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Abstract
The objective of this study was to present a new methodology to predict selection response on resilience 
and feed efficiency (FE) in dairy cattle. This approach combines genetic and mechanistic modelling to 
describe the biological mechanisms underlying these traits. A dairy cattle breeding scheme was simulated 
considering a non-limiting nutritional environment and two different breeding goals focusing either on 
milk production or FE. Selection response was predicted within the non-limiting environment but also 
for a prospective low-input system (LS). Predictions obtained with conventional and mechanistic-based 
methods were consistent for milk production, body weight and FE within the non-limiting environment. 
However, genetic trends predicted for fertility were different. Selection response achieved on milk 
production was much smaller in the LS than in the breeding nucleus due to the increased nutritional 
constraint. The breeding goal with emphasis on FE enabled a better transfer of genetic gain to the LS 
environment.

Introduction
Breeding for resilience and feed efficiency (FE) in dairy cattle is difficult because these traits result from a 
subtle balance between biological functions aiming at maintaining a cow’s ability to produce and reproduce. 
This balance is also highly dependent on the nutritional environment: trade-offs between production and 
fitness traits are exacerbated when energy intake is limiting (Puillet et al., 2021). With climate change and 
societal demands for expanding grass-based production systems, nutritional environments might be more 
uncertain and diverse in the future. When defining novel breeding strategies on resilience and FE, it is 
critical to anticipate these changes and select cows that can cope with various production systems. This 
paper describes a new mechanistic-based method (MM) combining genetic and mechanistic modelling to 
predict selection response on cow milk production and FE traits. This approach can be used within a given 
breeding environment but also facilitates predicting selection response that would be expected in more 
challenging environmental scenarios.

Materials & methods
General approach to predict selection response. In this study, we capitalize on the AQAL bioenergetic 
model to simulate phenotypic trajectories of milk production and FE traits over the lifetime of dairy cows 
depending on energy available in the environment (Puillet et al., 2016; 2021). This dynamic mechanistic 
model of a single cow is grounded on the resource acquisition and allocation (AA) theory to describe cows’ 
responses to nutritional challenges. Variability in the response observed at the population level is induced by 
assuming genetic and phenotypic variance for a set of four input parameters describing energy AA strategies 
of cows. Acquisition parameters correspond to the maximal intake of a non-reproducing cow (basal 
acquisition: BasAcq) and the increase of intake during lactation (lactation acquisition: LactAcq) expected in 
a non-limiting environment. Allocation parameters correspond to the rate of transfer of energy from growth 
to survival (RTGS) defining the trade-off between structural mass and body reserves, and the allocation to 
lactation (LactAll) defining the energy investment in milk production. Mean values of these four parameters 
were determined by a calibration procedure using real data as described by Puillet et al. (2021). The effect 
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of the nutritional environment on the variability of traits was modelled through stochastic simulations. To 
predict genetic gain, it was assumed that selection on usual production and functional traits changes the 
mean genetic level of energy acquisition and allocation variables. Thus, updating AA parameters considering 
this correlated response is a way to simulate new performance datasets mimicking the effects of selection 
with AQAL. The method comprises three steps. First, datasets with a pedigree structure were simulated 
with AQAL considering the same AA parameters as Puillet et al. (2021) and a non-limiting nutritional 
environment typical of breeding herds. This environment corresponded to the ‘high & stable’ (HS) scenario 
in Puillet et al. (2021). Simulated data were used to estimate genetic parameters between simulated traits 
and AA input traits. Second, the ADAM breeding scheme simulation tool (Pedersen et al., 2009) was used to 
estimate the correlated selection response expected on AA traits for a given breeding goal and a typical dairy 
cattle breeding scheme structure. Finally, milk production and FE traits were simulated by updating the 
AQAL AA input parameters with the correlated selection response to estimate the change in performance 
due to selection.

Considered traits and genetic parameters. Four traits were analyzed in this study and were estimated 
for primiparous cows: milk production (MP), body weight at calving (BW), energy conversion efficiency 
(ECE) and the interval between first mating and conception (IFC). The four AA input traits were assumed 
to have a heritability of 0.35, a phenotypic coefficient of variation of 10% and to be genetically uncorrelated 
as assumed by Puillet et al. (2021). Genetic parameters were estimated between AA traits and simulated 
traits using restricted maximum likelihood applied to bivariate linear animal mixed models (Table 1). 
Genetic correlations were close to 1 between BasAcq and BW, as well as between LactAll and ECE. Hence, 
we considered these pairs of traits as single traits.

Simulation of breeding scheme. A large-scale breeding nucleus was simulated over a 30-year period 
with ADAM (Pedersen et al., 2009). It comprised 20,000 females equally distributed in 200 herds and 
mated with 100 sires each year. True breeding values (TBV) and phenotypes were sampled using genetic 
parameters in Table 1. Milk production, BW and IFC were recorded on all cows. Genomic selection was 
simulated using the pseudo-genomic selection approach (Buch et al., 2012). The accuracy of genomic 
breeding values (GEBV) was estimated using selection index theory to combine information from bull and 
cow reference populations (Buch et al., 2012). We assumed a reference population of 10,000 bulls with 100 
daughters each, 50,000 cows with performance for MP, BW, IFC, and 5,000 cows with ECE phenotypes. The 
GEBV accuracy of candidates without performance was 0.68 for MP and BW, 0.60 for ECE and 0.58 for 
IFC. Using simulated traits, pseudo-genomic phenotypes and pedigree, GEBV were predicted using DMU 
software (Madsen and Jensen, 2013).

Each year, the best 4,000 male and 4,000 female calves were assumed to be genotyped based on parental 
breeding values. After genotyping, the best 100 1-year old males were selected to be used as sires for one 

Table 1. Genetic parameters for acquisition, allocation and simulated traits (heritability on the diagonal, genetic 
and phenotypic correlations above and below the diagonal).

 BasAcq / BW LactAcq RTGS LactAll / ECE MP IFC
BasAcq / BW 0.35 0.00 0.00 0.00 0.50 -0.23
LactAcq 0.00 0.35 0.00 0.00 0.38 -0.12
RTGS 0.00 0.00 0.35 0.00 0.24 -0.64
LactAll / ECE 0.00 0.00 0.00 0.35 0.72 0.56
MP 0.52 0.39 0.23 0.73 0.34 0.12
IFC -0.05 -0.02 -0.13 0.11 0.06 0.01
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year. Within each herd, the best 100 females aged from 1 to 5 years were selected using estimated breeding 
values. Selection decisions were based on a total merit index. Two breeding goals were defined to reflect a 
different balance between production and functional traits. In the first breeding goal, called M-FER, equal 
weight was given to MP and IFC. In the second breeding goal, called EFF-FER, equal weight was given to 
ECE and IFC. The first 20 years were considered as burn-in period and were discarded. Annual genetic gain 
was predicted for each trait by regressing mean TBV of selection candidates on their birth year over the last 
ten years. All presented results were averaged based on 30 replicates.

Genetic gain predictions based on the mechanistic model. Mean values of the four AA parameters 
were updated considering the correlated selection response expected over a 20-year period. Changes in 
heritability and phenotypic variance of AA traits due to selection were also estimated as observed in ADAM 
stochastic simulations. Changes in genetic covariance between AA traits were small (≤0.04 in absolute 
value) and were ignored. Selection response was estimated for each trait on an annual basis as the change 
in performance simulated with the initial and updated sets of AA parameters within the non-limiting HS 
environment.

Selection response that would be expressed in a low nutritional environment following selection in the 
HS environment was estimated in the same way but simulating datasets with AQAL considering the ‘low 
& stable’ (LS) environment in Puillet et al. (2021). In this environment, the nutritional constraint was 
substantial: dry matter intake was on average 14.7% lower than total potential acquisition.

Results & discussion
Correlated selection responses on AA traits predicted for the two breeding goals are presented in Table 2. 
With the M-FER breeding goal, high genetic gain was achieved on basal acquisition because this trait was 
positively correlated to MP and IFC. Indeed, when access to feed is non-limiting, increasing feed intake 
by selection is an option to improve both MP and IFC. Therefore, although a high weight was given to MP, 
genetic gain on LactAll was only limited. Selecting on the EFF-FER breeding goal led to a more balanced 
genetic gain on the four AA traits, with a shift in genetic gain from BasAcq to LactAll. In both scenarios, 
similar positive genetic gain was achieved on RTGS meaning that selection favors cows allocating more 
energy for body reserves accretion than growing structural mass.

Selection responses predicted for simulated traits are presented in Table 3. With the conventional method, 
high genetic gain was estimated on MP, BW and IFC for the M-FER breeding goal in the HS environment. 
Genetic gain on ECE was more limited. With the EFF-FER breeding goal, genetic gain was higher on ECE 
and more limited on BW and IFC. This was consistent with genetic correlations between AA input traits 
and simulated traits.

Selection response predictions were consistent across methods and breeding goals within the HS 
environment for MP, BW and ECE.

Table 2. Mean annual genetic gain1 (in genetic standard deviation units) estimated for acquisition and allocation 
traits in the breeding environment for the two breeding goals.

Breeding goal BasAcq LactAcq RTGS LactAll
M-FER 0.34 0.13 0.20 0.09
EFF-FER 0.22 0.14 0.21 0.23
1 Standard error of the mean ranged from 0.002 to 0.003 for all predictions.
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Indeed, differences in annual genetic gain were lower than 0.04 genetic standard deviation units (σg). 
Differences were larger on IFC. Annual genetic gain was reduced from -0.21 to -0.01 σg in the M-FER 
scenario and from -0.11 to 0.06 σg in the EFF-FER scenario, i.e. a zero or even unfavorable trend was 
predicted on fertility in the M-FER and EFF-FER scenarios with the MM approach.

Genetic gain that would be expressed in the LS environment given selection in the HS environment 
was estimated with the MM approach (Table 3). In the LS environment, selection response predicted on 
MP and BW with the M-FER breeding goal was reduced by 56 and 23% relative to the HS environment. 
The reduction in genetic gain was more limited in the EFF-FER scenario (-32% and -16% for MP and 
BW). Indeed, increasing basal acquisition by selection in the HS environment led to further increase the 
nutritional constraint in the LS scenario due to increased maintenance requirements. This also explains the 
larger reduction in selection response on BW and MP with the M-FER breeding goal due to faster genetic 
progress on basal acquisition. Hence, a larger proportion of genetic gain was transferred from the high to 
the low nutritional environment with the EFF-FER breeding goal.

In conclusion, this study showed the feasibility of combining mechanistic and genetic modelling to predict 
selection response on milk and FE traits in dairy cattle. Predictions were consistent for MP and FE traits 
within the breeding environment. Compared to the standard approach, the new method also casts light on 
the AA strategies used to achieve genetic gain. Furthermore, it enabled the estimation of genetic gain that 
could be transferred to a prospective environment considering both genetic trends and the magnitude of 
physiological trade-offs on production and functional traits.

Acknowledgements
This work has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 727213 (GenTORE).

References
Buch L.H., Kargo M., Berg P., Lassen J., and Sørensen, A. C. (2012) Animal 6(06):880-886. https://doi.org/10.1017/

S1751731111002205
Madsen P., and Jensen J. (2013) DMU: A package for analyzing multivariate mixed models. User’s guide – Version 6, 

release 5.2. QGG Center, Aarhus University, Tjele, Denmark.
Pedersen L.D., Sørensen A.C., Henryon M., Ansari-Mahyari S., and Berg P. (2009) Livest. Sci. 121(2-3):343-344. https://

doi.org/10.1016/j.livsci.2008.06.028
Puillet L, Réale D., and Friggens N.C. (2016) Genet. Sel. Evol. 48:72. https://doi.org/10.1186/s12711-016-0251-8
Puillet L., Ducrocq V., Friggens N.C., and Amer P.R. (2021) J. Dairy Sci. 104(5):5805–5816. https://doi.org/10.3168/

jds.2020-19610

Table 3. Annual genetic gain (expressed in genetic standard deviation units) predicted for simulated traits with 
the conventional (CONV) and mechanistic-based (MM) methods in the breeding environment (HS) and the low 
nutritional scenario (LS).

 CONV prediction – HS MM prediction – HS MM prediction – LSl
Breeding goal Breeding goal Breeding goal

Trait M-FER EFF-FER M-FER EFF-FER M-FER EFF-FER
MP 0.33 0.38 0.34 0.41 0.15 0.28
BW 0.34 0.22 0.30 0.19 0.23 0.16
ECE 0.09 0.23 0.08 0.22 0.09 0.23
IFC -0.21 -0.11 -0.01 0.06 0.00 0.06
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