and according to
Theorem 2 ([2, 4]), the only weights in the integral interval [8, 16) are the
numbers of the form 16− 2i in this interval, and 10 is not among them. This
completes the proof.

4 The weights of the Reed-Muller codes of

length 2m and order m− 4

Adapting the proof above to the order m − 4 needs to have the weights
of RM(3, 7) or better RM(4, 8) (since we can observe that starting from
RM(3, 7) makes us lose some weights). It is impossible to run Magma [8]
exhaustively in RM(3, 7) (and a fortiori in RM(4, 8)), because this code has
size 264, but the weights of RM(4, 8) are known from the Online Encyclopedia
of Integer Sequences [12, http://oeis.org/A146976], and §6.1 below includes
a direct determination of the weights of RM(3, 7). The weights in RM(4, 8)
are

{0, 16, 24, 28, 30, . . . , 226, 228, 232, 240, 256},

where the dots represent all even integers between 32 and 224. This can be
generalized as follows.

Proposition 2. For every m ≥ 8, the set of all weights in RM(m − 4,m)
equals {0, 16, 24, 28 + 2i, 2m− 24, 2m− 16, 2m}, where i ranges over the set of
consecutive integers from 0 to 2m−1 − 28.

Proof. The proof is similar to that of Proposition 1: using Lemma 1, we can
show that the set of weights contains {0, 16, 24, 28+2i, 2m−28, 2m−24, 2m−
16, 2m} and Theorem 2 tells us there is nothing else. Note that by Theorem
1 all weights are even.
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Note that the weight distribution of RM(5, 9) is given in Online Encyclo-
pedia of Integer Sequences, see [12, http://oeis.org/A018897], and it confirms
our result.

5 Numerical examples

In the present section, we show how some known weight spectra can be
obtained as well as some new ones.

5.1 The weights of RM(3, 7)

The weights of RM(2, 6) are by the results in [6, Chapter 15] equal to:

S := {0, 16, 24, 28, 32, 36, 40, 48, 64}

(actually, they are given in [12, OEIS A001726]).
A direct hand calculation or a computation in Magma [8] yields:

S + S = {0, 16, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,

96, 100, 104, 112, 128}.

By McEliece’s congruence (Theorem 1), the weights inRM(3, 7) are multiples
of 4. And by [4] the weight 20 and its complement to 64 are excluded.
Hence, S + S equals the whole weight spectrum of RM(3, 7).

5.2 The weights of RM(3, 8)

The present subsection will show why the induction of Proposition 3 must
start at m = 9. The weights in RM(2, 7) are by the results in [6, Chapter
15] equal to

S := {0, 32, 48, 56, 64, 72, 80, 96, 128}

(and this is confirmed by [12, OEIS A006006 ]). A direct hand calculation
or a computation in Magma [8] yields

S + S = {0, 32, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160,

168, 176, 184, 192, 200, 208, 224, 256}
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By Theorem 2, this list is complete in the region {0, . . . , 64} and in its
complement to 256. However all the elements in S + S are multiple of 8,
while Theorem 1 states that the weights in RM(3, 8) are multiples of 4, and
some weights are not multiple of 8. Hence S + S is strictly included in the
spectrum of RM(3, 8), since McEliece’s congruence is known to be tight [1].
This is confirmed by the known weight distribution [12, A146953 ]
https://isec.ec.okayama-u.ac.jp/home/kusaka/wd/index.html

which gives in addition the weights:

100, 108, 116, 124, 132, 140, 148, 156, 164,

that are congruent to 4 modulo 8.
These weights can be recovered by taking the intersection of RM(3, 8)

with the extension of BCH(255, 19). The weight distribution of this in-
tersection (a code of dimension 26, small enough to allow the use of the
WeightDistribution command of Magma) is:

[< 0, 1 >,< 80, 8 >,< 88, 56 >,< 92, 512 >,< 96, 4939 >,< 100, 30216 >,

< 104, 159164 >,< 108, 615184 >,< 112, 1851060 >,< 116, 4389152 >,

< 120, 8126540 >,< 124, 11733960 >,< 128, 13287280 >,< 132, 11733960 >,

< 136, 8126540 >,< 140, 4389152 >,< 144, 1851060 >,< 148, 615184 >,

< 152, 159164 >,< 156, 30216 >,< 160, 4939 >,< 164, 512 >,< 168, 56 >,

< 176, 8 >,< 256, 1 >].

Remark. We do not provide, properly speaking, a computer-free determina-
tion of the weight spectrum of RM(3, 8). But we show how it can be derived
in a reproducible way. �

5.3 The weights of RM(4, 9)

According to the previous subsection, the weight spectrum of RM(3, 8)
equals:

S = {0, 32, 48, 56, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120,

124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188,
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192, 200, 208, 224, 256}.

A Magma calculation yields

S + S = {0, 32, 48, 56, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116,

120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184,

188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252,

256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 300, 304, 308, 312, 316, 320,

324, 328, 332, 336, 340, 344, 348, 352, 356, 360, 364, 368, 372, 376, 380, 384, 388,

392, 396, 400, 404, 408, 412, 416, 420, 424, 428, 432, 436, 440, 444, 448, 456, 464,

480, 512}.

By McEliece’s congruence [7] the weights in RM(4, 9) are multiples of 4.
By Theorem 2 the weights 36, 40, 44, 52 and their complements to 512 are
excluded, since

64− 36 = 28, 64− 40 = 24, 64− 44 = 20, 64− 52 = 12,

which are not powers of 2. However, still by Theorem 2 the integer 60 =
64− 4 = 26 − 26−4 is a weight of RM(4, 9).

Note that this integer does not appear in the spectrum of RM(3, 8) since
then, in the notation of Theorem 2, µ ≤ bmax(3, 7

2
)c = 3, when µ = 4 for

the weight 60 of RM(4, 9). This shows that the statement of Proposition 3
can only be valid for m ≥ 9.

Hence {60} ∪ S + S is the whole spectrum of RM(4, 9).

5.4 The weights of RM(5, 10)

We summarize the partial knowledge we have of the spectrum of RM(5, 10).

Proposition 3. The weight spectrum of RM(5, 10) contains

1. the integer 62 and its complement to 1024, namely 962

2. all the even integers in the range [448, 576]

9



3. the set

{0, 32, 48, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112,

116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176,

180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240,

244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 300, 304,

308, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 356, 360, 364, 368,

372, 376, 380, 384, 388, 392, 396, 400, 404, 408, 412, 416, 420, 424, 428, 432,

436, 440, 444, 448, 452, 456, 460, 464, 468, 472, 476, 480, 484, 488, 492, 496,

500, 504, 508, 512, 516, 520, 524, 528, 532, 536, 540, 544, 548, 552, 556, 560,

564, 568, 572, 576, 580, 584, 588, 592, 596, 600, 604, 608, 612, 616, 620, 624,

628, 632, 636, 640, 644, 648, 652, 656, 660, 664, 668, 672, 676, 680, 684, 688,

692, 696, 700, 704, 708, 712, 716, 720, 724, 728, 732, 736, 740, 744, 748, 752,

756, 760, 764, 768, 772, 776, 780, 784, 788, 792, 796, 800, 804, 808, 812, 816,

820, 824, 828, 832, 836, 840, 844, 848, 852, 856, 860, 864, 868, 872, 876, 880,

884, 888, 892, 896, 900, 904, 908, 912, 916, 920, 924, 928, 932, 936, 940, 944,

948, 952, 956, 960, 964, 968, 976, 992, 1024}

Proof.

1. By considering the special Boolean function x1x2x3x4x5⊕x6x7x8x9x10.

2. Follows by computing in Magma the weight distribution of the inter-
section between the extension of BCH(1023,157) and RM(5,10).

3. By Lemma 1 applied to the weight spectrum of RM(4, 9) computed in
the previous subsection.
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6 Conclusion and open problems

In this note, we have derived the weight spectra of two infinite families of
Reed-Muller codes. For further generalization, the base point of the re-
currence might not be amenable to exact enumeration by computer and
theoretical work will be necessary. The weight spectra of RM(4, 10) and
RM(5, 10) are not known. (The weight spectra of RM(3, 9), which is given
in http://oeis.org/A018895 and of RM(4, 9), which is determined in §5.2,
are not enough for deriving those of RM(4, 10) and RM(5, 10) by the tech-
niques in this note). This knowledge is necessary for starting an induction
to determine the spectrum of RM(m− 5,m).,

Based on the results of Proposition 1 and Proposition 2, it is natural to
conjecture that the weight spectrum of RM(m−c,m) contains all the weights
between the minimum distance 2c and its complement to the length 2m, that
are authorized by McEliece’s congruence and Kasami-Tokura’s result. Since
bm−1
m−cc = 1 for m > 2c− 1, we can formulate the following:

Conjecture: Let c be any positive integer. Then for m > 2c− 1, the weight
spectrum of RM(m− c,m) is of the form:

{0} ∪ A ∪B ∪ C ∪B ∪ A ∪ {2m},

where:

• A ⊆ [2c, 2c+1], is given by Kasami and Tokura [4],

• B ⊆ [2c+1, 2c+1 + 2c], is given by Kasami, Tokura, and Azumi in [5,
Page 392 and foll.],

• C ⊆ [2c+1 + 2c, 2m − 2c+1 − 2c], consists of consecutive even integers,

• A stands for the complement to 2m of A, and B stands for the comple-
ment to 2m of B.

This conjecture is verified for c = 1, 2, 3, 4. The first open case is c = 5.

In view of the ternary and quinary analogues of Theorem 15 of [11],
namely Theorems 17 and 18 of [11], it is natural to ask for analogues of our
results for Generalized Reed Muller codes of characteristics 3 and 5. How-
ever, an exact analogue of Theorem 2 in that context does not seem to be
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available from the literature.

Acknowledgement. We thank the anonymous Reviewers for their useful
comments; one of these provided the example of Boolean function mentioned
in the proof of Proposition 3.
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