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Abstract
Quantitative description of individual animal performance is a key element of breeding. In addition 
to measurements of traits associated with productivity, dynamic-mechanistic models can be used for 
identifying diversity of complex traits like feed efficiency. The objective of this work was to use Bayesian 
inference to quantify differences in a model’s ‘genetic-scaling’ parameters (related to resource acquisition 
and resource allocation) within- and between-breeds. We first describe the experimental data processing 
before calibration, the function used for the error calculation, and the Bayesian algorithm used for parameter 
inference. Two databases were used as case studies. The results showed that this approach allowed us to 
identify variations in the genetic-scaling parameters within- and between-breeds. This approach is a useful 
tool to quantify complex traits for future selection of efficient and resilient animals.

Introduction
In breeding programs, most of the emphasis has been made on traits directly associated with productivity, 
such as milk yield or daily weight gain. However, the biological mechanisms underlying productivity are 
difficult to be taken into account for selection. When direct measurements of biological mechanisms are 
difficult or even impossible, mechanistic models allow estimation of these underlying traits by individual 
parametrization of a model. Puillet et al. (2016) developed a dynamic-mechanistic model (AQAL) to 
generate genetically-driven trajectories of energy acquisition and allocation in dairy cows lifespan, with four 
genetic-scaling parameters (GSP). For a given individual, the simulated performance is the result of the 
combination of a capacity to acquire resources and how these acquired resources are allocated to different 
life functions. This model was used to evaluate the extent of genotype by environment interaction for feed 
efficiency traits (Puillet et al., 2021), demonstrating the usefulness of mechanistic modelling in breeding 
strategies evaluation. In this type of model, Bayesian inference can be used to quantify the uncertainty in 
the parameter values, because the parameters are treated as random variables with an underlying probability 
distribution that describes them (Miles and Smith, 2019). This work presents a protocol to use Bayesian 
inference for within- and between-breeds characterization of resource acquisition and allocation parameters. 
The protocol presented here aims to provide a comprehensive description for the individualized calibration 
of AQAL in Python. First, we describe the observed data processing before calibration. Then, we describe the 
general structure of the calibration process. We illustrate the application of the protocol for two case studies.

Materials & methods
Time-series observations, data handling before calibration. For calibrating AQAL, experimental 
data is necessary to run the model and to compute the error. The model uses a vector of values to represent 
the increase in intake per lactation through the cow’s lifespan. This vector must be defined by using the 
relationship among the averages of the maximum values (upper quartile) of milk yield observed in each 
lactation. The energy value of the diet (GE or ME) is another model input. At least three traits must be used 
to calculate the differences between simulated and experimental data: milk yield (MY), body weight (BW), 
and body condition score (BCS, 1-5 scale). MY must be expressed in kilocalories of metabolizable energy 
(ME) assuming a metabolic efficiency of 0.64, and gross energy content (GE, kcal/kg) of 5,700, 9,200, 3,950 
for protein, fat, and lactose.
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Formulation of the objective function. In each iteration of the calibration process, the objective function 
uses the set of parameters generated by the Bayesian algorithm and returns the mismatch between the 
simulation and the experimental values of MY, BW, and BCS. We used the Mean Absolute Percentage Error 
(MAPE) to quantify the mismatch because this metric avoids the effect of the trait scales on the average 
error calculation. One MAPE is calculated for each variable × lactation, then the overall average MAPE 
was calculated from these individual variable × lactation MAPEs. To minimize the effect of unbalances 
among the individual errors, the overall error variance was added to the overall MAPE. After calibration, 
the minimum value of this sum was used to identify the best parameter set for a given individual animal.

Parameter optimization. In the Bayesian approach, the goal of the calibration is to infer the parameter 
posterior distributions given a set of observations (Miles and Smith, 2019). For parameter generation, 
we adopt an approximate-inference technique based on Monte Carlo methods, which aims at generating 
a sequence of random parameters from a Markov chain whose distributions approach the posterior 
distributions of each parameter. In particular, we have used the delayed rejection adaptive Metropolis 
(DRAM) algorithm (Haario et al., 2006) implemented for Python in the ‘pymcmcstat’ library (Miles and 
Smith, 2019). The adaptive Metropolis (AM) component in DRAM means that each parameter is generated 
following the distribution calculated with all of the previous states in the chain. The delayed rejection 
(DR) mechanism is used to stimulate mixing by sampling from a narrower proposed distribution when 
a parameter sample is rejected (Haario et al., 2006). Information known a priori about the parameter 
distributions is defined in the prior function; however, the default program behaviour is to use a uniform 
prior which is a common approach for these types of problems. (Miles and Smith, 2019). The parameters 
optimized were related to acquisition: acq_bas_pot, acq_bas_lac (basal and an additional lactation 
acquisition), and allocation of energy resource: init_G, s2pc_pot, (growth and lactation allocation).

Case studies. Two databases were used to test our parameters inference procedure. The first database 
(One-Breed) contains data from 26 Holstein cows. This database reported at least four lactations for all 
cows. The second database (MEMO, see Friggens et al. 2007) contains data from three breeds (18 Holstein, 
17 Red Danish, and 19 Jersey cows). This database reported at least three lactations for all cows. Both 
databases report measures of MY and composition, BW, and BCS. The first and second databases were used 
to examine within- and between-breed diversity of the four GSP of AQAL, respectively.

Results
Figure 1 shows an example of simulation, using the best set of parameters for a specific cow, and observed 
data of MY, BW, and BCS. Figure 2 shows an example of the Markov chains for a specific cow. The points 
in charts of Figure 2 correspond to the accepted parameters values in each iteration. The first half of 
each chain served to tune the sampler and was discarded (burn-in period). To approximate the posterior 
distribution for each parameter, parameter sets with low error from the second half of each chain were 
used. Figure 3 compares the parameter distributions for a specific cow and the breed (One-Breed database). 
Figure 4 shows the parameter distributions for the three breeds (Holstein, Red Danish, and Jersey) in the 
MEMO database. The parameters acq_bas_pot and acq_bas_lac are expressed in kilograms of dry matter, 
the parameters init_G and s2pc_pot are dimensionless. Table 1 presents the average parameters values and 
the associated variance.
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Figure 1. Example of simulation results with the best set of parameters for an individual.

Figure 2. Example of the Markov chains of genetic-scale parameters.

Figure 3. Posterior distributions of the genetic-scale parameters for a breed and an example of one individual of 
that breed.

Figure 4. Posterior distributions of the genetic-scale parameters between breeds.

Table 1. Parameter values per database and breed.

Parameters One-breed MEMO
Holstein Danish Red Jersey

Median (Std) Median (Std) Median (Std) Median (Std)
acq_bas_pot 11.1 (1.3) 9.9 (1.1)  8.8 (1.3) 7.2 (1.3)
acq_bas_lac 16.1 (2.9) 12.0 (2.0) 10.9 (1.4) 10.4 (1.8)
init_G 0.34 (0.025) 0.36 (0.039) 0.33 (0.040) 0.35 (0.037)
s2pc_pot 0.92 (0.022) 0.86 (0.030) 0.84 (0.029) 0.86 (0.042)

acq_bas_pot, acq_bas_lac: basal and an additional lactation acquisition (kg of DM).
init_G, s2pc_pot: growth and lactation allocation (Dimensionless).
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Discussion
We chose to use a Bayesian method for parameter estimation because we expected to explore different local 
minima within the response surface of the objective function (since the model contains multiple nonlinear 
functions). In this context, the Bayesian inference used (DRAM) was an efficient method to explore the 
parameter space, showing the power of the proposed method for this type of task. The results allow us to 
demonstrate the ability of a dynamic-mechanistic model to identify variations in GSP both within- and 
between-breeds. This is very interesting for the future identification and selection of efficient and resilient 
animals because dynamic-mechanistic models (e.g. AQAL) can simulate the consequences of different 
combinations of acquisition and allocation parameters on animal performance under different nutritional 
environments (see Puillet et al., 2021).
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