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Introduction

The notions of pre-and post-group have been put forward recently by Chengming Bai, Li Guo, Yunhe Sheng and Rong Tang in the work [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF]. Both motivation and terminology derive from the corresponding infinitesimal objects known as pre-and post-Lie algebras. The former simultaneously appeared sixty years ago in the works of Murray Gerstenhaber [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF] and Ernst Vinberg [START_REF] Vinberg | The theory of homogeneous convex cones[END_REF]. The idea can be traced even further back to work by Arthur Cayley [START_REF] Cayley | On the theory of the analytical forms called trees[END_REF] on the connection between trees and vector fields. The notion of post-Lie algebra, on the other hand, appeared far more recently, in works by Bruno Vallette in 2007 [START_REF] Vallette | Homology of generalized partition posets[END_REF] and, independently, by Hans Munthe-Kaas and Will Wright in 2008 [START_REF] Munthe-Kaas | On the Hopf algebraic structure of Lie group integrators[END_REF] who introduced the closely related notion of D-algebra and highlighted their relevance in the context of Klein geometries. In fact, pre-as well as post-Lie algebras arise naturally in the context of the geometry of invariant connections defined on manifolds. Examples of pre-and post-groups are easily identified in the works by Daniel Guin and Jean-Michel Oudom [START_REF] Guin | On the Lie enveloping algebra of a pre-Lie algebra[END_REF] respectively by Alexander Lundervold, Hans Munthe-Kaas and the second author [START_REF] Lundervold | On the Lie enveloping algebra of a post-Lie algebra[END_REF].

A post-group is a group (G, .) together with a family (L ⊲ a ) a∈G of group automorphisms such that the relation

L ⊲ a • L ⊲ b = L ⊲ a.L ⊲ a (b)
holds for any a, b ∈ G. The unit of (G, .) is denoted by e. The triangle ⊲ denotes the additional binary product a ⊲ b =: L ⊲ a (b) defined on G. A pre-group is a post-group in which the group law . is commutative. The definition of a post-group formalises properties of group-like elements in the completion of the enveloping algebra of a post-Lie algebra (in a pre-Lie algebra for a pre-group) [START_REF] Guin | On the Lie enveloping algebra of a pre-Lie algebra[END_REF][START_REF] Lundervold | On the Lie enveloping algebra of a post-Lie algebra[END_REF]. Furthermore, one observes that the notion of post-group is equivalent to two notions closely related to set-theoretical solutions of the Yang-Baxter equation [START_REF] Etingof | Set-theoretical solutions to the quantum Yang-Baxter equation[END_REF], namely braided groups [START_REF] Lu | On the set-theoretical Yang-Baxter equation[END_REF] and skew-braces [START_REF] Guarnieri | Skew braces and the Yang-Baxter equation[END_REF], see [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF]Section 3]. The defining axioms of a post-group have been relaxed by S. Wang in [START_REF] Wang | Weak) twisted post-groups, skew trusses and rings[END_REF], leading to the notion of weak twisted post-group.

We begin this short note with a quick review of the basic properties of post-groups in Section 2. A short account of the main results of [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF] is provided in Section 3. In Section 4, we give a short account of S. Wang's weak twisted post-groups [START_REF] Wang | Weak) twisted post-groups, skew trusses and rings[END_REF]. Three new nontrivial examples of weak post-groups (in the sense of S. Wang, but with the supplementary property that L ⊲ e is bijective1 , and without twist) are discussed in Section 5. The first example is given by maps from a set M into a group G, with the latter acting on M from the right. The second example is the smooth analogue of the first one, namely smooth maps from a smooth manifold M into a Lie group G right-acting differentiably on M. In Paragraph 5.3), we show that the post-Lie algebra naturally associated with this weak post-Lie group coincides with the post-Lie algebra of Lie group integrators considered in [START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and Moving Frames[END_REF].

The last family of examples provides post-groups in the strict sense (Theorem 12), namely free postgroups generated by left-regular diagonal magmas. A magma (M, ⊲) is left-regular whenever the left multiplication operators L ⊲ x = x ⊲ -are bijective. A left-regular magma is called diagonal in this work when the application x → (L ⊲

x ) -1 (x) is moreover bijective from M onto M . Our two main results in this last section can be summarized as follows:

• We prove (Theorem 12) that the free group F M generated by M is a post-group, and that it is free in the following sense: for any post-group (G, ., ⊲), and for any magma morphism ϕ : (M, ⊲) → (G, ⊲), the unique group morphism Φ : F M → G extending ϕ is a morphism of post-groups. • We construct (Proposition 14) a group isomorphism K : (F M , * ) → (F M , .) between the two group structures of a free post-group, reminiscent of Aleksei V. Gavrilov's K-map between the two Lie algebra structures of a free post-Lie algebra [START_REF] Gavrilov | The double exponential map and covariant derivation[END_REF][START_REF] Gavrilov | The Leibniz formula for the covariant derivative and some of its applications[END_REF], see also [START_REF] Al-Kaabi | Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials[END_REF][START_REF] Foissy | Extension of the Product of a Post-Lie Algebra and Application to the SISO Feedback Transformation Group[END_REF]. 
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Basic definitions and properties

Definition 1. [4]

A post-group (G, ., ⊲) is a group (G, .) endowed with a binary map ⊲ : G × G → G such that L ⊲ a (-) := a ⊲is a group automorphism, and such that the following identity holds:

(1) (a * b) ⊲ c = a ⊲ (b ⊲ c),
for any a, b, c ∈ G, where

(2) a * b := a.(a ⊲ b).
The inverse of any a ∈ G will be denoted by a .-1 . The following statement identifies the product (2) as a group law. 

(3) a * -1 = (L ⊲ a ) -1 a .-1 .
The binary map * is an action of the group (G, * ) on the group (G, .) by automorphisms.

Proof. The proof can be found in [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF], we reproduce it for the reader's convenience: associativity of * comes from the associativity of the group law on G by following direct computation:

(a * b) * c = a.(a ⊲ b) * c = a.(a ⊲ b) . a.(a ⊲ b) ⊲ c = a.(a ⊲ b) . a ⊲ (b ⊲ c) whereas a * (b * c) = a * b.(b ⊲ c) = a. a ⊲ b.(b ⊲ c) = a. (a ⊲ b). a ⊲ (b ⊲ c) .
Let e be the unit of the group (G, .). 

:= (L ⊲ a ) -1 a .-1 , for a ∈ G, we check quickly that a * b = a.(a ⊲ b) = a. L ⊲ a (L ⊲ a ) -1 a .-1 = a.a .-1 = e.
Any element in G therefore admits a right-inverse with respect to the product * . A standard argument shows that the right-inverse is also a left-inverse, and that the inverse thus obtained is unique. This terminology should remind the reader of the well-known fact that a pre-Lie algebra can be seen as a post-Lie algebra with an Abelian Lie bracket. Grossman-Larson groups associated to pre-groups are not Abelian in general. Pre-groups naturally associated with free pre-Lie algebras appear as early as 1981 under the terminology "group of formal flows" [START_REF] Agrachev | Chronological algebras and nonstationary vector fields[END_REF][START_REF] Manchon | A short survey on pre-Lie algebras[END_REF][START_REF] Smoktunowicz | Algebraic approach to Rump's results on relations between braces and pre-Lie algebras[END_REF].

rise to two subjacent groups, namely (G, .) and (G, * ). The terminology we have chosen refers to the Grossman-Larson bracket in a post-Lie algebra [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of post-Lie algebra[END_REF], which itself refers to the Grossman-Larson product of rooted forests [START_REF] Grossman | Hopf-algebraic structure of families of trees[END_REF][START_REF] Munthe-Kaas | On the Hopf algebraic structure of Lie group integrators[END_REF]. We leave it to the reader to check that (G, .,◮) is indeed a post-group, sharing with (G, ., ⊲) the same Grossman-Larson product, namely

a * b = a.(a ⊲ b) = a.(a ◮ b).
3. Quick review of the main results of reference [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF] We offer here a quick guided tour of the article [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF] by C. Bai, L. Guo, Y. Sheng and R. Tang, where the reader will find the detailed statements and proofs.

3.1. Post-groups, braided groups and skew-braces. The main structural result of [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF] is the equivalence between three different notions, i.e., that of a post-group, a braided group and a skew brace (Section 3 therein). Braided groups appeared in 2000 in an influential article on set-theoretical solutions of the Yang-Baxter equation by J.-H. Lu, M. Yan and Y.-C. Zhu [START_REF] Lu | On the set-theoretical Yang-Baxter equation[END_REF]. Another construction related to Yang-Baxter equations, namely skew-braces, appeared more recently in the 2017 article by L. Guarnieri and L. Vendramin [START_REF] Guarnieri | Skew braces and the Yang-Baxter equation[END_REF], following the introduction of braces by W. Rump 3 [START_REF] Rump | Braces, radical rings, and the quantum Yang-Baxter equation[END_REF].

Let C be a braided monoidal set category, i.e. a full subcategory of the category of sets, stable by cartesian product and endowed with a braiding σ, that is, a collection of bijective maps σ XY : X × Y → Y × X indexed by ordered pairs (X, Y ) of objects of C, subject to

• functoriality: for any pair of set maps f : X → X ′ and g : Y → Y ′ , the equality

σ X ′ Y ′ • (f × g) = (g × f ) • σ XY holds.
• compatibility with the cartesian product:

(5)

σ X×X ′ , Y ×Y ′ = (Id Y ×σ XY ′ × Id X ′ ) • (σ XY × σ X ′ Y ′ ) • (Id X ×σ X ′ Y × Id Y ′ ),
• the hexagon equation

(6) (σ Y Z × Id X ) • (Id Y ×σ XZ ) • (σ XY × Id Z ) = (Id Z ×σ XY ) • (σ XZ × Id Y ) • (Id X ×σ Y Z ).
In particular, any object S of C is a braided set, the braiding map σ SS : S × S → S × S being a bijection satisfying the braid equation

(7) (σ × Id S ) • (Id S ×σ) • (σ × Id S ) = (Id S ×σ) • (σ × Id S ) • (Id S ×σ),
where we have abbreviated σ SS by σ. The category of sets itself is braided with the flip maps P XY : X × Y → Y × X defined by P XY (a, b) = (b, a) (trivial braiding). A map σ : S × S → S × S verifies [START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF] if and only if the map R = P SS • σ is a solution of the set-theoretical Yang-Baxter equation 4

(8) R 12 • R 13 • R 23 = R 23 • R 13 • R 12 ,
where, as usual,

R 12 = R × Id S , R 23 = Id S ×R, and R 13 = (Id S ×τ ) • (R × Id S ) • (Id S ×τ ).
The trivial braiding satisfies the additional symmetry property P Y X • P XY = Id X×Y for any sets X, Y .

Definition 5. [22]

A braided group is a commutative group in the braided monoidal set category generated by it. To be concrete, it is a pair (G, σ) where G is a group and σ : G × G → G × G is a bijection such that 3 These braces should not be confused with their homonyms related to pre-Lie algebras and operads, see e.g. [START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF][START_REF] Guin | On the Lie enveloping algebra of a pre-Lie algebra[END_REF][START_REF] Mencattini | Post-symmetric braces and integration of post-Lie algebras[END_REF].

Interestingly enough, this conflict of terminology identifies pre-Lie algebras with strongly nilpotent braces in the first sense [START_REF] Smoktunowicz | Algebraic approach to Rump's results on relations between braces and pre-Lie algebras[END_REF], and with symmetric braces in the second sense [START_REF] Guin | On the Lie enveloping algebra of a pre-Lie algebra[END_REF]. 4 The term "Yang-Baxter equation" is sometimes used for the braid equation ( 7) in the literature, thus bringing some confusion. We adopt here the conventions of [START_REF] Lu | On the set-theoretical Yang-Baxter equation[END_REF].

• σ • (m × m) = (m × m) • σ, where σ = σ G×G, G×G : G 4 → G 4
is given by [START_REF] Burde | Left-symmetric algebras, or pre-Lie algebras in geometry and physics Cent[END_REF], and where

m : G × G → G is the group multiplication, • m • σ = m.

In a braided group (G, σ), it turns out that [22, Theorem 1 & Theorem 2]

• the map σ in a braided group verifies the braid equation ( 7),

• the two maps ⇀, ↼: G × G → G defined by ( 9)

σ(g, h) = (g ⇀ h, g ↼ h)
are respectively a left action and a right action of the group G on itself. Conversely, if a left action ⇀ and a right action ↼ together fulfil the compatibility condition gh = (g ⇀ h).(g ↼ h) for any g, h ∈ G, then (G, σ) is a braided group, with the braiding σ given by ( 9). 

G × G → G × G given by (10) σ(g, h) := g ⊲ h, (g ⊲ h) * -1 * g * h .
Conversely, any braided group (G, σ) with product denoted by * gives rise to a post-group (G, ., ⊲) with

(11) g ⊲ h := g ⇀ h and g.h := g * (g * -1 ⇀ h),
where we have used the notation σ(g, h) := (g ⇀ h, g ↼ h). Both correspondences are mutually inverse.

Proposition 3. Let (G, ., ⊲) be a post-group, and let σ :

G × G → G × G the corresponding braiding
given by [START_REF] Ebrahimi-Fard | Post-Lie Algebras and Isospectral Flows[END_REF]. The braiding corresponding to the opposite post-group

(G, .,◮) is σ -1 .
Proof. It is immediate from Definition 5 that, for any braided group (G, σ), the pair (G, σ -1 ) is also a braided group. Now let (G, ., ⊲) be a post-group, let σ be the corresponding braiding map, and let σ ′ be the braiding map of the opposite post-group (G, .,◮). From (10), we have σ(g, h) = (H, G) with

H = g ⊲ h and G = (g ⊲ h) * -1 * g * h. Now we have σ ′ • σ(g, h) = σ ′ (H, G) = H ◮ G, (H ◮ G) * -1 * H * G = H.(H ⊲ G).H .-1 , H.(H ⊲ G).H .-1 * -1 * H * G = (K, K * -1 * H * G), with K := H.(H ⊲ G).H .-1 . We therefore have K = (g ⊲ h). (g ⊲ h) ⊲ (g ⊲ h) * -1 * g * h .(g ⊲ h) .-1 = (g ⊲ h). (g ⊲ h) ⊲ (g ⊲ h) * -1 * g.(g ⊲ h) .(g ⊲ h) .-1 = (g ⊲ h). (g ⊲ h) ⊲ (g ⊲ h) * -1 . (g ⊲ h) * -1 ⊲ g.(g ⊲ h) .(g ⊲ h) .-1 = (g ⊲ h). (g ⊲ h) ⊲ (g ⊲ h) * -1 . (g ⊲ h) ⊲ (g ⊲ h) * -1 ⊲ g.(g ⊲ h) .(g ⊲ h) .-1 = (g ⊲ h). (g ⊲ h) ⊲ (g ⊲ h) * -1 . g.(g ⊲ h) .(g ⊲ h) .-1 = (g ⊲ h).(g ⊲ h) .-1 .g = g, so that K * -1 * H * G = g * -1 * (g ⊲ h) * (g ⊲ h) * -1 * g * h = h. Therefore we have σ ′ • σ(g, h) = (g, h).
Both bijective maps σ and σ ′ are mutually inverse, which proves Proposition 3. Proof. This is a direct consequence of the fact that any pre-group is equal to its opposite.

Definition 6. [4, 19]

A skew-left brace is a set G endowed with two group structures (G, .) and (G, * ) such that

(12) g * (h.k) = (g * h).g .-1 .(g * k)
for any g, h, k ∈ G.

Any post-group (G, ., ⊲) gives rise to the left-skew brace (G, ., * ) where * is the Grossman-Larson product [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF]Proposition 3.22]. Conversely, any left skew-brace gives rise to the post-group (G, ., ⊲) with g ⊲ h := g .-1 .(g * h) for any g, h ∈ G. Both correspondences are mutually inverse [4, Proposition 3.24]. To complete the picture, the opposite of a skew-brace (G, ., * ) will be defined as the skew-brace (G, ., * ) where, as above, a.b := b.a for any a, b ∈ G. A left skew-brace where the dot-group product is commutative is a left brace: see [START_REF] Rump | Braces, radical rings, and the quantum Yang-Baxter equation[END_REF], or [START_REF] Smoktunowicz | Algebraic approach to Rump's results on relations between braces and pre-Lie algebras[END_REF] for a recent, purely algebraic account.

We remark that the recent notions of both left-skew brace and post-group, therefore appear to be reformulations of the older notion of braided group developed by J.-H. Lu, M. Yan and Y. Zhu in [START_REF] Lu | On the set-theoretical Yang-Baxter equation[END_REF], shedding new light to it. , -]) is a Lie algebra, and ⊲ : g × g is a bilinear map such that, for any X, Y, Z ∈ g,

• X ⊲ [Y, Z] = [X ⊲ Y, Z] + [Y, X ⊲ Z], • [X, Y ] ⊲ Z = X ⊲ (Y ⊲ Z) -(X ⊲ Y ) ⊲ Z -Y ⊲ (X ⊲ Z) + (Y ⊲ X) ⊲ Z.
As key property of post-Lie algebra we recall from [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of post-Lie algebra[END_REF] that (g, [[-, -]]) is the corresponding Grossman-Larson Lie algebra 5 given by the Grossman-Larson bracket defined by [START_REF] Gavrilov | Algebraic properties of the covariant derivative and composition of exponential maps[END_REF] [

[X, Y ]] := [X, Y ] + X ⊲ Y -Y ⊲ X,
for any X, Y ∈ g. The older notion of pre-Lie algebra [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF][START_REF] Vinberg | The theory of homogeneous convex cones[END_REF] follows from that of post-Lie algebra in the case of the latter having an Abelian Lie bracket. The corresponding Grossman-Larson bracket is thus given by the anti-symmetrization of the pre-Lie product, that is, pre-Lie algebras are Lie admissible. We remark that in [START_REF] Agrachev | Chronological algebras and nonstationary vector fields[END_REF] pre-Lie algebras are called chronological algebras. See [START_REF] Burde | Left-symmetric algebras, or pre-Lie algebras in geometry and physics Cent[END_REF][START_REF] Manchon | A short survey on pre-Lie algebras[END_REF] for detailed reviews. we now compute:

Definition 9. Let (g, [-, -], ⊲) be a post-Lie algebra. Defining [X, Y ] op := -[X, Y ] and X ◮ Y := X ⊲ Y + [X, Y ], we have that (g, [-, -] op , ◮) is a post-Lie
d dt | t=0 d ds | s=0 exp(tX) ◮ exp(sY ) = d dt | t=0 d ds | s=0 exp(tX). exp(tX) ⊲ exp(sY ) . exp(-tX) = d dt | t=0 d ds | s=0 exp(tX). exp s exp(tX) ⊲ Y . exp(-tX) = d dt | t=0 Ad exp(tX) . exp(tX) ⊲ Y = (ad X X + L ⊲ X )(Y ) = [X, Y ] + X ⊲ Y = X ◮ Y,
where, for any g ∈ G and Y ∈ g, the notation g ⊲ Y stands for d ds | s=0 g ⊲ exp(sY ) . 

v ⊲ x ∈ d(D) (15) (x.v) ⊲ w = a ⊲ (x, v, w), ( 16 
)
where the associator is defined by a ⊲ (x, v, w)

:= x ⊲ (y ⊲ w) -(x ⊲ y) ⊲ w.
Although the enveloping algebra of a post-Lie algebra always carries a D-algebra structure, the converse is not necessarily true. The paradigmatic example given in [START_REF] Munthe-Kaas | On the Hopf algebraic structure of Lie group integrators[END_REF] is D := C ∞ M, U (g) where M is a smooth manifold, G is a Lie group acting on M, with Lie algebra g, and where U (g) is the universal enveloping algebra of g. The product is the pointwise product, and the action u ⊲ -is given by the differential operator on M defined by u through the action of G on M. It is easily seen [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of post-Lie algebra[END_REF] that Post-Hopf algebras have been recently introduced in [START_REF] Li | Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation[END_REF]. See also [START_REF] Mencattini | Post-symmetric braces and integration of post-Lie algebras[END_REF]. They are examples of "good D-algebras", i.e. they are always equipped with a Grossman-Larson product. Definition 11. [21, Definition 2.1], [4, Definition 5.1] A post-Hopf algebra (H, ., 1, ∆, ε, S, ⊲) consists of a cocommutative Hopf algebra (H, ., 1, ∆, ε, S), where ⊲ : H ⊗ H → H is a coalgebra morphism such that, using Sweedler's notation ∆x = (x) x 1 ⊗ x 2 :

L := C ∞ (M, g) is the post-Lie algebra d(D), but D is a quotient of U (L).
• for any x, y, z ∈ H we have

x ⊲ (y.z) = (x) (x 1 ⊲ y).(x 2 ⊲ z),
• for any x, y, z ∈ H we have

x ⊲ (y ⊲ z) = (x) x 1 .(x 2 ⊲ y) ⊲ z,
• The operator L ⊲ : H → End H defined by L ⊲ x (-) := x ⊲admits an inverse β ⊲ for the convolution product in Hom(H, End H).

From [21, Theorem 2.4] (see also [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF]Theorem 5.3]), any post-Hopf algebra H admits a Grossman-Larson product * and a linear map S * : H → H making H := (H, * , 1, ∆, ε, S * ) another cocommutative Hopf algebra. The Grossman-Larson product is given by [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF] x * y = (x)

x 1 .(x 2 ⊲ y),
and the corresponding antipode is given by ( 18)

S * (x) = (x) β ⊲ x 1 S(x 2 ) .
Remark 4 in [START_REF] Al-Kaabi | Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials[END_REF] can be reformulated as follows: the universal enveloping algebra of a post-Lie algebra is a post-Hopf algebra.

Remark 6. Several results in [START_REF] Al-Kaabi | Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials[END_REF] can be reformulated and showed in the post-Hopf algebra framework, with literally the same proofs. For example [3, Theorem 2], the product . in a post-Hopf algebra can be expressed from the Grossman-Larson product * and the corresponding antipode S * by the formula

x.y = (x)

x 1 * S * (x 2 ) ⊲ y .

Remark 7. The notion of dual post-Hopf algebra can be introduced, by dualizing the axioms. This leads to a unital algebra carrying two different coproducts, yielding two Hopf algebras in cointeraction [START_REF] Manchon | A Review on Comodule-Bialgebras[END_REF]. A more detailed account will be given in forthcoming work.

Weak post-groups

The defining axioms of a post-group have been relaxed by S. Wang [START_REF] Wang | Weak) twisted post-groups, skew trusses and rings[END_REF] as follows: A post-group is therefore a weak twisted post-group with trivial cocycle (i.e. φ = Id G ) in which the L ⊲ a 's are bijective. 

5.2.

Weak post-groups from group actions. Let M be a set endowed with a right action ρ : M × G → M of the (G, .). We use the notation ma for ρ(m, a). Let G := G M be the set of maps from M into G, endowed with the pointwise product [START_REF] Guarnieri | Skew braces and the Yang-Baxter equation[END_REF] f.g(m) := f (m).g(m).

Let us introduce the map

⊲ : G × G → G defined by (20) (f ⊲ g)(m) := g mf (m) .
Theorem 9. The triple (G, ., ⊲) is a weak post-group in the sense of Definition 13. The Grossman-Larson product is given by

(21) f * g(m) = f (m).g mf (m) .
Proof. It is clear that (G, .) is a group. The unit is given by the constant function e such that e(m) = e for any m ∈ M , where e is the unit of G. The inverse is given by f .-1 (m) := f (m) .-1 for any m ∈ M . For any f ∈ G, the map L ⊲ f = f ⊲ -is a group morphism: indeed, we have for any f, g, h ∈ G and any m ∈ M :

f ⊲ (g.h) (m) = (g.h) mf (m) = g mf (m) .h mf (m) = (f ⊲ g)(m).(f ⊲ h)(m) = (f ⊲ g).(f ⊲ h) (m). We have f * g(m) = f.(f ⊲ g)(m) = f (m).g m.f (m)
, and we also have

(f * g) ⊲ h = f ⊲ (g ⊲ h)
, for any f, g, h ∈ G, as shown by the computation below (where m is any element of M ):

(f * g) ⊲ h(m) = h m(f * g)(m) = h m f (m).g mf (m) whereas f ⊲ (g ⊲ h)(m) = (g ⊲ h) mf (m) = h mf (m) g mf (m) = h m f (m).g mf (m)
.

The identity L ⊲ e = Id G is obvious, which ends up proving the claim. Remark 10. The weak post-group G generally fails to be a post-group, as the left multiplication operator L ⊲ f is not necessarily bijective 6 : for example, if M = G with ρ(m, a) = m.a, let f ∈ G given by f (m) = m -1 . For any g ∈ G, we have

(f ⊲ g)(m) = g m.f (m) = g(m.m -1 ) = g(e),
hence the image of L ⊲ f only consists in constant functions. 5.3. Weak post-Lie groups from Lie group actions. Suppose now that M is a smooth manifold together with a smooth right action of a Lie group G on it. We denote by G the set of smooth maps from M into G, and by L the vector space of smooth maps from M into g (thus matching the notation of Paragraph 3.3). Any X ∈ L gives rise to a vector field X on M defined by ( 22)

X.ϕ(m) := d dt | t=0 ϕ m exp tX(m) .
It is well-known that L is a post-Lie algebra [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of post-Lie algebra[END_REF][START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and Moving Frames[END_REF][START_REF] Munthe-Kaas | On the Hopf algebraic structure of Lie group integrators[END_REF]. In fact, L is the post-Lie algebra of the "infinite-dimensional weak post-Lie group" G. The action ⊲ : L × L → L can indeed be derived from the action ⊲ : G × G → G via differentiation as in [START_REF] Gavrilov | The double exponential map and covariant derivation[END_REF] as follows: for any X, Y ∈ L and m ∈ M we have

d dt | t=0 d ds | s=0 exp(tX) ⊲ exp(sY )(m) = d dt | t=0 d ds | s=0 exp(sY ) m exp(tX)(m) = d dt | t=0 Y m exp(tX)(m) = X.Y (m) = (X ⊲ Y )(m).
The triple (L, [-, -], ⊲), where [-, -] is the pointwise Lie bracket, with the product ⊲ appearing at the end of the computation above, is the post-Lie algebra described in [START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and Moving Frames[END_REF][START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of post-Lie algebra[END_REF].

Remark 11. Using the language of Lie algebroids, (L, [-, -]) is the Lie algebra of sections of the Lie algebroid M × g of the Lie group bundle M × G above M, whereas (L, [[-, -]]) is the Lie algebra of sections of the Lie algebroid of the transformation groupoid M ⋊ G. The anchor map of the first Lie algebroid is trivial, the anchor map of the second is given by X → X. For an account of Lie algebroids and Lie groupoids, we refer the reader to the textbook [START_REF] Mackenzie | General theory of Lie groupoids and Lie algebroids[END_REF].

5.4. The free post-group generated by a diagonal left-regular magma. Let M be a left-regular magma, i.e. a set endowed with a binary product ⊲ : M × M → M such that the map L ⊲ m = m ⊲ -is bijective for any m ∈ M. Equivalently, a left-regular magma is a set M endowed with a left action ⊲ of the free group F M generated by M. This action can in turn be uniquely extended to a left action of F M on itself by group automorphisms. The left-regular magma M is called diagonal if moreover the map Λ :

M → M, m → Λ(m) = (L ⊲ m ) -1 (m) is a bijection. Theorem 12.
Let M be a diagonal left-regular magma. Denoting by a lower dot . the multiplication of the free group F M , there is a unique way to extend the binary product ⊲ : M × M → M to F M such that (F M , ., ⊲) is a post-group. The post-group F M thus obtained verifies the universal property making it the free post-group generated by the magma M, namely for any post-group (G, ., ⊲) and for any magma morphism ϕ : M → (G, ⊲) there is a unique post-group morphism Φ :

F M → G making the diagram below commute. (23) M ϕ ! ! ❇ ❇ ❇ ❇ ❇ ❇ ❇ ❇ F M Φ / / G
Proof. We have to construct a family of group automorphisms L ⊲ a : F M → F M for any a ∈ F M such that (1) is verified for any a, b, c ∈ F M . In other words, (24)

L ⊲ a • L ⊲ b = L ⊲ a.
(a⊲b) , which can also be written as

(25) L ⊲ a.b = L ⊲ a • L ⊲ a⊲b ,
where a⊲-is a shorthand for the inverse group automorphism (L ⊲ a ) -1 . We construct the L ⊲ a 's by induction on the length |a| of the canonical word representation of a, and prove (24) by induction over |a|+|b|.

Let us first define the maps L ⊲

a when a is of length zero or one. The maps L ⊲ a are given for a ∈ M by the magma structure, and [START_REF] Mackenzie | General theory of Lie groupoids and Lie algebroids[END_REF] 

easily implies L ⊲ e = Id F M . It remains to define L ⊲ a .-1 for a ∈ M. From (25) with b = a .-1 we get (26) Id F M = L ⊲ a.a .-1 = L ⊲ a • L ⊲ a⊲a .-1 , which immediately yields (27) L ⊲ (a⊲a) .-1 = (L ⊲ a ) -1 .
From the diagonality hypothesis on the left-regular magma M, the map ψ :

M → M .-1 (28) ψ : a → (a⊲a) .-1
is a bijection. We can therefore define the group automorphisms L ⊲ a .-1 for any a ∈ M by ( 29)

L ⊲ a .-1 := L ⊲ ψ -1 (a .-1 ) -1 .
Remark 13. The map ψ defined in (28) can be seen as an involution on M ∪ M .-1 . Indeed, from [START_REF] Munthe-Kaas | On post-Lie algebras, Lie-Butcher series and Moving Frames[END_REF] the definition ψ : a ′ → (a ′ ⊲a ′ ) .-1 also makes sense for a ′ ∈ M .-1 , and we get for any a ∈ M:

ψ 2 (a) = ψ(a)⊲ψ(a) .-1 = (a⊲a) .-1 ⊲(a⊲a) .-1 .-1
= (a⊲a) .-1 ⊲(a⊲a) (from the group automorphism property) = (a⊲a .-1 )⊲(a⊲a) (from the group automorphism property)

= (L ⊲ a⊲a .-1 ) -1 • (L ⊲ a ) -1 (a) = (L ⊲ a • L ⊲ a⊲a .-1 ) -1 (a) = a
(from ( 26)).

Any a ′ ∈ M .-1 is uniquely written as a ′ = ψ(a) with a ∈ M. We have

ψ 2 (a ′ ) = ψ 3 (a) = ψ(a) = a ′ ,
which terminate the proof of the statement, from which we easily get the mirror of ( 26), namely

Id

F M = L ⊲ a .-1 .a = L ⊲ a .-1 • L ⊲ a .-1 ⊲a . Let us now define L ⊲ u for any u ∈ F M . If u is of length n ≥ 2, it can be uniquely written u = u ′ a with a ∈ M ∪ M .-1 and u ′ ∈ F M of length n -1. From (25) we have L ⊲ u = L ⊲ u ′ • L ⊲ u ′ ⊲a .
Iterating the process, we get the following expression for L ⊲ u in terms of the canonical representation 

u = a 1 • • • a n in letters a k ∈ M ∪ M .-1 : (31) L ⊲ u = L ⊲ u 1 • L ⊲ u 1 ⊲a 2 • • • • • L ⊲ u n-1 ⊲an , where u k is the prefix a 1 • • • a k for any k = 1, . . . , n -
L ⊲ u.v = L ⊲ u.v ′ .a = L ⊲ u.v ′ • L (u.v ′ )⊲a by (31) = L ⊲ u • L ⊲ u⊲v ′ • L ⊲ (L ⊲ uv ′ ) -1 (a)
by induction hypothesis

= L ⊲ u • L ⊲ u⊲v ′ • L ⊲ (L ⊲ u •L ⊲ u⊲v ′ ) -1 (a)
by induction hypothesis

= L ⊲ u • L ⊲ u⊲v ′ • L ⊲ (u⊲v ′ )⊲(u⊲a) = L ⊲ u • L ⊲ (u⊲v ′ ).(u⊲a)
by induction hypothesis

= L ⊲ u • L ⊲ u⊲(v ′ .a)
by the group automorphism property of u⊲-

= L ⊲ u • L ⊲ u⊲v .
Finally, if G is another post-group, any set map ϕ : M → G, a fortiori any magma morphism, admits a unique group morphism extension Φ : F M → G making the diagram (23) commute. Checking that Φ is a morphism of post-groups is left to the reader. 5.5. A group isomorphism. Given a post-group (G, ., ⊲), the two groups (G, .) and (G, * ) are in general not isomorphic: for example, in a typical pre-group, the first one is Abelian and the second one is not. We shall however see that the free post-group generated by left-regular diagonal magma provides an isomorphism between both associated groups. We keep the notations of the previous paragraph. Proposition 14. There is a unique group isomorphism

J : (F M , .) -→ (F M , * ) such that J | M = Id M .
Proof. Existence and uniqueness of the group morphism J is immediate from the definition of a free group. It remains to show that J is an isomorphism. From (3) we have J (a .-1 ) = (a⊲a) .-1 = ψ(a) .-1 for any a ∈ M. We remark that J is therefore a bijection from M ∪ M .-1 onto itself. For any element u = a 1 • • • a n ∈ F M where the letters a k are in M ∪ M .-1 , we have

J (u) = a ′ 1 * • • • * a ′ n = a ′ 1 .(a ′ 1 ⊲ a ′ 2 ). a ′ 1 ⊲ (a ′ 2 ⊲ a ′ 3 ) . . . (L ⊲ a ′ 1 • • • • • L ⊲ a ′ n-1 )(a ′ n ) with a ′ k = J (a k ).
In order to prove that any word v := b 1 • • • b n can be written in the form J (u) with u = a 1 • • • a n , we have to solve the triangular system

b 1 = a ′ 1 , b 2 = a ′ 1 ⊲ a ′ 2 , . . . , b n = (L ⊲ a ′ 1 • • • • • L ⊲ a ′ n-1 )(a ′ n ).
The letters a ′ k are therefore recursively given by a

′ 1 = b 1 and a ′ n = (L ⊲ a ′ 1 • • • • • L ⊲ a ′ n-1 ) -1 (b n ). The first ones are a ′ 1 = b 1 , a ′ 2 = b 1 ⊲b 2 , a ′ 3 = (b 1 ⊲b 2 )⊲(b 1 ⊲b 3 ), a ′ 4 = (b 1 ⊲b 2 )⊲(b 1 ⊲b 3 ) ⊲ (b 1 ⊲b 2 )⊲(b 1 ⊲b 4 ) , .
. . , and the letters a k are then given by a k = J -1 (a ′ k ). This builds up an inverse K for J : F M → F M and therefore finishes the proof of Proposition 14. 5.6. An analogy with Gavrilov's K-map. Recall [START_REF] Al-Kaabi | Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials[END_REF][START_REF] Foissy | Extension of the Product of a Post-Lie Algebra and Application to the SISO Feedback Transformation Group[END_REF] that the free Lie algebra L M (over some ground field k) generated by any magmatic k-algebra (M, ⊲) carries a unique post-Lie algebra structure such that the action ⊲ : L M × L M → L M extends the magmatic product of M . The universal enveloping algebra U (L M ) is the tensor algebra T (M ). As the former is a Hopf algebra with respect to the cocommutative unshuffle coproduct ∆, the latter carries a cocommutative post-Hopf algebra structure.

Gavrilov introduced the so-called K-map, which is crucial for building higher-order covariant derivatives on a smooth manifold endowed with an affine connection [START_REF] Gavrilov | The double exponential map and covariant derivation[END_REF][START_REF] Gavrilov | Higher covariant derivatives[END_REF]. See also [START_REF] Al-Kaabi | Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials[END_REF] for a more recent account extending Gavrilov's main results. It is a linear endomorphism of T (M ) recursively defined as follows: K(x) = x for any x ∈ M and ( 32)

K(x 1 • • • x k+1 ) = x 1 .K(x 2 • • • x k+1 ) -K x 1 ⊲ (x 2 • • • x k+1 ) ,
for any elements x 1 , . . . , x k+1 ∈ M (note that for notational transparency we denote by a simple dot the concatenation product in T (M )). In particular, K maps

x 1 .x 2 ∈ T (M ) to K(x 1 .x 2 ) = x 1 .x 2 -x 1 ⊲ x 2 and for x 1 .x 2 .x 3 ∈ T (M ) we obtain K(x 1 .x 2 .x 3 ) = x 1 .K(x 2 .x 3 ) -K x 1 ⊲ (x 2 .x 3 ) = x 1 .x 2 .x 3 -x 1 .(x 2 ⊲ x 3 ) -(x 1 ⊲ x 2 ).x 3 -x 2 .(x 1 ⊲ x 3 ) + x 2 ⊲ (x 1 ⊲ x 3 ) + (x 1 ⊲ x 2 ) ⊲ x 3 .
In the second equality we used that x 1 ⊲ (x 2 .x 3 ) = (x 1 ⊲ x 2 ).x 3 + x 2 .(x 1 ⊲ x 3 ). The map K is clearly invertible, as K(U ) -U is a linear combination of terms of strictly smaller length than the length of the element U ∈ T (M ). The inverse K -1 admits a closed formula in terms of set partitions (with blocks ordered according to their respective maximal elements) [3, Paragraph 2. The map K admits a unique extension by continuity to the completion T (M ) of T (M ) with respect to the grading. The set G of group-like elements in T (M ) is a post-group, and the restriction K | G is a group isomorphism from (G, * ) onto (G, .). The group isomorphism

K = J -1 : (F M , * ) → (F M , .
) Proof. The statement follows directly from the definition of the Grossman-Larson product (Definition 2).

defined
For the post-group (G, ., ⊲) associated to the free post-Lie algebra generated by a magmatic algebra (M, ⊲), Gavrilov showed in [16, page 87] that K -1 is a crossed morphism from the post-group (G, ., ⊲) into itself in the sense of Whitehead. Indeed, K is a group isomorphism between (G, * ) and (G, .) [START_REF] Al-Kaabi | Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials[END_REF]. Hence, K -1 = id • K -1 : (G, .) → (G, .) is a crossed morphism for the action g 1 ◮ g 2 := K -1 (g 1 ) ⊲ g 2 .

of (G, .) on itself. We then have K -1 (g 1 .g 2 ) = K -1 (g 1 ) * K -1 (g 2 ) = K -1 (g 1 ). K -1 (g 1 ) ⊲ K -1 (g 2 ) = K -1 (g 1 ). g 1 ◮ K -1 (g 2 ) .

Remark 16. We close the paper by pointing at an interesting observation regarding Gavrilov's K-map extended to T (M ) and flow equations on the post-group G. Consider the initial value problem Compare with Gavrilov [14, Lemma 1 & Lemma 2] as well as reference [START_REF] Ebrahimi-Fard | Post-Lie Algebras and Isospectral Flows[END_REF].

X(0) = 1, in a noncommutative algebra. It is defined by X(t) = exp Ω(A)(t) , where Ω is recursively given by Ω(A)(t) = 

Proposition 1 . [ 4 , Theorem 2 . 4 ]

 1424 The binary map * : G × G → G defined by a * b := a.(a ⊲ b) provides G with a second group structure. Both groups (G, .) and (G, * ) share the same unit e, and the inverse for * is given by

  From a ⊲ e = e for any a ∈ G we easily deduce that a * e = a.(a ⊲ e) = a. On the other hand, we have e ⊲ (e ⊲ a) = e.(e ⊲ e) ⊲ a = e ⊲ a, in other words (L ⊲ e ) 2 = L ⊲ e . From the bijectivity of L ⊲ e we deduce L ⊲ e = Id G , hence (4) e ⊲ a = a. This implies e * a = e.(e ⊲ a) = a and a * e = a.(a ⊲ e) = a, hence e is the unit for the new product * . Finally, defining the element b

Definition 2 .

 2 Let (G, ., ⊲) be a post-group. The associated Grossman-Larson group 2 (G, * ) has the group law a * b = a.(a ⊲ b), for any a, b ∈ G. Definition 3. [4, Definition 2.5] A pre-group is a post-group (G, ., ⊲) where the group (G, .) is Abelian.

Definition 4 .

 4 Let (G, ., ⊲) be a post-group. The opposite post-group is given by (G, .,◮) with a.b := b.a and a ◮ b := a.(a ⊲ b).a .-1 , for any a, b ∈ G.

Theorem 2 . [ 4 ,

 24 Proposition 3.13 & Proposition 3.17] For any post-group (G, ., ⊲), the Grossman-Larson group (G, * ) is a braided group, with braiding σ :

Corollary 4 .

 4 [START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF] Remark 3.15] The braiding map corresponding to a pre-group is involutive.

3. 2 .

 2 Post-Lie groups and post-Lie algebras. Definition 7. [4, Definition 4.2] A post-Lie group is a post-group (G, ., ⊲) where G is a smooth manifold, and where both operations are smooth maps from G × G to G. Definition 8. [34] A post-Lie algebra (over some field k) is a triple (g, [-, -], ⊲) where (g, [-

  algebra, which we call the opposite post-Lie algebra. Checking the post-Lie algebra axioms for (g, [-, -] op , ◮) is left to the reader. Both post-Lie algebras share the same Grossman-Larson bracket [3, Paragraph 2.1]. Section 4 of [4] elucidates the relationship between post-Lie groups and post-Lie algebras. Namely, the Lie algebra g of a post-Lie group G is a post-Lie algebra. The bilinear map ⊲ is given by (14) X ⊲ Y := d dt | t=0 d ds | s=0 exp(tX) ⊲ exp(sY ) (see [4, Theorem 4.3]). Moreover, the Lie algebra of the Grossman-Larson group (G, * ) is the Grossman-Larson Lie algebra (g, [[-, -]]) [4, Proposition 4.7]. Proposition 5. Let G be a post-Lie group with post-Lie algebra g. The post-Lie algebra of the opposite post-Lie group of G is the opposite post-Lie algebra of g. Proof. It is well-known (and easily checked) that the Lie algebra of the opposite group is deduced from g by changing the sign of the Lie bracket. Recalling the traditional notations Ad g Y = d ds | t=0 g. exp(sY ).g -1 , and ad X Y = d dt | t=0 d ds | s=0 exp(tX). exp(sY ). exp(-tX) = [X, Y ],

3. 3 .

 3 Post-Hopf algebras vs. D-algebras. D-algebras were introduced by H. Munthe-Kaas and W. Wright in [30, Definition 3] -independently of the introduction of post-Lie algebras by B. Vallette [34]. Definition 10. [3, 30] The triple (D, ., ⊲) consists of a unital associative algebra (D, .) with product m D (u ⊗ v) = u.v and unit 1, carrying another product ⊲ : D ⊗ D → D such that 1 ⊲ v = v for all v ∈ D. Let d(D) := {u ∈ D | u ⊲ (v.w) = (u ⊲ v).w + v.(u ⊲ w), ∀v, w ∈ D}. We call (D, ., ⊲) a D-algebra if the algebra product . generates D from {1, d(D)} and furthermore for any x ∈ d(D) and v, w ∈ D

  The D-algebra L carries an associative Grossman-Larson product * corresponding to the composition of differential operators. It verifiesu ⊲ (v ⊲ w) = (u * v) ⊲w for any u, v, w ∈ D. It is compatible with the post-Lie algebra structure of L in the sense that, for any X, Y ∈ L we have X * Y -Y * X = [[X, Y ]]. It is not clear whether any D-algebra admits such a Grossman-Larson product.

Definition 12 .

 12 [36, Definition 2.1] A (left) weak twisted post-group is a quadruple (G, ., ⊲, φ) where the product . is a group structure, φ : G → G is a map called cocycle, and ⊲ : G × G → G is a binary law such that • the left multiplication operators L ⊲ a = a ⊲ -: G → G are group morphisms, • the following identity holds (a * b) ⊲ c = a ⊲ (b ⊲ c) with a * b := φ(a).(a ⊲ b), • the following compatibility condition hods: φ(a * b) = a * φ(b).

( 5 . 1 .

 51 a * b) * c = φ(a * b) . (a * b) ⊲ c = a * φ(b) . (a * b) ⊲ c = φ(a). a ⊲ φ(b) . a ⊲ (b ⊲ c) whereas a * (b * c) = a * φ(b).(b ⊲ c) = φ(a). a ⊲ φ(b).(b ⊲ c) = φ(a). a ⊲ φ(b) . a ⊲ (b ⊲ c) . The Grossman-Larson semigroup (G, * ) acts on the group (G, .) by endomorphisms as a direct consequence of the second axiom. Finally, if φ = Id G and if L ⊲ e is bijective, then we have e ⊲ a = a for any a ∈ G (with the same proof as in the post-group case), therefore we have e * a = e.(e ⊲ a) = a and a * e = a.(a ⊲ e) = a. From Proposition 8, we shall adopt the following definition in the sequel: Definition 13. A weak post-group is a weak twisted post-group with trivial cocycle and such that L ⊲ e Two post-groups naturally associated to a group. The trivial post-group associated to a group (G, .) is given by (G, ., ⊲) where a ⊲ b = b for any a, b ∈ G. All maps L ⊲ a : G → G are therefore equal to the identity, and the Grossman-Larson product * coincides with the group-law of the group (G, .). The conjugation post-group is the opposite post-group of the trivial post-group. It is given by a.b := b.a and a ◮ b := a.b.a .-1 . The Grossman-Larson product is of course the same as the one of the trivial post-group, namely a * b = a.b.

1 .

 1 It remains to check the post-group property in full generality, namely L ⊲ uv = L ⊲ u • L ⊲ u⊲v for any u, v ∈ F M . We proceed by induction on |u| + |v|. The cases with |u| = 0 or |v| = 0 are immediate. The case |u| = |v| = 1 is covered by (31) when u and v are not mutually inverse and by (26) and (30) when they are, which completely settles the case |u| + |v| ≤ 2. Suppose that the post-group property is true for any u, v ∈ F M with |u| + |v| ≤ n, and choose u, v with |u| + |v| = n + 1. If |v| = 0 there is nothing to prove, and if |v| = 1 we are done by using (31). Otherwise we have v = v ′ .a with |v ′ | = |v| -1 and a ∈ M ∪ M .-1 . We can now compute

5 . 2 ]

 52 . Defining the Grossman-Larson product on the cocommutative post-Hopf algebra T (M ) (33) A * B = A 1 .(A 2 ⊲ B), for A, B ∈ T (M ), it follows from [16, Proposition 1] and [3, Theorem 3] that K is a Hopf algebra isomorphism from H = T (M ), * , 1, ∆, S * , ε onto T (M ), ., 1, ∆, S, ε , that is, for A, B ∈ T (M ), we have (34) K(A * B) = K(A).K(B).

  d dt exp . (tx) = exp . (tx).xin T (M ). Using[START_REF] Takeuchi | Survey on matched pairs of groups-an elementary approach to the ESS-LYZ theory[END_REF] and the fact that T (M ) is a cocommutative post-Hopf algebra, the righthand side can be written exp . (tx).x = exp . (tx) * (S * (exp . (tx)) ⊲ x), because exp . (tx) is a group-like and S * is the antipode of H. Introducing (36) α(tx) := S * exp . (tx) ⊲ x, we see that (37) d dt K(exp . (tx)) = K exp . (tx).x = K exp . (tx) .α(tx),where we used that K α(tx) = α(tx) as α(tx) ∈ M . The solution of the initial value problem (37) (the initial value being K(1) = 0) can be expressed in terms of the right-sided Magnus expansion 7 Ω α(tx) ∈ Lie(M ) as K exp . (tx) = exp . Ω(α(tx)) , which impliesK exp . (tx) = exp . K • K -1 Ω(α(tx)) = K exp * K -1 Ω(α(tx)) = K exp * Ω * (α(tx)) ,where we used thatK -1 [A, B] = K -1 (A) * K -1 (B) -K -1 (B) * K -1 (A) = [[K -1 (A), K -1 (B)]].The last equality defines the Grossman-Larson Lie bracket and Ω * (α(tx)) is the right-sided Magnus expansion defined in terms of the Grossman-Larson Lie bracket, recursively given byΩ * (α(tx)) = t 0 n≥0 B n n! (ad * n Ω * (α) α)(ux) du,where for n > 0, we define ad * n a (b) := [[a, ad * n-1 a (b)]] and ad * 0 a (b) := b. The B n 's are the modified Bernoulli numbers 1, 1/2, 1/6, 0, -1/30, 0, 1/42, . . . Moreover, a simple computation gives d dt α(tx) = S * d dt exp . (tx) ⊲ x = S * exp . (tx) * (S * (exp . (tx)) ⊲ x) ⊲ x = S * S * (exp . (tx)) ⊲ x * S * (exp . (tx)) ⊲ x = -S * (exp . (tx)) ⊲ x * S * (exp . (tx)) ⊲ x = -S * (exp . (tx)) ⊲ x ⊲ S * (exp . (tx)) ⊲ x = -α(tx) ⊲ α(tx).

  k Ω(A) A)(u) du.The right-sided Magnus expansion is the solution of initial value problem Ẋ = XA, X(0) = 1. It is given by the same expression except that the Bernoulli number B k are replaced by the modified Bernoulli numbers B k , where B1 = -B1 = 1/2 and B k = B k for k = 1.

:

  We thank Pierre Catoire for his insightful remarks on a previous version of this work. M. J. H. Al-Kaabi is funded by the Iraqi Ministry of Higher Education and Scientific Research. He also thanks Mustansiriyah University, College of Science, Mathematics Department for support. K. Ebrahimi-Fard is supported by the Research Council of Norway through project 302831 "Computational Dynamics and Stochastics on Manifolds" (CODYSMA). He also thanks the Centre for Advanced Study (CAS) in Oslo for support. D. Manchon acknowledges a support from the grant ANR-20-CE40-0007 Combinatoire Algébrique, Renormalisation, Probabilités Libres et Opérades.

  Proposition 8. (from[START_REF] Wang | Weak) twisted post-groups, skew trusses and rings[END_REF] Theorem 2.7]) Let (G, ., ⊲, φ) be a weak twisted post-group. Then (G, * ) is a semigroup, and the binary product ⊲ is a left action of (G, * ) on the group (G, .) by endomorphisms. If moreover φ = Id G and L ⊲ e is bijective, then (G, * ) is a monoid with unit e.Proof. Theorem 2.7 in[START_REF] Wang | Weak) twisted post-groups, skew trusses and rings[END_REF] is stated and proved for twisted post-groups. Proposition 8 states what survives from it for weak twisted post-groups. Associativity of * is proved by direct computation:

  in the previous paragraph can therefore be seen as a group-theoretical version of Gavrilov's K-map.Recall J. H. C. Whitehead's definition of crossed group morphisms[START_REF] Whitehead | Combinatorial homotopy. II[END_REF].Definition 14.[START_REF] Whitehead | Combinatorial homotopy. II[END_REF] Let (G, .) be a group. Suppose that the group Γ acts on G by automorphism. The action is denoted by⊲ : Γ × G → G. A crossed homomorphism φ : Γ → G is a map such that for any h 1 , h 2 ∈ Γ (35) φ(h 1 h 2 ) = φ(h 1 ).(h 1 ⊲ φ(h 2 )).

	Proposition

[START_REF] Gavrilov | Higher covariant derivatives[END_REF]

. Let (G, ., ⊲) be a post-group with Grossman-Larson product * . The identity map id : (G, * ) → (G, .) is a crossed homomorphism.

which immediately implies L ⊲ e = IdG, see proof of Proposition 8 together with (4).

It is called the subjacent group in[START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF]. It makes however sense to take into account that any post-group (G, ., ⊲) gives

called subjacent Lie algebra in[START_REF] Bai | Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation[END_REF].

We thank Pierre Catoire for bringing this fact to our attention.