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Abstract
We introduce the concept of TRAP (Traces and Permutations), which can roughly
be viewed as a wheeled PROP (Products and Permutations) without unit. TRAPs
are equipped with a horizontal concatenation and partial trace maps. Continuous mor-
phisms on an infinite-dimensional topological space and smooth kernels (respectively,
smoothing operators) on a closed manifold form a TRAP but not a wheeled PROP.
We build the free objects in the category of TRAPs as TRAPs of graphs and show that
a TRAP can be completed to a unitary TRAP (or wheeled PROP). We further show
that it can be equipped with a vertical concatenation, which on the TRAP of linear
homomorphisms of a vector space, amounts to the usual composition. The vertical
concatenation in the TRAP of smooth kernels gives rise to generalised convolutions.
Graphs whose vertices are decorated by smooth kernels (respectively, smoothing oper-
ators) on a closed manifold form a TRAP. From their universal properties we build
smooth amplitudes associated with the graph.

Keywords PROP · Trace · Graph · Distribution kernel · Convolution

Sylvie Paycha: On leave from the University of Clermont Auvergne, Clermont-Ferrand, France.

B Sylvie Paycha
paycha@math.uni-potsdam.de

Pierre J. Clavier
pierre.clavier@uha.fr

Loïc Foissy
foissy@univ-littoral.fr

1 Université de Haute Alsace, IRIMAS, 12 rue des Freres Lumiere, MULHOUSE Cedex 68 093,
France

2 Technische Universität, Institut für Mathematik, Str. des 17. Juni 136, 10587 Berlin, Germany

3 Universität Potsdam, Institut für Mathematik, Campus II - Golm, Haus 9,
Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany

4 Univ. Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, 62100 Calais, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40879-022-00557-1&domain=pdf


S412 P.J. Clavier et al.

Mathematics Subject Classification 18M85 · 46E99 · 47G30 · 05C25

1 Introduction

State of the art

PROPs (Products and Permutations)1 provide an algebraic structure that allows to deal
with operations with an arbitrary number of inputs and outputs. They generalise many
other algebraic structures such as operads, which have one output and multiple inputs.
PROPs appeared in [24] and later in the book [4] in the context of Cartesian cate-
gories. Although operads stemmed from the study of iterated loop spaces in algebraic
topology, see for example [28], their origin can also be traced back to the earlier work
[3].2

An important asset of PROPs over operads is that they encompass algebraic struc-
tures such as bialgebras and Hopf algebras that lie outside the realm of operads or
co-operads. This very fact is a motivation to consider PROPs in the context of renor-
malisation in quantum field theory [7]. We refer the reader to [33] for the study of
bialgebras in the PROPs framework and [24, 26, 38] for other classical examples of
PROPs. In recent years, wheeled PROPs [27, 29], which allow for loops, have played
an important role in the context of deformation quantisation.

A central example of PROP is the PROP HomV of homomorphisms of a finite-
dimensional vector space V which we generalise to the PROP Homc

V of continuous
homomorphisms of a nuclear Fréchet space V . Whereas the first is a wheeled PROP
(Proposition 3.2), the latter is not unless the space V is finite-dimensional (Theorem
3.19). It can nevertheless be interpreted as a TRAP (Definition 2.1), which roughly
speaking, amounts to a wheeled PROP without unit.3 TRAPs introduced in this paper
offer natural structures to host morphisms of infinite-dimensional spaces (see Propo-
sition 3.4) and are therefore expected to play a role in the context of renormalisation
in quantum field theory.

Another class of important examples we consider are TRAPs of graphs (Proposi-
tion 4.11) of various types. In the context of deformation quantisation, the complex of
oriented graphs whether directed or wheeled, plays an important role in the construc-
tion of a free PROP generated by aS×Sop-module (see for example [29, Paragraph
2.1.3]). We will see that graphs play a similar role in the context of TRAPs.

Our first long term goal is to use the TRAP structure of graphs decorated by dis-
tribution (for example Green kernels) in order to build amplitudes as generalised
convolutions (called P-amplitudes, see Definition 5.9) of kernels associated with the
decorated graph. The expected singularities of the resulting amplitudes are immediate
obstacles in defining such generalised convolutions. In this paper, we focus on the
smooth setup, in which case the amplitudes are smooth.

1 The traditional notation is PROP, more recently prop.
2 We thank B.Vallette for his enlightening comments on these historical aspects.
3 To our knowledge, wheeled PROPs without units do not appear in the literature, which is why we allow
ourselves to give them a shorter name.
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Feynman rules and TRAPs

In space-time variables, a Feynman rule is expected to assign to a graph G with k
incoming and l outgoing edges, an amplitude (it is actually a distribution) KG in k + l
variables. Our second long term goal is to derive the existence and the properties of
the map G �→ KG from a universal property of the PROP structure on graphs.

By means of blow-up methods, generalised convolutions of Green functions were
built on a closed Riemannian manifold in [9], with the goal of renormalising multiple
loop amplitudes for Euclidean QFT on Riemannian manifolds. We hope to be able to
simplify the intricate analytic aspects of the renormalisation procedure for multiple
loop amplitudes, by adopting an algebraic point of view on amplitudes using TRAPs.
There were earlier attempts to describe QFT theories in terms of PROPs (see for
example [18, 19]), yet to our knowledge, none with the focus we are putting on
generalised convolutions to describe amplitudes.

We therefore expect the wheeled PROP of oriented graphs, briefly mentioned in
[19], and more specifically TRAPs, their non-unitary counterparts which naturally
arise in the infinite-dimensional set-up, to have concrete applications in the perturbative
approach to quantum field theory. To our knowledge, this is yet an unexplored aspect
of the theory. Filling in this gap is a long term goal we have in mind. A first step
towards this goal is the study of the TRAP of smoothing symbols (Theorem 3.22),
which like Homc

V is not a wheeled PROP due to the infinite-dimensional spaces it
involves.

TRAPs of graphs

TRAPs and unitary TRAPs entail two operations, the horizontal concatenation, and the
partial trace map. The difference between TRAPs and unitary TRAPs is the existence
of a unit for the trace in the latter. We define a TRAP structure on various families of
graphs, which can be corolla ordered (Definition 4.1) or decorated (Proposition 4.11).
The horizontal concatenation of this TRAP is the natural concatenation of graphs and
the partial trace map consists in gluing together one of the inputs with one of the
outputs, and therefore assigns to a graph G with k incoming and l outgoing edges
a graph with k − 1 incoming and l − 1 outgoing edges. The set of corolla ordered
graphs CGr� equipped with the partial trace map builds a unitary TRAP, and we
prove that it is a free unitary TRAP (Theorem 4.14): this is the TRAP counterpart
of a similar statement for free PROPs, described in terms of graphs without loops
[26, Proposition 57] and [36–38]. More generally, the set of corolla ordered graphs
CGr�(X) decorated by a set X on their vertices is the free unitary TRAP generated by
X . These unitary TRAPs contain free non-unitary TRAPs, which are combinatorially
described by particular graphs, which we call solar.4

4 In [38] such graphs are called ordinary.
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FromTRAPs to unitary TRAPs

If V is a finite-dimensional vector space, then the PROP HomV of homomorphisms
of V is a unitary TRAP, with the usual trace of endomorphisms. Its unit as a TRAP
is the identity map of V . When V is not finite-dimensional, one cannot equip the
whole PROP HomV with a structure of unitary TRAP. In this case, one has to restrict
to smaller classes of homomorphisms, such as that of the homomorphisms of finite
rank. This class no longer contains the identity, and we only obtain a TRAP and not
a unitary TRAP (Proposition 3.4). To circumvent this difficulty, we construct for any
TRAP P a unitary TRAP uPGr�(P)which contains P (Theorem 4.25). This object is
characterised by a universal property (Proposition 4.26), which amounts to applying
the left adjoint to the forgetful functor from the category of unitary TRAPs to the
category of TRAPs. The existence of this functor comes from the inclusion of corolla
ordered solar graphs, describing non-unitary free TRAPs, in the set of corolla ordered
graphs, describing unitary free TRAPs. In particular, in uPGr�(P) an identity I is
added, as well as its trace, symbolised by an abstract element O, which is no longer
an element of the base field K.

The vertical concatenation

The vertical concatenation onwheeledPROPs previously considered in [38, Definition
11.33] generalises the composition of morphisms. Indeed, for a finite-dimensional
space V , the vertical concatenation of the TRAP HomV coincides with the usual
composition of linear maps f : V⊗k → V⊗l and the associativity of the vertical
concatenation amounts to the Fubini property (Theorem 5.16, 2.).

When applied to a general unitary TRAP, this construction yields a functor from
unitary TRAPs to PROPs (Proposition 5.5).

On graphs, the composition can roughly be described as follows. If G is a graph
with k inputs and l outputs, and G ′ is a graph with l inputs and m outputs, G ′◦G is
obtained by gluing together the outgoing edges of G and the incoming edges of G ′
according to their indexation, giving a graph with k inputs and m outputs.

Extending this to the infinite-dimensional setup requires the use of a completed
tensor product ̂⊗ in order to have an isomorphism

Homc
V (k, l) ∼= (V ′)̂⊗k

̂⊗V ̂⊗l ,

where Homc
V (k, l) stands for the algebra of continuous morphisms from V ̂⊗l to V ̂⊗k

(see Definition 3.18) and V ′ for the topological dual of a topological space V . This
holds in the framework of Fréchet nuclear spaces which form a monoidal category
under the completed tensor product (Lemma 3.14). On Fréchet nuclear spaces, the
composition can indeed be described as a dual pairing, so it comes as no surprise that
for a Fréchet nuclear space V , the vertical concatenation obtained from the non-unitary
TRAP structure is the usual composition.
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Generalised traces

A TRAP inherits a generalised trace defined on its elements with the same number of
inputs and outputs. Roughly speaking, generalised traces are obtained by grafting the
outputs to the inputs according to their indexation. These traces on TRAPs generalise
the usual trace of morphisms, and they also enjoy a cyclicity property (Proposition
5.7).

When V is a space of smooth functions on a closed Riemannian manifold M , the
associativity of the vertical concatenation amounts to the Fubini property (Theorem
5.16, 2.) and the generalised trace of a generalised kernel K with k inputs and k outputs
is given by the integration of K along the small diagonal of Mk (Theorem 5.16, 3.).

Amplitude of a graph decorated by a TRAP

As mentioned above, our goal in the present paper is to provide an adequate algebraic
and analytic framework in which we build generalised convolution functions associ-
ated with graphs decorated with smooth kernels. We show that these form a TRAP
(Theorem 3.22), whose partial trace maps are given by a partial convolution.

When P is a TRAP, the universal property of the TRAP of corolla ordered graphs
decorated by P gives rise to a canonical TRAP map, which associates to any such
graphG an element of P which we call the P-amplitude associated withG (Definition
5.9). The P-amplitude commutes with both horizontal and vertical concatenation of
P (Proposition 5.13). When applied to the TRAP of smooth generalised kernels, this
construction generalises the usual convolution of kernels (Remark 5.12) and gives rise
to smooth amplitudes (Theorem 5.16, 4.).

Unitary TRAPs and wheeled PROPs

A unitary TRAP is known in the literature under the name of wheeled PROP. In order
to prove that the two notions coincide, we describe TRAPs and unitary TRAPs as
algebras over a monad (see Definition 6.7) which generalises the notion of monoid
to the frame of category theory. We state that unitary TRAPS are algebras over a
monad �� of graphs, described as an endofunctor of a category of modules over
symmetric groups sending an object X to the free unitary TRAP of graphs sol��(X)

generated by X . When X is a unitary TRAP, ��(X) inherits a contraction operation
to X , which induces the monadic structure (Theorem 6.11). This monad �� turns out
to be the monad used to define wheeled PROPs in the literature [38, Corollary 11.35],
thus relating our presentation of unitary TRAPs in terms of a family of sets with
maps satisfying a set of axioms and the categorical presentation of wheeled PROPs in
terms of algebras over a particular monad (Remark 6.12). A similar result holds for
(non-unitary) TRAPs, replacing graphs by solar graphs introduced in Definition 4.1
(Theorem 6.11).
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Openings

To sum up, by means of a TRAP structure, we were able to build generalised convolu-
tions (respectively, traces) associated with graphs decorated with smooth kernels. As
announced at the beginning of the introduction, we expect this algebraic approach to
enable us to tackle non-smooth kernels and thus to describe (non necessarily smooth)
amplitudes as generalised convolutions of distribution kernels associated with graphs.
At this stage these are open questions that we hope to address in future work.

There are other possible natural generalisations of the framework presented here,
that are more algebraic in nature.5 One could consider coloured TRAPs, whose input
and output edges are coloured, and whose partial trace maps relate inputs and outputs
of the same colour. Such structures are expected to play a role in QFTs with more than
one type of particles (for example QED and QCD). Coloured TRAPs could also be
relevant in the more geometric context of maps between different manifolds or in the
context of modules over an algebra.

There are also potential generalisations of Theorem 3.22, which only requires that
there be enough integral-like objects to define the partial trace maps, thereby hinting
to the fact that more general spaces than the ones considered here should also carry
TRAPs structures. Weakened versions of C∗-algebras such as inverse limits of C∗-
algebras [32] and locally multiplicative convex C∗-algebras [20] would be worth
investigating in that context.

2 The category of TRAPs

2.1 Definition

Notation 2.1 For any k ∈ N0, we write [k] ..= {1, . . . , k}. In particular, [0] = ∅. Let
Sk denote the symmetric group on k elements. An element σ ∈ Sk sends i ∈ [k] to
σ(i) ∈ [k].
Definition 2.2 A TRAP is a family P = (P(k, l))k,l�0 of sets, equipped with the
following structures:

1. P is a S×Sop-module, that is to say, for any (k, l) in N
2
0, P(k, l) has a left Sl -

and a right Sop
k -action given by

{

Sl×P(k, l) −→ P(k, l)
(σ, p) �−→ σ · p,

{

P(k, l)×Sk −→ P(k, l)
(p, τ ) �−→ p ·τ,

such that for any (k, l) in N
2
0, for any (σ, σ ′, τ, τ ′) ∈ S2

l ×S2
k , for any p ∈ P(k, l),

Id [l] · p = p · Id [k] = p,

σ ·(σ ′ · p) = (σσ ′) · p, σ ·(p ·τ) = (σ · p) ·τ, (p ·τ) ·τ ′ = p ·(ττ ′).

5 We thank Mark Johnson for pointing out the subsequent interesting questions to us.
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2. For any (k, l, k′, l ′) in N
4
0, there is a map

∗:
{

P(k, l)×P(k′, l ′) −→ P(k + k′, l + l ′)
(p, p′) �−→ p∗ p′,

called the horizontal concatenation, such that:

(a) (Associativity). For any (k, l, k′, l ′, k′′, l ′′) in N
6
0, for any (p, p′, p′′) in

P(k, l)× P(k′, l ′)× P(k′′, l ′′),

(p∗ p′)∗ p′′ = p∗(p′ ∗ p′′).

(b) (Unity). There exists I0 ∈ P(0, 0) such that for any (k, l) in N
2
0, for any p in

P(k, l),

I0∗ p = p∗ I0 = p.

(c) (Equivariance). For any (k, l, k′, l ′) in N
4
0, for any (p, p′) in P(k, l)×P(k′, l ′),

for any (σ, τ, σ ′, τ ′) ∈ Sl×Sk×Sl ′×Sk′ ,

(σ · p ·τ)∗(σ ′ · p′ ·τ ′) = (σ ⊗σ ′) ·(p∗ p′) ·(τ ⊗τ ′),

where, for any (α, β) ∈ Sm×Sn , α⊗β ∈ Sm+n is defined by

α⊗β(i) =
{

α(i) if i � m,

β(i − m) + m if i > m.

(d) (Commutativity). For any (k, l, k′, l ′) ∈ N
4
0, for any p ∈ P(k, l), p′ ∈ P(k′, l ′),

cl,l ′ ·(p∗ p′) = (p′ ∗ p) ·ck,k′ ,

where for any (m, n) ∈ N
2
0, cm,n ∈ Sm+n is defined by

cm,n(i) =
{

i + n if i � m,

i − m if i > m.
(2.1)

3. For any k, l � 1, for any i ∈ [k], j ∈ [l], there is a map

ti, j :
{

P(k, l) −→ P(k − 1, l − 1)
p �−→ ti, j (p),

(2.2)

called the partial trace map, such that:

(a) (Commutativity). For any k, l � 2, for any i ∈ [k], j ∈ [l], i ′ ∈ [k − 1],
j ′ ∈ [l − 1],
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ti ′, j ′ ◦ ti, j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ti−1, j−1 ◦ ti ′, j ′ if i ′ < i, j ′ < j,

ti, j−1 ◦ ti ′+1, j ′ if i ′ � i, j ′ < j,

ti−1, j ◦ ti ′, j ′+1 if i ′ < i, j ′ � j,

ti, j ◦ ti ′+1, j ′+1 if i ′ � i, j ′ � j .

(b) (Equivariance). For any k, l � 1, for any i ∈ [k], j ∈ [l], σ ∈ Sl , τ ∈ Sk , for
any p ∈ P(k, l),

ti, j (σ · p ·τ) = l j (σ ) ·(tτ(i),σ−1( j)(p)) ·ri (τ ),

with the following notation: if α ∈ Sn and q ∈ [n], then (lq(α), rq(α)) ∈ S2
n−1

are defined by

lq(α)(s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α(s) if s < α−1(q) and α(s) < q,

α(s) − 1 if s < α−1(q) and α(s) > q,

α(s + 1) if s � α−1(q) and α(s + 1) < q,

α(s + 1) − 1 if s � α−1(q) and α(s + 1) > q,

rq(α)(s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α(s) if s < q and α(s) < α(q),

α(s) − 1 if s < q and α(s) > α(q),

α(s + 1) if s � q and α(s + 1) < α(q),

α(s + 1) − 1 if s � q and α(s + 1) > α(q).

In other words, if we represent α by the word α(1) . . . α(n), then lq(α) is
represented by the word obtained by deleting the letter q and substracting
1 to the letters > q, whereas rq(α) is represented by the word obtained by
deleting the letter α(q) and substracting 1 to the letters > α(q). Note that
rq(α) = lα(q)(α).

(c) (Compatibility with the horizontal concatenation). For any k, l, k′, l ′ � 1, for
any i ∈ [k + l], j ∈ [k′+ l ′], for any p ∈ P(k, l), p′ ∈ P(k′, l ′):

ti, j (p∗ p′) =
{

ti, j (p)∗ p′ if i � k, j � l,

p∗ ti−k, j−l(p′) if i > k, j > l.

The TRAP is unitary if moreover there exists I in P(1, 1) such that for any k, l � 1,
for any i in [k + 1], j ∈ [l + 1], for any p in P(k, l):

t1, j (I ∗ p) = (1, 2, . . . , j − 1) · p if j � 2,

ti,1(I ∗ p) = p ·(1, 2, . . . , i − 1)−1 if i � 2,

tk+1, j (p∗ I ) = ( j, j + 1, . . . , k)−1 · p if j � k,

ti,l+1(p∗ I ) = p ·(i, i + 1, . . . , l) if i � l.
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Remark 2.3 By commutativity of ∗, for any p ∈ P(0, 0), for any (k, l) in N
2
0, for any

p′ ∈ P(k, l):

p∗ p′ = p′∗ p,

since c0,k = Id [k].

Remark 2.4 The abuse of notation ti, j is legitimate since a full notation such as tk,li, j is
not necessary in practice. Indeed the indices k and l in ti, j (p) are entirely determined
by the element p to which ti, j is applied.

More so, if P is unitary, ti, j (p) does not strongly depend on k and l determined by
p: indeed, let f : P(k, l) −→ P(k + 1, l + 1) be the map that sends p to p∗ I then
for i ∈ [k] and j ∈ [l], we have

ti, j ◦ f (p) = f ◦ ti, j (p),

which is Axiom 3.(c).

Remark 2.5 In Sect. 6 we will show that TRAPs can be described as algebras over a
certainmonad andwewill use this to prove (Theorem 6.11) that the category of unitary
TRAPs, defined below, is isomorphic to the category of wheeled PROPs introduced in
[30]. Our axiomatic approach is tailored to address analytic issues regarding products
of singularities and their application to Feynman graphs in QFT.

We will use in Sect. 3 the axiomatic approach of Definition 2.2 to show that
known analytic and geometric spaces carry TRAP structures. However, the categorical
approach seems better suited for classification problems, for example regarding the
solutions of the master equation in the BV formalism [27, 31].

Definition 2.6 We define a sub-TRAP of a TRAP P = (P(k, l))k,l�0 to be aS×Sop-
submodule Q = (Q(k, l))k,l�0 of P which contains the unit I0 ∈ P(0, 0) and is stable
under the partial tracemap of P . If the TRAP P is unitary, then the sub-trap Q is unitary
if it contains the unit I ∈ P(1, 1).

Definition 2.7 Let P = (P(k, l))k,l�0 and Q = (Q(k, l))k,l�0 be two TRAPs with

partial trace maps (t Pi, j )i, j�0 and (t Qi, j )i, j�0 respectively. A morphism of TRAPs is a
family φ = (φ(k, l))k,l�0 of morphisms of S×Sop-modules φ(k, l) : P(k, l) −→
Q(k, l) which are compatible with the horizontal concatenation, and the partial trace
maps. More precisely, for any (k, l,m, n) ∈ N

4
0:

1. For any (σ, p, τ ) in Sl×P(k, l)×Sk , φ(k, l)(σ · p ·τ) = σ ·φ(k, l)(p) ·τ .
2. φ(0, 0)(I0) = I0.
3. For all (p, q) ∈ P(k, l)×P(n,m),φ(k+n, l+m)(p∗q)=φ(k, l)(p)∗φ(n,m)(q).
4. For all (p, i, j) ∈ P(k, l)×[k]×[l], φ(k − 1, l − 1)◦ t Pi, j (p) = t Qi, j ◦φ(k, l)(p).

With a slight abuse of notation, we write φ(p) instead of φ(k, l)(p) for p ∈ P(k, l).
We denote by TRAP the category of TRAPs and TRAPs morphisms.

If P and Q are unitary TRAPswith units IP and IQ and φ : P −→ Q is amorphism
of TRAPs, this morphism is unitary if φ(1, 1)(IP ) = IQ . We denote by uTRAP the
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subcategory of TRAP whose objects are unitary TRAPs and morphisms are unitary
TRAP morphisms.

In the following two lemmas we identify conditions for a collection of S×Sop-
modules and linear maps between TRAPs to carry a TRAP structure and be a TRAP
morphism respectively.

Lemma 2.8 Let P = (P(k, l))k,l�0 be aS×Sop-module, equipped with a horizontal
concatenation ∗ satisfying Axioms 2.(a)–(d), and with maps ti, j satisfying Axioms
3.(a)–(b).

1. Assume that for any k, l, k′, l ′ � 1, for any p ∈ P(k, l), p′ ∈ P(k′, l ′),

t1,1(p∗ p′) = t1,1(p)∗ p′.

Then Axiom 3.(c) is satisfied.
2. Let I ∈ P(1, 1). We assume for any k, l � 1, for any p ∈ P(k, l),

t1,2(I ∗ p) = p.

Then I is a unit of P.

Proof Let p ∈ P(k, l) and p′ ∈ P(k′, l ′). We take i in [k + l], j in [k′+ l ′] and define
the transpositions σ = (1, j), τ = (1, i), with the convention (1, 1) = Id. We use the
notation σ j

..= l j (σ ) and τi
..= ri (τ ). Let us consider several cases.

• If i � k and j � l, then

ti, j (p∗ p′) = ti, j (σ
2 ·(p∗ p′) ·τ 2)

= σ j · t1,1(σ ·(p∗ p′) ·τ) ·τi by equivariance of ti, j (Axiom 3.(b)

of Definition 2.2)

= σ j ·(t1,1((σ · p ·τ)∗ p′)) ·τi since i � k, j � l and

by Axiom 2.(c) of Definition 2.2

= σ j ·(t1,1(σ · p ·τ)∗ p′) ·τi by the assumption of the lemma

= (σ j ·(t1,1(σ · p ·τ) ·τi ))∗ p′ since i � k, j � l and

by Axiom 2.(c) of Definition 2.2

= ti, j (p)∗ p′ by equivariance of ti, j .

• If i > k and j > l, using c−1
m,n = cn,m , and as before writing (cl ′,l) j ..= l j (cl ′,l)

and (ck,k′)i ..= ri (ck,k′) we have
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ti, j (p∗ p′) = ti, j (cl ′,l ·(p′ ∗ p) ·ck,k′) by commutativity of ∗ (Axiom 2.(d)

of Definition 2.2)

= (cl ′,l) j · ti−k, j−l(p
′ ∗ p) ·(ck,k′)i by equivariance of ti, j

(Axiom 3.(b) of Definition 2.2)

= cl ′−1,l ·(ti−k, j−l(p
′)∗ p) ·ck,k′−1 by the first point

= p∗ ti−k, j−l(p
′) by commutativity of ∗ .

Thus Axiom 3.(c) is satisfied.
• Let us now take j � 2. In this case we have

t1, j (I ∗ p) = t1, j ((2, j)
2 ·(I ∗ p))

= (2, . . . , j − 1) · t1,2((2, j) ·(I ∗ p)) by equivariance of t1, j
(Axiom 3.(b) of Definition 2.2)

= (2, . . . , j − 1) · t1,2((I ∗(1, j − 1) · p)) since j � 2 and by

Axiom 2.(c) of Definition 2.2

= (2, . . . , j − 1) · ((1, j − 1) · p) by the assumption of the lemma

= (2, . . . , j − 1)(1, j − 1) · p
= (1, . . . , j − 1) · p.

The other three relations are proved in the same way. Thus I is a unit of P . 
�
We can also simplify the axioms for morphisms of TRAPs.

Lemma 2.9 Let P= (P(k, l))k,l�0 and Q= (Q(k, l))k,l�0 be two TRAPs and φ =
(φ(k, l))k,l�0 be a family of set maps φ(k, l) : P(k, l) −→ Q(k, l) satisfying points
(1)–(3) of Definition 2.7. Suppose further that for any k, l � 1, for any p ∈ P(k, l)

t1,1 ◦ φ(p) = φ ◦ t1,1(p).

Then φ is a map of TRAPs.

Proof If i , j and p lie respectively in [k], [l], and P(k, l), then

φ ◦ ti, j (p) = φ ◦ ti, j ((1, j)2 · p ·(1, i)2)
= φ((1, j) · t1,1((1, j) · p ·(1, i)) · (1, i)) by equivariance of ti, j

(Axiom 3.(b) of Definition 2.2)

= (1, j) ·φ ◦ t1,1((1, j) · p ·(1, i)) · (1, i) by (1) of Definition 2.7

= (1, j) · t1,1 ◦φ((1, j) · p ·(1, i)) · (1, i) by the assumption of the lemma

= ti, j ((1, j) ·φ((1, j) · p ·(1, i)) · (1, i)) by equivariance of ti, j
(Axiom 3.(b) of Definition 2.2)

= ti, j ◦φ(p) by point (1) of Definition 2.7,

with the convention (1, 1) = Id. It follows that φ is a morphism of TRAPs. 
�
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In particular, to show that a collection of linearmaps between twoTRAPspreserving
the horizontal concatenation and the actions of the symmetry group is a morphism of
TRAPs, it is enough to check the properties of Lemma 2.9.

2.2 Quotient of TRAPs

This paragraph prepares for the construction of an embedding of a TRAP P in a unitary
TRAP.

Lemma 2.10 Let Q be a TRAP and let ∼ be an equivalence relation on Q which is
compatible with the TRAP-structure on Q in the following sense. For any two elements
x, x ′ ∈ Q, such that x ∼ x ′:

• (Compatibility with the module-structure). For any (σ, τ ) ∈ Sk×Sl , τ · x ·σ ∼
τ · x ′ ·σ .

• (Compatibility with the horizontal concatenation). For any y ∈ Q, x ∗ y ∼ x ′ ∗ y
and y ∗ x ∼ y ∗ x ′.

• (Compatibility with the partial trace maps). For any (i, j) ∈ [k]×[l], ti, j (x) ∼
ti, j (x ′).

Then the quotient Q/∼ is a TRAP with [I0] as unit for the concatenation product. If Q
is unitary with unit I ∈ Q(1, 1) for the partial trace maps, then Q/∼ is also unitary
with [I ] as unit for the partial trace maps.
Proof 1. By compatibility with the module structure, Q/∼ is a S×Sop-modules.

2. Using twice the compatibility with horizontal concatenation maps, we find that if
x ∼ x ′ and y ∼ y′, then x ∗ y ∼ x ′∗ y′ by transitivity of ∼. Thus the horizontal
concatenation [x]∗[y] ..= [x ∗ y] on Q/∼ is well-defined. It fulfils properties 2.(a) to
2.(d) of Definition 2.2 by construction.

3. We defined the partial trace maps on the quotient to be ti, j ([x]) ..= [ti, j (x)]. It is
well defined by compatibility with the partial trace maps and has properties 3.(a) to
3.(c) of Definition 2.2 by construction.

Thus Q/∼ is a TRAP. Finally, if Q is unitary with unit I , then [I ] endows the
quotient Q/∼ with a unit by construction and Q/∼ is then a unitary TRAP. 
�
The following statement is a direct consequence.

Proposition 2.11 Let P and Q be TRAPs and φ : Q → P a TRAP-morphism. The
relation

x ∼ x ′ ⇐⇒ φ(x) = φ(x ′)

defines an equivalence relation compatible with the TRAP-structure on Q and Q/∼
defines a TRAP.

Proof Let x, x ′ in Q be such that x ∼ x ′.

• For any (σ, τ ) ∈ Sk×Sl ,
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φ(σ · x ·τ) = σ ·φ(x) ·τ = σ ·φ(x ′) ·τ = φ(σ · x ′ ·τ),

where the first and last identities follow from the fact that φ is a morphism of
S×Sop-modules. Thus ∼ is compatible with the module structure.

• For any y in Q we have

φ(x ∗ y) = φ(x)∗φ(y) = φ(x ′)∗φ(y) = φ(x ′∗ y)

where we have used the fact that φ is a morphism for the horizontal concatenation
product (since φ is a morphism of TRAPs) and the fact that φ(x) = φ(x ′). Thus
x ∗ y ∼ x ′∗ y. Similarly we show that y ∗ x ∼ y ∗ x ′ and ∼ is compatible with the
horizontal concatenation.

• For any (i, j) in [k]×[l] we have

φ(ti, j (x)) = ti, j (φ(x)) = ti, j (φ(x ′)) = φ(ti, j (x
′)),

where the first and last identities follow from the fact that φ is a morphism of
TRAPs.
Thus ∼ is compatible with the partial trace maps. 
�

3 Fundamental examples

3.1 The HomTRAP

Let us give a fundamental example of unitary TRAP.
Let V be a finite-dimensional vector space and V ∗ its algebraic dual. We consider

the family

HomV = (HomV (k, l))k,l�0
..= (Hom(V⊗k, V⊗l))k,l�0,

where for any (k, l) ∈ N
2
0, Hom(V⊗k, V⊗l) is the vector space of linear maps from

V⊗k to V⊗l . We shall identifyHomV (k, l) and V ∗⊗k⊗V⊗l through the isomorphism

θk,l :
⎧

⎨

⎩

V ∗⊗k⊗V⊗l −→ HomV (k, l)

f1 . . . fk ⊗v1 . . . vl �−→
{

V⊗k −→ V⊗l

x1 . . . xk �−→ f1(x1) . . . fk(xk) v1 . . . vl ,

where with some abuse of notation, we have set f1 . . . fk ..= f1⊗ · · · ⊗ fk ∈ V ∗⊗k

and v1 · · · vl ..= v1⊗ · · · ⊗vl ∈ V⊗l. For any vector space W , the tensor power W⊗k

is a left Sk-module with the action defined by

σ ·w1 . . . wk = wσ−1(1) . . . wσ−1(k).

Via the identification θ ..= (θk,l)k,l�0, we can equip the family HomV =
(Hom(V⊗k, V⊗l))k,l�0 with the structure of a Sl×S

op
k -module by putting, for an

f ∈ Hom(V⊗k, V⊗l), for any (σ, τ ) ∈ Sk×Sl :
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for all v1 . . . vk ∈ V⊗l , τ · f ·σ(v1 . . . vk) = τ · f (σ ·v1 . . . vk). (3.1)

The horizontal concatenation is the usual tensor product of linear maps: if f ∈
HomV (k, l) and g ∈ HomV (k′, l ′), then

f ⊗g :
{

V⊗(k+k′) −→ V⊗(l+l ′)

v1 . . . vk+k′ �−→ f (v1 . . . vk)⊗g(vk+1 . . . vk+k′).

We define the following partial trace maps:

ti, j (θk,l( f1 . . . fk⊗v1 . . . vl))

= fi (v j ) θk−1,l−1( f1 . . . fi−1 fi+1 . . . fk ⊗v1 . . . v j−1v j+1 . . . vl).
(3.2)

Remark 3.1 Notice that for p ∈ HomV (1, 1), t1,1(p) coincides with the usual trace of
a linear map on V . Proposition 5.7 generalises the notion of trace to any element of
HomV and to any TRAP.

Proposition 3.2 For a finite-dimensional K-vector space V , the above construction
equips HomV with a TRAP structure which is unitary, with unit given by the identity
of V .

Remark 3.3 Wewill see later in the paper (Theorem 6.11) that this implies thatHomV

is a wheeled PROP. Further details ofHomV as a wheeled PROP can be found in [27,
Example 2.1.1]. In [10] (in particular Sect. 2.1, Sect. 6 and Sect. 7) the consequence
of HomV carrying a wheeled PROP structure in the context of invariant theory are
explored. HomV also appears for example in [21, Example 2.2] where questions of
algebraic topology are studied.

Proof Properties 2.(a)–(d) are trivially satisfied, with I0 = 1 ∈ K. Property 3.(a) is
direct. Let us prove Property 3.(b).

ti, j (σ ·θk,l( f1 . . . fk⊗v1 . . . vl) ·τ) = ti, j ◦θk,l
(

fτ(1) . . . fτ(k) ⊗vσ−1(1) . . . vσ−1(l)

)

= fτ(i)(vσ−1( j)) θk−1,l−1
(

fτ(1) . . . fτ(i−1) fτ(i+1) . . . fτ(k)

⊗vσ−1(1) . . . vσ−1( j−1)vσ−1( j+1) . . . vσ−1(l)

)

= σ j · tτ(i),σ−1( j)θk,l( f1 . . . fk ⊗v1 . . . vl) ·τi .
Property 3.(c) is straightforward. Let us prove that HomV is unitary with the help of
Lemma 2.8. Let us fix (ei )i∈I a basis of V , then (e∗

i )i∈I is a basis of V ∗ and the identity
map of V is

IdV = θ1,1

(

∑

i∈I
ei ⊗e∗

i

)

. (3.3)

Then for any p = θk,l( f1 . . . fk⊗v1 . . . vl) ∈ HomV (k, l),

t1,2(IdV ∗θk,l( f1 . . . fk⊗v1 . . . vl)) =
∑

i∈I
t1,2 ◦θk+1,l+1(e

∗
i f1 . . . fk⊗eiv1 . . . vl)
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=
∑

i∈I
θk,l( f1 . . . fk⊗ei e

∗
i (v1)v2 . . . vl)

= θk,l( f1 . . . fk⊗ IdV (v1)v2 . . . vl)

= θk,l( f1 . . . fk⊗v1 . . . vl).

So HomV is a unitary TRAP. 
�
When V is not finite-dimensional, θ is an injective, non surjective map. Its range

is the subspace Homfr
V of linear maps from V⊗k to V⊗l of finite rank. We can equip

Homfr
V with a similar TRAP structure:

Proposition 3.4 With theS×Sop-action defined by (3.1), the usual tensor product of
maps and the partial trace maps defined by (3.2), Homfr

V is a TRAP. It is unitary if
and only if V is finite-dimensional.

Proof We skip the proof that Homfr
V can be equipped with a TRAP structure since

it goes as for HomV when V is finite-dimensional. Note that when V is finite-
dimensional, then Homfr

V = HomV is a unitary TRAP. We show the second part
of the statement.

Let us assume that Homfr
V has a unit I . Then I has finite rank, let us fix a basis

(e1, . . . , ek) of Im(I ). There exist λ1, . . . , λk ∈ V ∗ such that for any v ∈ V ,

I (v) =
k

∑

i=1

λi (v)ei .

In other words,

I = θ1,1

(

k
∑

i=1

ei ⊗λi

)

.

Let v ∈ V , nonzero, and let λ ∈ V ∗ be such that λ(v) = 1. We consider f =
θ1,1(v⊗λ). Then f (v) = λ(v)v = v. Moreover,

v = f (v) = t1,2(I ∗ f )(v)

= t1,2 ◦θ2,2

(

k
∑

i=1

ei v⊗λi λ

)

(v)

= θ1,1

(

k
∑

i=1

λi (v)ei ⊗λ

)

(v)

=
k

∑

i=1

λ(v)λi (v)ei

=
k

∑

i=1

λi (v)ei ,
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so v ∈ Vect(e1, . . . , ek). Hence, V ⊆ Im(I ), so V is finite-dimensional. 
�
We end this paragraph with an example of a TRAP similar to the TRAPHomV but of
a more geometric nature.

Example 3.5 (The TRAP of tensors) Given a finite-dimensional smooth manifold M
and a point x ∈ M , we build theHom-TRAPHomTx M where TxM is the tangent space
to M at the point x . Given a pair (p, q) ∈ N

2
0, we haveusing the musical isomorphisms

(see for example [23, Chapter 3])

HomTx M (p, q) ∼= (T ∗
x M)⊗p ⊗ TxM

⊗q ,

where we have set V⊗0 = R. The partial trace maps are built by pairing cotangent and
tangent vectors. We note that if M is equipped with a Riemannian metric, thanks to
the musical isomorphisms T ∗

x M � α �−→ α# ∈ TxM and TxM � v �−→ v
 ∈ T ∗
x M

between T ∗
x M and TxM , these dual pairings can be seen as contractions via the metric

tensor.
This yields a smooth fibration HomT M

..= {HomTx M , x ∈ M} of TRAPs
parametrised by M . For any (p, q) ∈ Z

2
�0, a smooth section ofHomT M (p, q) defines

a smooth (p, q) tensor on M .

3.2 The TRAP of continuousmorphisms

We generalise the constructions of the previous paragraph, replacing the finite-dimen-
sional spaces V⊗k in HomV by nuclear spaces. These nuclear spaces were defined in
the seminal work [14]. Most of the results stated here can be found in [13, 14]. We
also refer to the more recent presentation [35].

We recall that:

• A topological vector space is Fréchet if it is Hausdorff, has its topology induced
by a countable family of semi-norms and is complete with respect to this family
of semi-norms.

• The topological dual E ′ of a locally convex topological vector space E can be
endowed with various topologies, one of which is the strong topology, namely the
topology of uniform convergence on the bounded domains of E . It is generated by
the family of semi-norms of E ′ defined on any f ∈ E ′ by ‖ f ‖B ..= supx∈B | f (x)|
for any bounded set B of E . The topological dual E ′ endowed with this topology
is called the strong dual.

• A topological vector space is called reflexive if E ′′ = (E ′)′ = E , where E ′ is the
topological dual of E endowed with the strong topology.

In the following E and F are two topological vector spaces and Homc(E, F) is the
set of continuous linear maps from E to F .

Remark 3.6 • When E and F are finite-dimensional, we have Homc(E, F) =
Hom(E, F).

• As pointed out to us by Mark Johnson, a natural generalisation to consider in
the context of Fréchet spaces are σ C∗-algebras, defined as inverse limits of C∗-
algebras [32], which however lie out of the scope of the present article.
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In order to build the TRAP Homc
V for nuclear spaces, we need Grothendieck’s com-

pletion of the tensor product, a notion we recall here in the set-up of locally convex
topological K-vector spaces.

Let E and F be two vector spaces. Recall that there exist a vector space E⊗F and a
bilinear map φ : E×F −→ E⊗F such that for any vector space V and bilinear map
f : E×F −→ V , there is a unique linear map f̃ : E⊗F → V satisfying f = f̃ ◦φ.
The space E⊗F is unique modulo isomorphism and is called the tensor product of
E and F .

Given two topological vector spaces E and F , one can a priori equip E⊗F with
several topologies, among which the equicontinuous topology, or ε-topology ([35,
Definition 43.1]) and the projective topology, or π -topology [35, Definition 43.2], are
of considerable importance. Their constructions are recalled inAppendix 1.We denote
by E⊗ε F (respectively, E⊗π F) the space E⊗F endowed with the ε-topology
(respectively, the projective topology) and by E ̂⊗ε F (respectively, E ̂⊗ε F) of E⊗ε F
(respectively, E⊗ε F) their completion with respect to the ε-topology (respectively,
projective topology). These two spaces differ in general but coincide for nuclear spaces.

Definition 3.7 ([14]) A locally convex topological vector space E is nuclear if and
only if for any locally convex topological vector space F ,

E ̂⊗ε F = E ̂⊗π F =.. E ̂⊗F

holds, in which case E ̂⊗F is called the completed tensor product of E and F .

There are other equivalent definitions of nuclearity, see for example [12, 16].

Remark 3.8 It was pointed out to us by Mark Johnson that such minimal and maximal
tensor products, much used in the context of C∗-algebras, further extend to l.m.c. C∗-
algebras, where l.m.c stands for locally multiplicative convex (see [20] and references
therein).

For Fréchet spaces, nuclearity is preserved under strong duality.

Proposition 3.9 • ([35, Proposition 50.6]) A Fréchet space is nuclear if and only if
its strong dual is nuclear.

• ([35, Proposition 36.5]) A Fréchet nuclear space is reflexive.

Many spaces relevant to renormalisation issues are Fréchet and nuclear. We list here
some examples.

Example 3.10 Any finite-dimensional vector space can be equipped with a norm and
for any of these norms, they are trivially Banach, hence Fréchet and nuclear. If E and F
are finite-dimensional vector spaces we haveHomc(E, F) = Hom(E, F) ∼= E∗⊗F ,
where Hom(E, F) stands for the space of F-valued linear maps on E and where the
dual E∗ is the algebraic dual.

Example 3.11 Let U be an open subset of R
n. Take E = C∞(U ) =.. E(U ). The

topological dual is the space E ′ = E′(U ) of distributions onU with compact support.
Then E is Fréchet [35, pp. 86–89], and E ′ is nuclear [35, Corollary, p. 530]. By
Proposition 3.9, E is also nuclear.
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Remark 3.12 Note that the dual E ′ of a Fréchet space E is never a Fréchet space (for
any of the natural topologies on E ′), unless E is actually a Banach space (see for
example [22]). In particular, E′(U ) is generally not Fréchet.

We now sum up various results of [35] of importance for later purposes.

Proposition 3.13 ([35, Equations (50.17)–(50.19)]) Let E and F be two Fréchet
spaces, with E nuclear. The following isomorphisms of topological vector spaces
hold:

E ′
̂⊗F ∼= Homc(E, F), (3.4)

E ̂⊗F ∼= Homc(E ′, F), (3.5)

E ′
̂⊗F ′ ∼= (E ̂⊗F)′ ∼= Bc(E×F, K). (3.6)

with Bc(E×F, K) the set of continuous bilinear maps K : E×F −→ K. Here the
duals are endowed with the strong dual topology, Homc(E, F) ∼= E ′⊗F with the
topology of uniform convergence on the bounded subsets of E6 and Bc(E×F, K)

with the topology of uniform convergence on products of bounded sets.

The stability of Fréchet nuclear spaces under completed tensor products follows from
combining the definition of the completed tensor product with the fact that if E and
F are two nuclear spaces then E ̂⊗F is a nuclear space ([35, Equation (50.9)]). A
stronger version of this Lemma is mentioned in [2, Section 6.f, p. 182] which quotes
[14].

Lemma 3.14 The completed tensor product E ̂⊗F of two Fréchet nuclear spaces is a
Fréchet nuclear space.

Proposition 3.15 Let V be a Fréchet nuclear space. Then

(V ̂⊗k)′ ∼= (V ′)̂⊗k (3.7)

holds for any k � 1, where the duals are endowed with their strong topologies.

Proof Let V be a Fréchet nuclear space. The case k = 1 is trivial. Then Eq. (3.7) with
k = 2 holds by equation (3.6) with E = F = V . The cases k � 2 are proved by
induction, using E = V ̂⊗k−1 and F = V . The induction holds by Lemma 3.14. 
�
Wedenote byD′(M) the set of distributions onM and byE′(M), the set of distributions
with compact support on a finite-dimensional smooth manifold M , see for example
[17, Definition 6.3.3]. It is well-known (see for example [1, Exercise 2.3.2], [6, p. 4])
that E(M) is a Fréchet nuclear space. It then follows from Proposition 3.9, that the
space E′(M) is also nuclear.

6 It is defined by a family of semi-norms pB,πi of the form pB,πi ( f ) = supx∈B πi ( f (x)) when applied
to some f in Homc(E, F), where B runs through the sets of all bounded subsets of E and πi runs through
a countable family of semi-norms which generate the topology of F . It gives back the strong topology on
E ′ if F is the underlying field. It also carries other names such as “topology of bounded convergence" [5,
p. III.14], [34, p. 81].
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Remark 3.16 (Compare with Remark 3.12). Note that the space E′(M) is not Fréchet
since the dual of a Fréchet space F is Fréchet if and only if F is Banach (see for
example [22]) which is not the case of E(M).

One further useful result is:

Proposition 3.17 Let M and N be two finite-dimensional smooth manifolds. Then

Homc(E′(M),E(N )) ∼= E(M)̂⊗E(N ) ∼= E(M×N )

holds.

Proof The second isomorphism [13, Chapter 5, p. 105] can be proved using a version
of the Schwartz kernel theorem for smoothing operators [1, Theorem 2.4.5] by means
of the identificationHomc(E′(M),E(N )) ∼= E(M×N ). The result then follows from
(3.5) applied to E(X) and E(Y ) which are Fréchet nuclear spaces. 
�
Definition 3.18 Let V be a Fréchet nuclear space. For any (k, l) in N

2
0, we set

Homc
V (k, l) = Homc(V ̂⊗k, V ̂⊗l) ∼= (V ′)̂⊗k

̂⊗V ̂⊗l,

where, as before V ′ stands for the strong topological dual and the superscript “c”
stands for continuous. Furthermore we set Homc

V
..= (Homc

V (k, l))k,l�0.
For any σ ∈ Sn , let σ be the endomorphism of V⊗n defined by

σ (v1⊗ · · · ⊗vn) = vσ−1(1)⊗ · · · ⊗vσ−1(n).

It extends to a continuous linearmapσ on the closure V ̂⊗n. For any f ∈ Homc
V (k, l),

σ ∈ Sl , τ ∈ Sk , we set

σ · f = σ ◦ f , f ·τ = f ◦τ .

In the above definition, the superscript “c” stands for continuous. The family Homc
V

carries a TRAP structure.

Theorem 3.19 Let V be a Fréchet nuclear space. Homc
V , with the action of S×Sop

described above, is a TRAP. Its horizontal concatenation is the usual topological
tensor product of maps with I0 : K −→ K given by the identity map of K, its partial
trace maps coincide with those of the TRAP HomV on elements of (V ′)̂⊗k

̂⊗V ̂⊗l

ti, j ( f1 . . . fk ⊗v1 . . . vl) = fi (v j ) f1 . . . fi−1 fi+1 . . . fk ⊗v1 . . . v j−1v j+1 . . . vl

with the same notations as in Sect. 3.1. It is unitary if and only if V is finite-dimensional,
in which case I1 : V −→ V is the identity map of V .

Proof The proof of the TRAP structure ofHomc
V goes as in Proposition 3.2. The proof

of the unital case is the same as the proof of Proposition 3.4. 
�
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Example 3.20 For a finite-dimensional vector space V , the TRAP Homc
V coincides

with the TRAP HomV .

Example 3.21 Let M be a smooth finite-dimensional manifold. From Proposition 3.17
and equation (3.7), it follows that the family (KM (k, l))k,l�0, with KM (k, l) =
(E′(M))

̂⊗k
̂⊗E(M)

̂⊗l defines a TRAP.

3.3 The TRAPK∞
M of smoothing pseudo-differential operators

We apply our results on TRAPs to tensor products of Fréchet spaces E(M) of smooth
functions on a given smooth finite-dimensional orientable closedmanifoldM andμ(z)
a volume form on M . From now on, we work with vector space over C. Recall from
Proposition 3.17 that such spaces are stable under tensor products and morphisms in
Homc(E′(M),E(N )) are determined by smoothing kernels in E(M×N ).

We consider smooth kernels which stabilise E(M) and set, for (k, l) �= (0, 0),

K∞
M (k, l) ..= E(Mk×Ml) ∼= E(M)

̂⊗k
̂⊗E(M)

̂⊗l , (3.8)

whose elements we refer to as smooth generalised kernels. We also set K∞
M (0, 0) ∼=

C⊗C and K∞
M

..= (K∞
M (k, l))k,l�0.

Theorem 3.22 Let M be a smooth finite-dimensional orientable closed manifold. The
family of topological vector spaces (K∞

M (k, l))k,l�0 can be equipped with the partial
trace maps ti, j : K∞

M (k, l) −→ K∞
M (k − 1, l − 1) with ti, j (K1⊗K2) defined by

ti, j (K1⊗K2)(x1, . . . , xk−1, y1, . . . , yl−1)

..=
∫

M
K1(x1, . . . , xi−1, z, xi , . . . , xk−1) K2(y1, . . . , y j−1, z, y j , . . . , yk) dμ(z),

(3.9)

where dμ(z) is a volume form on M.
Together with the horizontal concatenation given by the tensor product of maps

(K1⊗K2)∗(K ′
1⊗K ′

2) = Ka⊗Kb with Ka
..= K1⊗K ′

1 and Kb
..= K2⊗K ′

2 this
defines a TRAP, written K∞

M , which we call the TRAP of generalised smooth kernels
on M.

Remark 3.23 Note that the partial trace amounts to what one could call a partial con-
volution.

Proof The unit I0 ∈ K∞
M (0, 0) � C⊗C of the horizontal concatenation ∗ is the

constant map f : C → C defined by f (x) = 1. It is the unit of ∗ by bilinearity of the
tensor product. The horizontal concatenation on theS×Sop-module (K∞

M (k, l))k,l�0
satisfies Axioms 2.(a)–(d) of Definition 2.2 by the properties of the tensor product.
We want to check that the maps ti, j are well-defined and satisfy Axioms 3.(a)–(c).

The existence of the integral follows from the smoothness of K1 and K2 and
the closedness of M . Therefore, by definition of K∞

M , to show that ti, j (K1⊗K2) ∈
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K∞
M (k−1, l−1) and thus that ti, j is a partial trace, is enough to show that the function

ti, j (K1⊗K2) : Mk−1×Ml−1 −→ C is smooth. Since K1 and K2 are smooth, the map

(x1, . . . , xk−1, y1, . . . , yk) �−→ K1(x1, . . . , xi−1, z, xi , . . . , xk−1)

· K2(y1, . . . , y j−1, z, y j , . . . , yk)

is infinitely differentiable for any z ∈ M . For �x = (x1, . . . , xk) ∈ Mk and �α =
(α1, . . . , αk) ∈ N

k
0 we use the short-hand notation

∂ �α
�x ..= ∂α1

∂xα1
1

· · · ∂αk

∂xαk
k

.

Then, since M is compact, the partial derivatives

∂ �α
�x ∂

�β
�y K1(x1, . . . , xi−1, z, xi , . . . , xk−1) K2(y1, . . . , y j−1, z, y j , . . . , yk)

are bounded uniformly in z and hence

∫

M
∂ �α

�x ∂
�β
�y K1(x1, . . . , xi−1, z, xi , . . . , xk−1) K2(y1, . . . , y j−1, z, y j , . . . , yk) dμ(z)

= ∂ �α
�x ∂

�β
�y

∫

M
K1(x1, . . . , xi−1, z, xi , . . . , xk−1) K2(y1, . . . , y j−1, z, y j , . . . , yk) dμ(z)

= ∂ �α
�x ∂

�β
�y ti, j (K1⊗K2)(x1, . . . , xk−1, y1, . . . , yl−1).

Therefore the map ti, j (K1⊗K2)(x1, . . . , xk−1, y1, . . . , yl−1) is smooth.
Finally, to check Axiom 3.(c), by the first item of Lemma 2.8 it is enough to

check the compatibility of the horizontal concatenation with the partial trace to show
that t1,1(p∗ p′) = t1,1(p)∗ p′ for any pair (p, p′) ∈ K∞

M (k, l)×K∞
M (k′, l ′) with

k, k′, l, l ′ � 1. Setting p = K1⊗K2 and p′ = K ′
1⊗K ′

2 we have, by definition of
the partial trace maps and the horizontal concatenation

t1,1(p∗ p′)(x1, . . . , xk+k′−1, y1, . . . , yl+l ′−1)

=
∫

K1(z, x1, . . . , xk−1)K
′
1(xk, . . . , xk+k′−1)

· K2(z, y1, . . . , yl−1)K
′
2(xl , . . . , xl+l ′−1) dμ(z)

=
(∫

K1(z, x1, . . . , xk−1)K2(z, y1, . . . , yl−1) dμ(z)

)

· K ′
1(xk, . . . , xk+k′−1)K

′
2(xl , . . . , xl+l ′−1)

= (t1,1(p)∗ p′)(x1, . . . , xk+k′−1, y1, . . . , yl+l ′−1). 
�

Remark 3.24 Notice that K∞
M is non-unitary, since the map f : M×M−→C which

could play the role of a vertical unity is a δ distribution supported on the diagonal. The
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simple examples considered here, namelyK∞
M and the TRAPHomc

V speak for the fact
that non-unitary TRAPs offer an appropriate framework to host infinite-dimensional
spaces. We expect non-unitary TRAPs to host more general distributions.

4 Free TRAPs

4.1 Various families of graphs

Here, we consider oriented multigraphs endowed with extra structures, in particular
indexed input and output edges, loops, ordering and decorations. These extra structures
make it difficult to implement the usual definition of multigraphs [15], where the edges
form a multiset of pairs of vertices. In the literature on PROPs [26, 27], graphs are
defined as a set of half-edges (or flags), with an involution which tells us how to glue
them together in order to obtain edges, and with a partition which defines the vertices.
This definition does not take loops into account that is to say edges with no ends, yet
loops enter our constructions in an essential way. Instead we borrow a definition from
the theory of quivers [8, 11], where twomaps (called source and target, or alternatively
tail and head) are given from the set of edges to the set of vertices. Our approach allows
edges without source, or without target, or with neither source nor target. Among these
are the inputs and outputs in the graph we consider, which we then index.

Definition 4.1 A graph is a family G = (V (G), E(G), I (G), O(G), IO(G), L(G),

s, t, α, β), where:

1. V (G) (set of vertices), E(G) (set of internal edges), I (G) (set of input edges),
O(G) (set of output edges), IO(G) (set of input-output edges) and L(G) (set of
loops, that is to say edges with no endpoints) are finite (possibly empty) sets.

2. s : E(G) � O(G) −→ V (G) is a map (source map).
3. t : E(G) � I (G) −→ V (G) is a map (target map).
4. α : I (G)� IO(G) −→ [i(G)] is a bijection, with i(G) = |I (G)|+ |IO(G)| (index-

ation of the input edges).
5. β : O(G) � IO(G) −→ [o(G)] is a bijection, with o(G) = |O(G)| + |IO(G)|

(indexation of the output edges).

A corolla ordered graph is a graph G such that for any vertex v, the set of incoming
edges I (v) of v and the set of outgoing edges O(v) of v are totally ordered and we
shall denote both order relations by �v .

A graph G is solar if IO(G) = L(G) = ∅.

Remark 4.2 For a graph G = (V (G), E(G), I (G), O(G), IO(G), L(G), s, t, α, β),
O(G) and I (G)will always respectively refer to the sets of outgoing and ingoing edges
of G. On the other hand, for any v ∈ V (G), O(v) and I (v) respectively refer to the
set of outgoing and ingoing edges of the vertex v. In other words, for any v ∈ V (G),

O(v) ..= {e ∈ E(G) � O(G) | s(e) = v}, I (v) ..= {e ∈ E(G) � I (G) | t(e) = v}.
We denote the cardinals of the sets O(G), I (G), O(v) and I (v) as o(G), i(G), o(v)

and i(v) respectively.
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For a solar graph (that is, such that IO(G) = L(G) = ∅), the terminology solar
refers to its radiating aspect with rays around a central body. In [38] such graphs are
called ordinary.

Example 4.3 Here is a graph G:

V (G) = {x, y}, E(G) = {a, b}, I (G) = {c, d},
O(G) = {e, f }, IO(G) = {g}, L(G) = {h, k},

and

s :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a �−→ y
b �−→ x
e �−→ y
f �−→ y,

t :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a �−→ x
b �−→ y
c �−→ x
d �−→ x,

α :
⎧

⎨

⎩

c �−→ 1
d �−→ 2
g �−→ 3,

β :
⎧

⎨

⎩

e �−→ 3
f �−→ 1
g �−→ 2.

This is graphically represented as follows:

1 3 2

y

ef

a

h k

x

b

1

c

2

d

3

g

Note that this graph contains two loops, represented by h and k .

Graphically, if G is a corolla ordered graph, we shall represent the orders on the
incoming and outgoing edges of a vertex by drawing box-shaped vertices, with the
incoming and outgoing edges of any vertex ordered from left to right. For example,
we distinguish the following two situations:
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We note that the graph of Example 4.3 can be made corolla ordered in 3!×3! = 36
ways, corresponding to the total orderings of the three incoming edges of x and of the
three outgoing edges of y. Here are three of them:

x y

1 2 3

1 3
2

x y

1 2 3

1 3
2

x y

1 2
3

1 3 2

Definition 4.4 Let G and G ′ be two graphs.

1. Amorphism of graphs fromG toG ′ is a family ofmaps f = ( fV , fE , f I , fO , f I O ,

fL) with
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fV : V (G) −→ V (G ′), fE : E(G) −→ E(G ′), f I : I (G) −→ I (G ′),
fO : O(G) −→ O(G ′), f I O : IO(G) −→ IO(G ′), fL : L(G) −→ L(G ′),

such that

s′◦ fE = fV ◦s|E(G), s′◦ fO = fV ◦s|O(G),

t ′◦ fE = fV ◦ t|E(G), t ′◦ f I = fV ◦ t|I (G),

α′◦ f I = α|I (G), α′◦ f I O = α|IO(G),

β ′ ◦ fO = β|O(G), β ′ ◦ f I O = β|IO(G).

2. An isomorphism of graphs from G to G ′ is a morphism of graphs f =
( fV , fE , f I , fO , f I O , fL) from G to G ′ such that all the structure maps are bijec-
tions.

In other words, a morphism of graphs is an isomorphism if all the structure maps are
bijection. Furthermore, an isomorphism of corolla ordered graphs is an isomorphism
of graphs that preserves the orderings of ingoing and outgoing edges.

Definition 4.5 Let G and G ′ be two corolla ordered graphs.

1. A morphism of corolla ordered graphs from G to G ′ is an morphism of graphs f
from G to G ′ which preserves the order of incoming and outgoing edges that is,
for any vertex of v:

• For any incoming edges e, e′ of v, e�v e′ in G if and only if f (e)� f (v) f (e′)
in G ′.

• For any outgoing edges e, e′ of v, e�v e′ in G if and only if f (e)� f (v) f (e′)
in G ′.

2. An isomorphism of corolla ordered graphs from G to G ′ is a morphism of corolla
ordered graphs from G to G ′ that is also an isomorphism of graphs from G to G ′.

3. For any (k, l) in N
2
0, we denote by Gr�(k, l) the set of the isoclasses of graphs

G such that i(G) = k and o(G) = l, that is Gr�(k, l) is the quotient space of
graphs with k input edges and l output edges by the equivalence relation given by
isomorphism. Similarly, we denote by CGr�(k, l) the set of isoclasses of corolla
ordered graphs G such that i(G) = k and o(G) = l.

4. The subset of Gr�(k, l) formed by isoclasses of solar graphs is denoted by
solGr�(k, l) and the subset of CGr�(k, l) formed by isoclasses of solar corolla
ordered graphs is denoted by solCGr�(k, l).

In what follows, we shall write graphs for isoclasses of graphs.
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Example 4.6 The isoclass of the graph of Example 4.3 is represented by

1 3 2

1 2 3

We shall use later the two following special graphs:

Example 4.7 1. We denote by O the graph with no vertex and with only one element
in L(G).

2. We denote by I the graph with no vertex and with only one element in IO(I ).

Wewill later define amonad structure on graphs and corolla ordered graphs (Propo-
sition 6.10).

Throughout the paper, X = (X(k, l))k,l�0 is a family of sets.

Definition 4.8 A graph decorated by X = (X(k, l))k,l�0 (or X -decorated graph, or
simply decorated graph) is a couple (G, dG) with G a graph as in Definition 4.1 and
dG : V (G) −→ ⊔

k,l�0 X(k, l) a map, such that for any vertex v ∈ V (G), dG(v) ∈
X(i(v), o(v)). We denote byGr�(X) the set of graphs decorated by X . Similarly, we
define X -decorated corolla ordered graphs which we denote by CGr�(X).

We further write Gr�(X)(k, l) (respectively, CGr�(X)(k, l), solGr�(X)(k, l)
and solCGr�(X)(k, l)) the set of graphs (respectively, of corolla ordered graphs, solar
graphs, solar corolla ordered graphs) decorated by X with k inputs (that is |I (G)| = k)
and l ouputs (that is |O(G)| = l).

4.2 TRAPs of graphs

As before, X = (X(k, l))k,l�0 is a family of sets. We equip the set of graphs (possibly
decorated by X ) with a structure of TRAP. Let us first define an action ofS×Sop on
graphs. Let G = (V (G), E(G), I (G), O(G), IO(G), L(G), s, t, α, β) ∈ Gr�(k, l),
σ ∈ Sk and τ ∈ Sl . Then

τ ·G ·σ = (

V (G), E(G), I (G), O(G), IO(G), L(G), s, t, σ−1◦α, τ ◦β
)

.

If G is corolla ordered, then τ ·G ·σ is naturally corolla ordered; if G is X -decorated,
then τ ·G ·σ is also X -decorated. Hence, this defines a structure of S×Sop-module
on Gr�, CGr�, Gr�(X) and CGr�(X) for any X .

We now define the horizontal concatenation. If G and G ′ are two graphs, we define
a graph G ∗G ′ in the following way:
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V (G ∗G ′) = V (G) � V (G ′), E(G ∗G ′) = E(G) � E(G ′),
L(G ∗G ′) = L(G) � L(G ′), I (G ∗G ′) = I (G) � I (G ′),
O(G ∗G ′) = O(G) � O(G ′), IO(G ∗G ′) = IO(G) � IO(G ′).

The source and target maps are given by

s′′
|E(G)�O(G) = s, s′′

|E(G ′)�O(G ′) = s′,
t ′′|E(G)�I (G) = t, t ′′|E(G ′)�I (G ′) = t ′.

The indexations of the input and output edges are given by

α′′
|I (G)�IO(G) = α, α′′

|I (G ′)�IO(G ′) = i(G) + α′,
β ′′

|O(G)�IO(G) = β, β ′′
|O(G ′)�IO(G ′) = o(G) + β ′

with an obvious abuse of notation in the definition of the second column. Notice that
this product is not commutative in the usual sense for G ∗G ′ and G ′∗G might differ
by the indexation of their input and output edges. However, it is commutative in the
sense of Axiom 2.(d) of TRAPs. Roughly speaking, G ∗G ′ is the disjoint union of
G and G ′, the input and output edges of G ′ being indexed after the input and output
edges of G.

G

1 k

. . .

1 l

. . .

∗ G ′

1 k′
. . .

1 l ′

. . .

= G

1 k

. . .

1 l

. . .

G ′

k + 1 k + k′
. . .

l + 1 l + l ′

. . .

Example 4.9 Here is an example of horizontal concatenation:

1 3 2

1 2

∗

1 2

1

=

1 3 2 4 5

1 2 3
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Moreover, if G and H are corolla ordered graphs, then G ∗H is naturally a corolla
ordered graph. If G and H are X -decorated graphs, then G ∗H is also naturally an
X -decorated graph.

Let us finally define the partial trace maps. We only define the outline of their
definition, and refer the reader to Appendix 2 for a rigorous definition. Let G ∈
Gr�(k, l), 1 � i � k and 1 � j � l. We set ei = α−1

G (i), f j = β−1
G ( j) and define

ti, j (G) as the graph obtained by identifying the input of ei with the output j of f j . If
ei ∈ I (G) and f j ∈ O(G), this creates an edge in E(G). This case is illustrated in the
figure below. Otherwise, we create an edge in I (G), or O(G) or IO(G) or in L(G).
In all these cases, we then reindex in non-decreasing order, the inputs and the outputs
of the obtained graph.

Graphically:

G

1 i k

. . . . . .

1 j l

. . . . . .

ti, j�−→ G

1 k − 1

. . . . . .

1 l − 1

. . . . . .

In particular, t1,1(I ) is the graph O (see Example 4.7). As before, if G is corolla
ordered, or if it is X -decorated, then ti, j (G) is corolla ordered, or X -decorated.

Example 4.10 Let G be the following graph:

2 1

1 2 3
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Then

t1,2(G) =

1

1 2

t1,1(G)= t2,2(G)= t3,2(G)=

1

1 2

t2,1(G) = t3,1(G) =

1

1 2

Note that t1,2 creates a loop when applied on G.

Proposition 4.11 With this data, Gr�, CGr�, Gr�(X) and CGr�(X) are unitary
TRAPs.

Proof We provide the proof for CGr�. The proof is similar for the three other cases.
Properties 1. and 2. followdirectly from the symmetric group actions and the horizontal
concatenation of graphs defined above. Let us give a graphical interpretation of the
proof of Property 3.(a), when i ′ < i and j ′ < j .

G

1 i ′ i k

. . . . . . . . .

1 j ′ j l

. . . . . . . . .

ti, j�−→ G

1 i ′ k − 1

. . . . . . . . .

1 j ′ l − 1

. . . . . . . . .

ti ′, j ′�−→
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G

1 k − 2

. . . . . . . . .

1 l − 2

. . . . . . . . .

G

1 i ′ i k

. . . . . . . . .

1 j ′ j l

. . . . . . . . .

ti ′, j ′�−→ G

1 i − 1 k − 1

. . . . . . . . .

1 j − 1 l − 1

. . . . . . . . .

ti−1, j−1�−→

G

1 k − 2

. . . . . . . . .

1 l − 2

. . . . . . . . .

One can give similar graphical representations of the proofs for the remaining cases
using the definitions given in Appendix 2.

For Property 3.(b), let us consider a graph p = G. As the input edge indexed
by i in σ ·G ·τ is the input edge of G indexed by τ(i) and the output edge indexed
by j in σ ·G ·τ is the output edge of G indexed by σ−1( j), G1 = ti, j (σ ·G ·τ)

is the graph obtained by gluing together the input indexed by τ( j) and the output
indexed by σ−1( j), reindexing the input according to σi and the output edges by τ j ,
so G1 = σi · tτ(i),σ−1( j)(G) ·τ j .
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Let us prove Property 3.(c). By Lemma 2.8, it is enough to prove it for (p, p′) =
(G,G ′) a pair of graphs and (i, j) = (1, 1). In this case, ei and f j are both edges of
G, so t1,1(G ∗G ′) = t1,1(G)∗G ′.

The graph I is defined in Example 4.7. For any graph G with |O(G)| � 1,

t1,2(I ∗G) = G.

By Lemma 2.8, I is a unit of Gr�. 
�
Corollary 4.12 solGr�, solCGr�, solGr�(X) and solCGr�(X) are subTRAPs of
Gr�, CGr�, Gr�(X) and CGr�(X) in the sense of Definition 2.6. They are non-
unitary.

Proof If G and H are solar, then G ∗H is clearly also solar. If G ∈ CGr�(k, l) is
solar, then for any i ∈ [k] and j ∈ [l], ti, j (G) is solar. Indeed, as IO(G) = ∅,
IO(ti, j (G)) = ∅; as IO(G) = L(G) = ∅, L(ti, j (G)) = ∅. They are indeed non-
unitary, as the graph I is not solar, IO(I ) being nonempty. 
�
Remark 4.13 Gr�, CGr�, Gr�(X) and CGr�(X) admit other sub-TRAPs, for
example with vertices with only a prescribed number of possible vertices. These sub-
TRAPs might be of importance in the question of renormalisability of QFTs, but this
question is far from the scope of this work and we therefore do not define rigorously
these other objects.

4.3 Morphisms of TRAPs and free TRAPs

As before, X = (X(k, l))k,l�0 is a family of sets. It turns out that solCGr�(X) is
the free TRAP generated by X . For any x ∈ X(k, l), we identify x with the graph in
solCGr�(k, l)(X) with one vertex decorated by x , k incoming edges, totally ordered
according to their indices, and l outgoing edges, totally ordered according to their
indices. For example, x ∈ X(3, 2) is identified with the corolla ordered graph

x

1 2 3

1 2

(4.1)

Theorem 4.14 Let P be a TRAP and φ = (φ(k, l))k,l≥0 be a map from X to P
that is, for any (k, l) ∈ N

2
0, φ(k, l) : X(k, l) −→ P(k, l) is a map. Then there exists a

unique TRAPmorphism� : solCGr�(X) −→ P, sending x to φ(x) for any x ∈ X. If
moreover P is unitary, this morphism� uniquely extends as a unitary TRAPmorphism
from CGr�(X) to P.

In other words, solCGr�(X) (respectively, CGr�(X)) is the free TRAP (respec-
tively, the free unitary TRAP, that is the free wheeled PROP) generated by X.
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Remark 4.15 In practice we often have P = X and φ = Id which yields a map

� : solCGr�(X) −→ X (4.2)

from decorated corolla ordered graphs to the space X of decorations.

Example 4.16 Here is a trivial yet enlightening example of how � acts on graphs: for
G = O, we have G = t1,1(I ) and hence �(G) = t1,1(IP ).

Proof We provide here a sketch of the proof, and refer the reader to Appendix 3 for a
full proof. Since solCGr�(X) ⊆ CGr�(X), we take G in CGr�(k, l)(X) and treat
simultaneously the case of solar graphs and the other. We define �(G) for any graph
G ∈ CGr�(k, l)(X) by induction on the number N of internal edges of G.

If N = 0, then G can be written as

G = O∗p∗σ ·(I ∗q ∗ x1 ∗ · · · ∗ xr ) ·τ,

where (p, q, r) lies in N
3
0, (ki , li ) lies in N

2
0 for any i , xi in X(ki , li ) and σ in

Sq+k1+···+kr , τ in Sq+l1+···+lr . If G is solar, then p = q = 0 and this reduces
to

G = σ ·(x1 ∗ · · · ∗ xr ) ·τ.

We then set

�(G) = σ ·(φ(x1)∗ · · · ∗φ(xk)) ·τ. (4.3)

If G is not solar and if P is unitary, we denote by IP the identity of P , and we put

�(G) = t1,1(IP )∗p∗σ ·(I ∗q
P ∗φ(x1)∗ · · · ∗φ(xr )) ·τ.

We can prove that this does not depend on the choice of the decomposition of G, with
the help of the TRAP axioms applied to P . Let us now assume that �(G ′) is defined
for any graph with N − 1 internal edges, for a given N � 1. Let G be a graph with N
internal edges and let e be one of these edges. Let Ge be a graph obtained by cutting
this edge in two, such that G = t1,1(Ge). We then set

�(G) = t1,1 ◦�(Ge).

We can prove that this does not depend on the choice of e. It can then be shown that
� defined as above is compatible with the partial trace maps. 
�
Since the ingoing and outgoing edges of each vertex of a corolla ordered graph are
totally ordered, each corolla ordered graphCGr� is naturally acted upon byS×Sop.
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Definition 4.17 For any corolla ordered graph G ∈ CGr� and any vertex v ∈ V (G),
there is a natural action of So(v) ×S

op
i(v) induced by the action on the totally ordered

edges in O(v) and I (v). The corolla ordered graph obtained from G by the action of
(σ, τ ) on the vertex v is denoted by

σ ·v G ·v τ.

A similar action can be built on a corolla ordered graph G decorated by a family of
sets X :

σ ·v (G, dG) ·v τ ..= (σ ·v G ·v τ, dG).

Example 4.18

(12)·v
v

w

=
v

w

·w(12)=
v

w

.

In these pictures, the labelling of the edges outgoing (respectively, ingoing to) from
the vertex v (respectively, w) are labelled from left to right.

Note that Gr�(X) is obtained from CGr�(X) by forgetting the total orders on
the edges, which in fact is equivalent to the trivialisation of this action of symmetric
groups on incoming and outgoing edges of any vertex. Hence:

Corollary 4.19 Let P be a TRAP and φ = (φ(k, l))k,l�0 be a map from X to P. We
assume that for any x ∈ X(k, l), for any (σ, τ ) ∈ Sk⊗Sl ,

τ ·φ(x) ·σ = φ(x).

There exists a unique TRAP morphism � : solGr�(X) −→ P, sending x to φ(x)
for any x ∈ X. If moreover P is unitary, this morphism � is uniquely extended as a
unitary TRAP morphism from Gr�(X) to P.

We end this paragraph with the non corolla ordered counterpart of Remark 4.15:

Remark 4.20 In practice we often have P = X and φ = IdP which yields a map

� : solGr�(X) −→ X (4.4)

from decorated graphs to the space X of decorations.
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4.4 Extending non-unitary TRAPs

In this section, we embed any TRAP P in a unitary TRAP denoted by uPGr�(P).
We proceed in the following way:

• We start with the canonical TRAP morphism from the free TRAP solCGr�(P)

generated by P to P .
• By Proposition 2.11, this defines an equivalence ∼ on solCGr�(P), compatible
with the TRAP structure of solCGr�(P).

• We then extend this equivalence to CGr�(P), in such a way that it is compatible
with the unitary TRAP structure of CGr�(P), as required in Lemma 2.10.

• Consequently, the quotient CGr�(P)/∼ is a unitary TRAP which contains P .

For this, we shall need the solar part of any corolla ordered graph G, which we now
define:

Notation 4.21 Let G ∈ CGr�(P)(k, l). Then there exist a unique (p, k′, l ′) ∈ N
3
0,

k′ � k, l ′ � l, a unique solar graph G ′ ∈ solCGr�(P)(k′, l ′), a unique pair of
permutations (σ, τ ) ∈ Sk×Sl such that:

• σ(1) < · · · < σ(k′) and σ(k′ + 1) < · · · < σ(k) (that is to say σ is a (k′, k − k′)-
shuffle);

• τ(1) < · · · < τ(l ′) and τ(l ′ + 1) < · · · < τ(l) (that is to say τ is a (l ′, l − l ′)-
shuffle);

• G = Op∗τ−1 ·(G ′∗ I k−k′
) ·σ .

The graph G ′ is the solar part of G and is denoted by sol(G). We also set

σ ..= shin(G), τ ..= shout(G), p ..= valO(G).

Here sh stands for shuffle and val for valuation.

Remark 4.22 As the subsequent example will show, reindexing the ingoing and out-
going edges is useful to write the graph as a horizontal product of a solar graph, loops
and I .

Example 4.23 Let G be the graph

1 3 2

3 2 1
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Then

G = O2 ∗ (132)−1 ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3

2 1 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·(231)

= O2∗(132)−1 ·∗(G ′∗ I ) ·(231),

where G ′ is the following graph, which as a result is the solar part of G:

G ′ =

1 2

2 1

Moreover,

shin(G) = (231), shout(G) = (132), valO(G) = 2.

Definition 4.24 Let P be a TRAP and let us consider the unique TRAP morphism
� : solCGr�(P) −→ P , extending the identity of P . We define a relation ∼ on
CGr�(P) as follows: for G,G ′ ∈ CGr�(P),

G ∼ G ′ ⇐⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�(sol(G)) = �(sol(G ′)),
shin(G) = shin(G ′),
shout(G) = shout(G ′),
valO(G) = valO(G ′).

This is clearly an equivalence.

Roughly speaking, this equivalence identifies graphs with the same input-output
edges and loops and which coincide after contraction of their components obtained
from deleting input-output edges and loops.
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Theorem 4.25 Let P be a TRAP and let ∼ be the equivalence on CGr�(P) of Defi-
nition 4.24. The quotient uPGr�(P) ..= CGr�(P)/∼ is a unitary TRAP, containing
a sub-TRAP isomorphic to P through.

Proof We first show the compatibility of the equivalence relation with the left and
right actions of the symmetric group.

Let G,G ′ ∈ CGr�(P) be such that G ∼ G ′. If σ ∈ Sk+l , there exists a unique
triple (σ1, σ2, σ

′) ∈ Sk′ ×Sk−k′ ×Sk such that:

• shin(G)◦σ = σ ′◦(σ1⊗σ2).
• σ ′(1) < · · · < σ ′(k′) and σ ′(k′ + 1) < · · · < σ ′(k).

Then sol(G ·σ) = sol(G) ·σ1, shin(G ·σ) = σ ′ and shout(G ·σ) = shout(G). Obvi-
ously, valO(G ·σ) = valO(G ′). A similar result holds for G ′. We immediately obtain
that

shin(G ·σ) = shin(G
′ ·σ), sho(G ·σ) = sho(G

′ ·σ), valO(G ·σ) = valO(G ′ ·σ).

Recall that � is given in Definition 4.24. As it is a TRAP morphism:

�(sol(G ·σ)) = �(sol(G) ·σ1) = �(sol(G)) ·σ1 = �(sol(G ′)) ·σ1 = �(sol(G ′ ·σ)),

So G ·σ ∼ G ′ ·σ . Similarly, if τ ∈ Sl , τ ·G ∼ τ ·G ′.
Let us show the compatibility of the equivalence relation with the horizontal con-

catenation ∗ on the left and on the right.
Let H ∈ CGr�(P). Then, by construction of the product ∗ (Paragraph 4.2):

sol(G ∗H) = sol(G)∗sol(H),

shin(G ∗H) = shin(G)∗shin(H),

shout(G ∗H) = shout(G)∗shout(H),

valO(G ∗H) = valO(G) + valO(H).

A similar result holds for G ′∗H . As G ∼ G ′,

shin(G ∗H) = shin(G
′∗H), shout(G ∗H) = shout(G

′∗H),

valO(G ∗H) = valO(G ′∗H).

Moreover, as � is a TRAP morphism:

�(sol(G ∗H)) = �(sol(G)∗sol(H))

= �(sol(G))∗�(sol(H))

= �(sol(G ′))∗�(sol(H)) = �(sol(G ′∗H)).

Hence, G ∗H ∼ G ′∗H . Similarly, H ∗G ∼ H ∗G ′.
We now check the compatibility of the equivalence relation with the partial trace

maps.
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Let i ∈ [k] and j ∈ [l]. We denote by ei (respectively e′
i ) the i-th input of G

(respectively of G ′) and by f j (respectively f ′
j ) the j-th output of G (respectively of

G ′). There are five possible cases:

1. If ei = f j ∈ IO(G), then e′
i = f ′

j ∈ IO(G ′). Moreover,

shin(ti, j (G)) = shin(ti, j (G
′)),

shout(ti, j (G)) = shout(ti, j (G
′)),

valO(ti, j (G)) = valO(ti, j (G
′)) = valO(G) + 1,

sol(ti, j (G)) = sol(G),

sol(ti, j (G
′)) = sol(G ′).

As G ∼ G ′, �(sol(G)) = �(sol(G ′)), so ti, j (G) ∼ ti, j (G ′).
2. If ei , f j ∈ IO(G), with ei �= f j , then e′

i , f ′
j ∈ IO(G ′), with e′

i �= f ′
j . Moreover,

shin(ti, j (G)) = shin(ti, j (G
′)),

shout(ti, j (G)) = shout(ti, j (G
′)),

valO(ti, j (G)) = valO(ti, j (G
′)) = valO(G),

sol(ti, j (G)) = sol(G),

sol(ti, j (G
′)) = sol(G ′).

So ti, j (G) ∼ ti, j (G ′).
3. If ei ∈ IO(G) and f j /∈ IO(G), then e′

i ∈ IO(G ′) and f j /∈ IO(G ′). Moreover,

shin(ti, j (G)) = shin(ti, j (G
′)),

shout(ti, j (G)) = shout(ti, j (G
′)),

valO(ti, j (G)) = valO(ti, j (G
′)) = valO(G),

and there exists a permutation α ∈ Sk′ such that

sol(ti, j (G)) = sol(G) ·α, sol(ti, j (G
′)) = sol(G ′) ·α.

As � is a TRAP morphism:

�(sol(ti, j (G))) = �(sol(G)) ·α
= �(sol(G ′)) ·α = �(sol(G ′) ·α) = �(sol(ti, j (G

′))),

so ti, j (G) ∼ ti, j (G ′).
4. The case where ei /∈ IO(G) and f j ∈ IO(G) is treated similarly.
5. If ei , f j /∈ IO(G), then ei , f j /∈ IO(G ′). Moreover,

shin(ti, j (G)) = shin(ti, j (G
′)),

shout(ti, j (G)) = shout(ti, j (G
′)),

valO(ti, j (G)) = valO(ti, j (G
′)) = valO(G),
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and there exist i ′ ∈ [k′], j ′ ∈ [l ′], such that

sol(ti, j (G)) = ti ′, j ′(sol(G)), sol(ti, j (G
′)) = ti ′, j ′(sol(G

′)).

As � is a TRAP morphism:

�(sol(ti, j (G))) = �◦ ti ′, j ′(sol(G))

= ti ′, j ′ ◦�(sol(G))

= ti ′, j ′ ◦�(sol(G ′)) = �(sol(ti, j (G
′))),

so ti, j (G) ∼ ti, j (G ′).

By Lemma 2.10, uPGr�(P) is a unitary TRAP.
The canonical injection ι : P −→ CGr�(P) induces a TRAPmorphism ι′ : P −→

uPGr�(P), which we see as follows. If p, q lie in P , then in CGr�(P), ι(p)∗ ι(q)

and ι(p∗q) are solar graphs, and

�(ι(p)∗ ι(q)) = �◦ ι(p)∗�◦ ι(q) = p∗q = �◦ ι(p∗q),

so ι(p)∗ ι(q) ∼ ι(p∗q). Hence, ι′(p)∗ ι′(q) = ι′(p∗q). If p ∈ P(k, l), i ∈ [k] and
j ∈ [l], then ti, j ◦ ι(p) and ι◦ ti, j (p) are solar graphs in CGr�(P), and

�◦ ti, j ◦ ι(p) = ti, j ◦�◦ ι(p) = ti, j (p) = �◦ ι◦ ti, j (p),

so ti, j ◦ ι(p) ∼ ι◦ ti, j (p), which implies that ti, j ◦ ι′(p) = ι′ ◦ ti, j (p): the map ι′ is a
TRAP morphism.

Let p, q ∈ P be such that ι′(p) = ι′(q). Then ι(p) ∼ ι(q). As ι(p) and ι(q) are
solar graphs,

p = �◦ ι(p) = �◦ ι(q) = q,

so ι′ is injective. We have proved that the unitary TRAP uPGr�(P) contains a (non-
unitary) sub-TRAP isomorphic to P . 
�

We now identify the sub-TRAP ι′(P) of uPGr�(P) with P . Let us give a descrip-
tion of the Sl×S

op
k -module uPGr�(P)(k, l). Its elements are obtained from the

elements of CGr�(P)(k, l) by the contraction of their solar parts to an element of P .
Moreover, the elements of CGr�(P) are obtained from their solar parts by adding
copies of the unit I , corresponding to input-output edges, and copies of the trace O
of the unit. Similarly, the elements of uPGr�(P) are obtained by adding copies of I
and O to elements of P . The action of the symmetric groups on the copies of I and on
P has to be taken in account: for any i , I i generates a Si ×S

op
i -module isomorphic

to Si , with its canonical Si ×S
op
i -action. Therefore, we obtain that
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uPGr�(P)(k, l)

=
⎛

⎝

min(k,l)
⊔

i=0

ind
Sk×S

op
l

(Si⊗Sl−i )×(Si⊗Sk−i )
opSi × P(k − i, l − i)

⎞

⎠ ×{O j, j ∈ N0},

where ind is the induction of modules.
The partial trace maps can be computed with the help of the unitary TRAP axioms.

For example, if p ∈ P(k − 1, l − 1), if j > 1, then

t1, j (Id[1], p,Oi ) = (Id[0], (1 . . . j − 1) · p,Oi ),

which is graphically represented by

t1, j

p

1 2 3 k k +
. . .

1 2 j j+1l+1

. . . . . . Oi =
p

1 2 k − 1k
. . .

1 2 j l

. . . . . . Oi =
p

1 2 k − 1k
. . .

2 1 j l

. . . . . . Oi .

and

t1,1(Id[1], p,Oi ) = (Id[0], p,Oi+1),

which is graphically represented by

t1,1

p

1 2 3 k k +
. . .

1 2 3 l+1

. . . Oi =
p

1 2 k − 1k
. . .

1 2 l − 1 l

. . . Oi =
p

1 2 k − 1k
. . .

1 2 l − 1 l

. . . Oi+1.

4.5 A functor fromTRAPs to unitary TRAPs

The unitary TRAP uPGr�(P) satisfies the following universal property:

Proposition 4.26 Let P be a TRAP, Q a unitary TRAP and θ : P −→ Q be a TRAP
morphism. There exists a unique unitary TRAP morphism  : uPGr�(P) −→ Q
extending θ .
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Proof Uniqueness. Let θ be such a morphism. For any G ∈ CGr�(P), we denote by
[G] its class in uPGr�(P). Then

G = shout(G) ·(sol(G)∗ I ∗k′′
)·shin(G),

so

([G]) = shout(G) ·(θ(sol(G))∗ I ∗k′′
Q ) ·shout(G),

which entirely determines .

Existence. Let : CGr�(P) −→ Q be the unique unitary TRAPmorphism such that
(p) = θ(p) for any p ∈ P . Let G,G ′ ∈ CGr�(P), such that G ∼ G ′. Then

G = shout(G) ·(sol(G)∗ I ∗p) ·shin(G),

G ′ = shout(G) ·(sol(G ′)∗ I ∗p) ·shin(G),

and �(sol(G)) = �(sol(G ′)) in P , so

(G) = shout(G) ·((sol(G))∗ I ∗p
Q ) ·shin(G)

= shout(G) ·(θ ◦�(sol(G))∗ I ∗p
Q ) ·shin(G)

= shout(G) ·(θ ◦�(sol(G ′))∗ I ∗p
Q ) ·shin(G)

= shout(G) ·((sol(G ′))∗ I ∗p
Q ) ·shin(G)

= (G ′).

Hence,  induces a unitary TRAP morphism  : uPGr�(P) −→ Q, extending θ .
�

In other words, uPGr� is a functor from the category of TRAPs to the category
of unitary TRAPs, left adjoint of the forgetful functor from the category of unitary
TRAPs to the category of TRAPs. This functor is the functor L of [38, Theorem 12.1]
(with the difference that in [38], one works in the coloured setup). Notice that we have
a more explicit and straightforward construction of this tensor than the one of [38].

5 Compositions, generalised trace and convolution

5.1 Vertical concatenation in a TRAP

In the same way as wheeled PROPs are PROPs and are equipped with a second
associative product [38], TRAPs can be equipped with a natural operation, called the
vertical concatenation. We start with the various TRAPs of graphs we introduced.

LetG andG ′ be two graphs such that o(G) = i(G ′).We define a graphG ′′ = G ′◦G
in the following way:
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V (G ′′) = V (G) � V (G ′),
E(G ′′) = E(G) � E(G ′) � {( f , e) ∈ O(G)× I (G ′) : β( f ) = α′(e)},
I (G ′′) = I (G) � {( f , e) ∈ IO(G)× I (G ′) : β( f ) = α′(e)},
O(G ′′) = O(G) � {( f , e) ∈ O(G)× IO(G ′) : β( f ) = α′(e)},
IO(G ′′) = {( f , e) ∈ IO(G)× IO(G ′) : β( f ) = α′(e)},
L(G ′′) = L(G) � L(G ′).

Its source and target maps are given by

s′′
|E(G) = s|E(G), s′′

|E(G ′) = s′
|E(G ′), s′′

|O(G ′) = s′
|O(G ′), s′′(( f , e)) = s( f ),

t ′′|E(G) = t|E(G), t ′′|E(G ′) = s′
|E(G ′), t ′′|I (G) = s|I (G), s′′(( f , e)) = t ′(e).

The indexations of its input and output edges are given by

α′′
|I (G) = α|I (G), α′′(( f , e)) = α( f ),

β ′′
|O(G ′) = β ′

|O(G ′), β ′′(( f , e)) = β ′(e).

Roughly speaking, G ′◦G is obtained by gluing together the outgoing edges of G and
the incoming edges of G ′ according to their indexation as depicted below.

G ′

1 l

. . .

1 m

. . .

◦ G

1 k

. . .

1 l

. . .

= G

1 k

. . .

G ′

1 m

. . .
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Example 5.1 Here is an example of vertical concatenation:

2 1

1 2 3

◦

2 1 3

1 2 3 4

=

2 1

1 2 3 4

If G and G ′ are corolla ordered (respectively X -decorated) graphs, then G ◦G ′ is
naturally a corolla ordered (respectively X -decorated) graph.This operation◦ is clearly
associative. Moreover, denoting by I the identity graph, for any (k, l) in N

2, for any
graph G with k inputs and l outputs,

I ∗l ◦G = G ◦ I ∗k = G.

The vertical concatenation can be described in terms of the horizontal concatenation
and of the partial trace maps: If G is a graph with k inputs and l outputs, and G ′ a
graph with l inputs and m outputs, then

tk+1,1◦ · · · ◦ tk+l−1,l−1◦ tk+l,l(G ∗G ′) = G ◦G ′,

or, graphically:

G

1 k

. . .

. . .

G ′

1 m

. . .

. . .

= G

1 k

. . .

. . .

G ′

1 m

. . .
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This construction can be generalised from TRAPs of graphs to an arbitrary TRAP:

Definition-Proposition 5.2 Let P be a TRAP. We define a vertical concatenation7 ◦ in
the following way:

for all (k, l,m) ∈ N
3
0, p ∈ P(k, l), q ∈ P(l,m),

q ◦ p ..= tk+1,1◦ · · · ◦ tk+l−1,l−1◦ tk+l,l(p∗q).

This operation is associative: for any (k, l,m, n) in N
4
0, for any (p, q, r) in

P(k, l)× P(l,m)× P(l, n),

r ◦(q ◦ p) = (r ◦q)◦ p. (5.1)

If the TRAP is unitary, then for any (k, l) in N
2
0, for any p in P(k, l), denoting by IP

the unit of P , then

I ∗l
P ◦ p = p◦ I ∗k

P = p.

Proof Recall that in Sect. 4.3 we identified any element p of the decorating set
and the solar graph with one vertex decorated by p (see equation (4.1)). Let
α : solCGr�(P) −→ P be the unique TRAP morphism such that α(p) = p for
any p ∈ P whose existence follows from Theorem 4.14 and more specifically from
the case detailed in Remark 4.15. This is therefore a surjective TRAP morphism. As
α respects the horizontal concatenation and the partial trace maps, for any graphs
G,G ′ ∈ solCGr�(P) such that G ◦G ′ is well-defined, α(G)◦α(G ′) is also well-
defined and

α(G)◦α(G ′) = α(G ◦G ′).

Since the vertical concatenation is clearly associative in solCGr�(P), the vertical
concatenation is associative in P . If P is unitary then again by Theorem 4.14, this
morphism is extended as a unitary TRAP morphism from CGr�(P) to P , which we
also denote by α. For any p ∈ P(k, l), in CGr�(P):

I ∗l ◦ p = p◦ I ∗k = p.

As α(I ) = IP , in P:

α(I ∗l ◦ p) = I ∗l
P ◦ p = p = α(p◦ I ∗k) = p◦ I ∗k

P . 
�

7 When there is a risk of confusion, we will write ◦P for the vertical concatenation of a given TRAP P .
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Remark 5.3 One could also define partial vertical concatenations, where only a subset
of the outputs are glued to the inputs with the partial trace maps, in the spirit of
[38, Paragraph 3.3.3]. We do not pursue this course here since such partial vertical
concatenations will play no role in the rest of the paper.

Example 5.4 Let V be a vector space and let f = θ(v1 . . . vl⊗ f1 . . . fk) ∈
Homfr

V (k, l), g = θ(w1 . . . wm ⊗g1 . . . gl) ∈ Homfr
V (l,m). Then, denoting by • the

vertical concatenation of Homfr
V :

g • f = g1(v1) . . . gl(vl) θ(w1 . . . wm ⊗ f1 . . . fk)

= θ(w1 . . . wm ⊗g1 . . . gl)◦θ(v1 . . . vl ⊗ f1 . . . fk)

= g ◦ f .

Hence, the vertical concatenation induced by the TRAP structure is the usual compo-
sition of linear maps. If V is not finite-dimensional, this composition does not have a
unit, as IdV is not of finite rank.

We end this subsection with a simple yet important proposition.

Proposition 5.5 For any two TRAPs P = (P(k, l))(k,l)∈N2
0
and Q, any TRAP mor-

phism φ = (φ(k, l))(k,l)∈N2
0
: P −→ Q is compatible with the vertical concatenations

of P and Q.

Proof We need to show that for any TRAPs P and Q and any TRAP morphism
φ : P −→ Q as in the statement of the proposition, for any (k, l,m) in N

3
0, p1 in

P(k, l) and p2 in P(l,m) we have

φ(k,m)(p2 ◦P p1) = φ(k, l)(p1)◦Q φ(l,m)(p2).

Using the definition of the vertical concatenation in the TRAP P and the third property
of the Definition 2.7 of morphisms of TRAPs we have

φ(k,m)(p2 ◦P p1) = t Qk+1,1 ◦ · · · ◦ t Qk+l,l [φ(k + l,m + l)(p1∗ p2)]

with t Qi, j the partial trace maps of the TRAP Q. Then using the second property of
Definition 2.7 we obtain

φ(k,m)(p2 ◦P p1) = t Qk+1,1 ◦ · · · ◦ t Qk+l,l [φ(k, l)(p1)∗φ(l,m)(p2)]
= φ(k, l)(p1)◦Q φ(l,m)(p2). 
�

5.2 The generalised trace on a TRAP

If G is a graph with the same number of inputs and outputs, we define its generalised
trace by, roughly speaking, grafting any of its input to the output with the same index:

123



From non-unitary wheeled PROPs to smooth… S455

G

1 k

. . .

1 k

. . .

�−→ G

. . .

. . .

In particular, in CGr�(X), this construction applied to I gives O. This con-
struction preserves solar graphs, corolla ordered graphs and X -decorated graphs.
Moreover, we can describe this construction in terms of the partial trace maps: if
G ∈ solCGr�(X)(k, k), then its generalized trace is

t1,1◦ · · · ◦ tk,k(G) = t1,1◦ · · · ◦ t1,1(G).

These formulas have a meaning for any TRAP:

Definition 5.6 Let P be a TRAP. For any p in P(k, k), with k in N0, the generalised
trace on P is defined as

TrP (p) ..= t1,1◦ · · · ◦ tk,k(p) ∈ P(0, 0).

In the case of the TRAPs solCGr�(X), we shall simply write Tr instead of
TrsolCGr�(X).

Proposition 5.7 Let P be a TRAP.

1. For any (k, l) in N
2
0, for any (p, q) in P(k, l)× P(l, k),

TrP (p◦q) = TrP (q ◦ p),

which justifies the terminology “trace".
2. For any (k, l) in N

2
0, for any (p, q) in P(k, k)× P(l, l),

TrP (p∗q) = TrP (p)∗TrP (q).

Proof Let α : solCGr�(P) −→ P be, as before in the proof of Definition-Proposition
5.2, the uniqueTRAPmorphismwhich extends the identitymap on P . Sinceα respects
the partial trace maps, for any graph G ∈ solCGr�(P)(k, k),

α ◦Tr(G) = TrP ◦α(G).

Let p, q ∈ P(k, k). In solGr�(P), Tr(q ◦ p) and Tr(p◦q) are represented respec-
tively by the graphs
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p

. . .

. . .

q

. . .

q

. . .

. . .

p

. . .

which are the same. Applying α, we obtain TrP (p◦q) = TrP (q ◦ p). Moreover, the
graph Tr(p∗q) is represented by

p

. . .

. . .

q

. . .

. . .

which is also a graphical representation of Tr(p)∗Tr(q). Applying α, we obtain
TrP (p∗q) = TrP (p)∗TrP (q). 
�

Example 5.8 LetV be afinite-dimensional vector space, f = θ(v1 . . . vk ⊗ f1 . . . fk) ∈
Homfr

V (k, k). Identifying HomV (0, 0) with R, we obtain that

TrHomV ( f ) = f1(v1) . . . fk(vk),

which is the usual trace of linear endomorphisms of a finite-dimensional vector space.
If V is not finite-dimensional, TrHomfr

V
is a direct generalisation of this trace for linear

endomorphisms of finite rank.

5.3 Amplitudes and generalised convolutions

By Theorem 4.14 applied to φ = IdP , we know that for any TRAP P there exists a
canonical TRAP map �P : solCGr�(P) −→ P (see Remark 4.15).
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Definition 5.9 Let G be a graph decorated by a TRAP P . The P-amplitude associated
to G is the image of G under �P .

When P = K∞
M is the TRAP of smooth generalised kernels over a smooth finite-

dimensional closed Riemannian manifold M of Sect. 3.3 (that is P(k, l) ..= K∞
M (k, l)

with the r.h.s defined in (3.8)), we simply write � for �P and call �(G) the smooth
amplitudes associated to G ∈ solCGr�(K∞

M ).

Remark 5.10 The terminology P-amplitude is justified in so far as it associates to a
graph an expression in P depending on the ingoing and outgoing edges of the graph
in a similar way as an amplitude associated to a Feynman diagram depends on the
external ingoing and outgoing momenta.

Remark 5.11 If we specialise to spaces E(M)
̂�k

̂⊗E(M)
̂�l which are symmetric in

both sets of input and output variables, then φ can be extended to solGr�(X) (see
Corollary 4.19).

The case of a path graph relates amplitudes to convolutions:

Remark 5.12 Let G be a path graph decorated by X = (K∞
X (k, l))k,l�0, that is to say

a graph such that I (G) = O(G) = [1], IO(G) = L(G) = ∅, V (G) = {v1, . . . , vn},
E(G) = {e1, . . . , en−1} and the source and target maps defined by

sG(1) = vn, tG(1) = v1,

for all i ∈ [n − 1], sG(ei ) = vi , tG(ei ) = vi+1.

Here is a graphical representation of this graph

1 v1 . . . vn 1.

Let Pi , i = 1, . . . , n, be smoothing pseudo-differential operator each of which is
defined by the kernel Ki that decorates the vertex vi . Then the generalised convolution
associated to the graph G is the convolution K1 � · · · �Kn of the kernels K1, . . . , Kn ,
which is the kernel of the smoothing pseudo-differential operator P1 ◦ · · · ◦ Pn . In this
sense, P-amplitudes can be seen as a generalisation of the convolution of multiple
smooth kernels.

Proposition 5.13 For any TRAP P, the P-amplitude associated to a horizontal con-
catenation of graphs is the horizontal concatenation of their P-amplitudes: for any
G1,G2 ∈ solCGr�(P),

�P (G1 ∗G2) = �P (G1)∗�P (G2),

and the same holds for the vertical concatenation: if G1 ◦G2 exists, then

�P (G1 ◦G2) = �P (G1)◦P �P (G2)

with ◦P the vertical concatenation of P.
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Proof This follows directly from the fact that �P is a TRAP morphism and from
Proposition 5.5. 
�
For any TRAP P , let ιP : P↪→solCGr�(P) be the canonical embedding of P into
the TRAP of P-decorated graphs that is, ιP (p) is the solar graph with only one vertex
decorated by p. We have the following simple yet useful lemma.

Lemma 5.14 For any TRAP P the following diagram commutes:

P× P

◦P

solCGr�(P)×solCGr�(P)

◦

P solCGr�(P)
�P

with ◦p the vertical concatenation of the TRAP P, the top arrow given by ιP× ιP and
the obvious abuse of notation that vertical concatenations, if seen as maps, are not
defined on the whole of their domains.

In words, the vertical concatenation of two elements p1 and p2 of P is the P-
amplitude associated with the graph given by the vertical concatenation of two graphs
with exactly one vertex, each decorated by one pi . Graphically, if p ∈ P(k, l) and
q ∈ P(l,m):

�P

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p

1 k

. . .

q

1 m

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= �P (p)◦P �P (q).

Proof Let P be a TRAP. Then for any p1, p2 in P such that p1 ◦P p2 is well defined,
ιP (p1)◦ ιP (p2) is well-defined since ιP respects the gradings and we have

�P (ιP (p1)◦ ιP (p2)) = �P (ιP (p1))◦P �(ιP (p2)) by Proposition 5.13

= p1 ◦P p2

since for any TRAP P , �P ◦ ιP = IdP by definition of �P (equation (4.3) with k = 1
and φ = IdP ). 
�
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Remark 5.15 Note that the vertical concatenation is not the same as the P-amplitude:
the latter has a much larger domain.

Applying the above constructions to the TRAP of smooth kernels described in
Theorem 3.22, whose partial traces (3.9) are given by integrations on the underlying
manifold, easily yields the following statement.We use the notations of Paragraph 3.3:
M is a smooth, finite-dimensional orientable closed manifold and μ(z) is a volume
form on M .

Theorem 5.16 For the TRAP (K∞
M (k, l))k,l�0, the following statements hold:

1. The vertical concatenation of two kernels corresponds to their generalised convo-
lution:

for all (k, l,m) ∈ N
3
0, K1 ∈ K∞

M (k, l), K2 ∈ K∞
M (l,m),

(x1, . . . , xk, z1, . . . , zm) ∈ Mk+m,

K2 ◦K1(x1, . . . , xk, z1, . . . , zm)

= tk+1,1 ◦ · · · ◦ tk+l−1,l−1 ◦ tk+l,l(K1⊗K2)(x1, . . . , xk, z1, . . . , zm)

=
∫

Ml
K1(x1, . . . , xk, y1, . . . , yl) K2(y1, . . . , yl , z1, . . . , zm) dμ(y1) · · · dμ(yl),

obtained by integrating along the diagonal Δl
M

..= {(y1, . . . , yl , y1, . . . , yl), yi ∈
M} ⊂ M2l .

2. The associativity property K3 ◦(K2 ◦K1) = (K3 ◦K2)◦K1 (cf. (5.1)) for any
K3 ∈ K∞

M (m, n), amounts to the Fubini property for the corresponding multiple
integrals:

∫

Mm

(∫

Ml
K1(�x, �y1)K2(�y1, �y2) d �μ(�y1)

)

K3(�y2, �z)d �μ(�y2)

=
∫

Ml
K1(�x, �y1)

(∫

Mm
K2(�y1, �y2)K3(�y2, �z) d �μ(�y2)

)

d �μ(�y1)
(5.2)

for any �x ∈ Mk and �z ∈ Mn, where we use the short-hand notations d �μ(�yi ) ..=
dμ(y1) · · · dμ(yli ).

3. The generalised trace of a generalised kernel K= K1⊗K2 ∈ K∞
M (k, k) is given

by the integral along the small diagonal of Mk:

TrK∞(K ) =
∫

Mk
K (x1, . . . , xk, x1, . . . , xk) dμ(x1) · · · dμ(xk) (5.3)

where we have set K (�x, �y) ..= K1(�x)K2(�y) and obeys the following cyclicity
property:

TrK∞(˜K ◦K ) = TrK∞(K ◦ ˜K )

for K ∈ K∞
M (k, l) and ˜K ∈ K∞

M (l, k).
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4. TheK∞
M-amplitude is compatible with the horizontal and vertical concatenations

in K∞
M .

Proof We prove the assertions one-by-one.

1. The vertical concatenation ◦ of Definition-Proposition 5.2 applied to the TRAPK∞
M

of smooth kernel of Theorem 3.22 gives the generalised convolution..

2. As proved in Definition-Proposition 5.2, the vertical concatenation ◦ of any
TRAP is associative. Writing the explicit expression of each side of the equation
K1 ◦(K2◦K3) = (K1 ◦K2)◦K3 for the vertical concatenation of the TRAP K∞

M
shows that the identity amounts to the Fubini property for multiple integrals as given
by equation (5.2).

3. By Eq. (3.8), for any K in K∞
M (k, k), we can write K = K1⊗K2 with K1 and K2

in E
̂⊗k . The generalised trace of Definition 5.6 for the TRAP K∞

M of smooth kernel
of Theorem 3.22 combined with the partial traces of this TRAP given by equation
(3.9) yields equation (5.3). The cyclicity property of TrK∞ follows from the cyclicity
property of generalised traces (Proposition 5.7, item 1).

4. This follows from Proposition 5.13 applied to the generalised amplitude of Defini-
tion 5.9 for the TRAP K∞

M of smooth kernel discussed in Theorem 3.22. 
�

6 Categorical interpretation

WedescribeTRAPs andunitaryTRAPs as algebras over an endofunctor of the category
of S×Sop-modules, thus extending known results of [38] on the categorial aspects
of wheeled PROPs.

6.1 Two endofunctors in the category ofS×Sop-modules

We consider graphs decorated by a S×Sop-module X = (X(k, l))k,l�0 and use
the action of the symmetric groups on the vertices of Definition 4.17 to define an
endofunctor ��.

Definition 6.1 We define a relation on CGr�(X)(k, l) by (G, dG)Rk,l(G ′, dG ′) for
(G, dG) and (G ′, dG ′) if there exists a vertex v of G and permutations σ ∈ So(v),
τ ∈ Si(v) such that

σ ·v (G, dG) ·v τ=(G, dσ,v,τ
G )

with

dσ,v,τ
G (v′) =

{

dG(v′) for v′ �= v,

σ ·dG(v) ·τ otherwise.
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We denote by ∼k,l the transitive closure of Rk,l which defines an equivalence. We
further define

��(X)(k, l) ..= CGr�(X)(k, l)

∼k,l
, sol��(X)(k, l) ..= solCGr�(X)(k, l)

∼k,l
.

We further write ��(X) ..= (��(X)(k, l))k,l�0 and sol��(X) ..= (sol��(X)

(k, l))k,l�0.

Here is the type of relations we obtain graphically:

x

y

1 2 3

1 2

∼
(12) · x

y

1 2 3

1 2

∼
x

y ·(12)

1 2 3

1 2

∼
(12) · x

y ·(12)

1 2 3

1 2

,

x ·(12)

y

1 2 3

1 2

∼
x

y

2 1 3

1 2

,

x

(12) · y

1 2 3

1 2

∼
x

y

1 2 3

2 1

,

where x ∈ X3,2 and y ∈ X2,2.

It is easy to show that the family of equivalences (∼k,l)k,l�0 is compatible with
the action of S×Sop, the partial trace maps and the horizontal concatenation in the
sense of Lemma 2.10. The subsequent useful statement follows from Lemma 2.10.

Lemma 6.2 Let X be aS×Sop-module. ��(X) is a unitary TRAP and sol��(X) is
a TRAP.

Proof By Corollary 4.12, CGr�(X) is a TRAP, and it is easy to see that the family
(∼k,l)(k,l)∈N2

0
satisfies the conditions of Lemma 2.10. Hence, ��(X) is a TRAP. The

proof is similar for sol��(X). 
�
Proposition 6.3 Let X be a S×Sop-module, P be a TRAP and φ : X −→ P be a
morphism ofS×Sop-modules. There exists a unique extensionφ to a TRAPmorphism
� : sol��(X) −→ P. If moreover P is unitary, this morphism extends to ��(X).

Proof We know from Theorem 4.14 that solCGr�(X) is the free TRAP generated
by the set X . Hence, φ is extended as a TRAP morphism � : solCGr�(X) −→ P .
Let G, H ∈ solCGr�(X)(k, l), with (k, l) ∈ N

2
0. If GRk,l H , then, as φ is com-

patible with the actions of the symmetric groups, �(G) = �(H). By transitive
closure, if G ∼k,l H , then �(G) = �(H). Consequently, � induces a TRAP mor-
phism � : sol��(X) −→ P , which extends φ. It is obviously unique, as X generates
sol��(X). The proof is similar for ��(X). 
�
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In other words, sol��(X) is the free TRAP generated by the S×Sop-module X
and ��(X) is the free unitary TRAP generated by the S×Sop-module X .

Example 6.4 If X is a trivial S×Sop-module, then ��(X) = Gr�(X) and
sol��(X) = solGr�(X) as TRAPs. More generally, choosing for any graph G
a corolla ordered graph G which underlying graph is G, we can prove that for
any (k, l) inN

2
0, the sets ��(X)(k, l) and Gr�(X)(k, l) are in bijection, as well as

sol��(X)(k, l) and solGr�(X)(k, l) (but not in a canonical way), through the map
sending the equivalence class of G to G.

The correspondence P → ��(P) defined above induces an endofunctor in the cate-
gory ModS of S×Sop-modules which we now introduce.

Definition 6.5 Let ModS denote the category of S×Sop-modules: its objects are
families X = (X(k, l))k,l�0, such that for any (k, l) in N

2
0, X(k, l) is a Sl ×S

op
k -

module; a morphism φ : X −→ Y is a family (φ(k, l))k,l�0, where for any (k, l) in
N
2
0, φ(k, l) : X(k, l) −→ Y (k, l) is a morphism of Sl×S

op
k -modules.

By the functoriality of post-composition of morphisms of S×Sop-modules, we
obtain:

Definition-Proposition 6.6 Wedefine two endofunctors�� and sol�� on the category
ModS as follows. Both are defined on objects as in Definition 6.1. For a morphism
φ : X −→ Y of S×Sop-modules, the morphisms ��(φ) : ��(X) −→ ��(Y )

and sol��(φ) : sol��(X) −→ sol��(Y ) are defined by post-composing φ with the
decoration map of Definition 4.8. That is, for (G, dG) ∈ CGr�(X) and (H , dH ) ∈
solCGr�(X), we have

��(φ)(G, dG) = (G, φ ◦dG), sol��(φ)(H , dH ) = (H , φ ◦dH ).

Proof We need to prove that �� and sol�� are indeed functors. Let X and Y be
two S×Sop-modules and ϕ : X −→ Y a morphism of S×Sop-modules and let
solCGr�(ϕ) : solCGr�(X) −→ solCGr�(Y ) be its pullback, defined by

solCGr�(ϕ)(G, dG) ..= (G, ϕ ◦dG) (6.1)

for any G ∈ solCGr�(X). It is easy to check that the induced morphism
sol��(ϕ) : sol��(P) −→ sol��(Q) is indeed a morphism of S×Sop-modules,
turning sol�� into an endofunctor ofModS. The proof is similar for ��. 
�

6.2 Monad of graphs

We now endow the functor �� with a monad structure.
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We first recall basic definitions of category theory. In particular, for two functors
F,G : C −→ D, a natural transformation η : F −→ G between these two functors is
given by maps ηX : F(X) �−→ G(X) for each object X of C such that for any pair of
objects X ,Y ∈ Obj(C) and morphism f : X �−→ Y ∈ Mor(C) the following diagram
commutes:

F(X)
F( f )

ηX

F(Y )

ηY

G(X)
G( f )

G(Y ).

(6.2)

Let us now introduce the structure of monad, a terminology we borrow from [25]. A
monad is the categorical equivalent of monoids.

Definition 6.7 Amonad (also called a triple) on a categoryC is given by an endofunctor
� ∈ End(C) and two natural transformations μ : � ◦� −→ � and ν : IdC −→ �

which form an associative and unital monoid (�, μ, ν) in the unital monoid8 End(C)

of endofunctors of C. This means that the multiplication μ : � ◦� −→ � and the unit
morphism ν : IdC −→ � should satisfy the axioms given by commutativity of the
diagrams below for any object P of the category C.

� ◦� ◦�(P)
�(μP )

μ�(P)

� ◦�(P)

μP

� ◦�(P)
μP

�(P)

�(P)
�(νP )

IdC

� ◦�(P)

μP

�(P)
ν�(P)

IdC

�(P)

(6.3)

We now recall the notion of �-algebra (see for example [27, Definition 2.1.4]).

Definition 6.8 Let C be a category. An algebra over a monad � ∈ End(C) or a �-
algebra is an object P of C together with a structure morphism α : �(P) → P such
that the following diagrams commute:

� ◦�(P)
�(α)

μPμP

�(P)

α

�(P)
α

P

P
νP

Id

�(P)

α

P

(6.4)

8 The terminology monoid is used in this definition with an obvious abuse of vocabulary since � and
End(C) are not necessarily sets.
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Let (P, α) and (Q, β) be two algebras over a fixed monad �. A morphism of �-
algebras from P to Q is a morphism φ : P −→ Q in the category C such that the
following diagram commutes:

�(P)

�(φ)

α
P

φ

�(Q)
β

Q.

(6.5)

We now define the natural transformations ν and μ in the case C = ModS and
� = ��. In this case, for any S×Sop-module P , elements of �� ◦��(P) are
graphs G whose vertices v are decorated by graphs Gv , consistently with the number
of incoming and outgoing edges.

Definition 6.9 1. For any S×Sop-module P , let ηP : P −→ ��(P) be the mor-
phism of S×Sop-modules which sends an element p ∈ P(k, l) to the class of
the graph G(k, l)(p) with one vertex v decorated by p, k incoming edges indexed
from left to right by 1, . . . , k and l outgoing edges indexed from left to right by
1, . . . , l.

2. For any S×Sop-module P , let μP : �� ◦��(P) −→ ��(P) be the morphism
S×Sop-modules which sends a graphG ∈ �� ◦��(P) to the graph H ∈ ��(P)

with V (H) = ⊔

v∈V (G) V (Gv) and whose edges are obtained by identifying, for
any vertex v, the i-th incoming edges of v with the i-th incoming edge of Gv , and
the j-th outgoing edge of v with the j-th outgoing edge of Gv .

In simpler words, the map ηP sends an element p ∈ P to the graph with one vertex,
which is decorated by p and has the same numbers of input and output edges as p has
inputs and outputs. In picture:

νP (p) = p

1 . . . k

1 . . . l

.

Furthermore, the map μP replaces vertices decorated by graphs (G, dG) by (dec-
orated) subgraphs. These subgraphs are exactly the graphs that were decorating the
vertices of the original graph. To illustrate this graphically, we give an example in
which μP sends the graph on the left to the graph on the right:
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p

1 2

1 2 3

2 1

2 3 1 4

1 2

q

r

1 2 3

μP�−→

p

2 1

2 3 1 4

q

r

where p ∈ P(2, 3), q ∈ P(2, 2) and r ∈ P(2, 3).
The families of morphisms ηP and μP define two natural transformations and we

further obtain:

Proposition 6.10 The triple �� = (��, μ, ν) is a monad in the category ModS.
Moreover, sol�� = (sol��, μ|sol��, ν) is a sub-monad of ��.

Proof The associativity of μ is graphically immediate, as well as the fact that ν is a
unit. The functor ν takes its values in sol�� and the composition of solar graphs is a
solar graph, so sol�� is a submonad of ��. 
�

6.3 TRAPs versus wheeled PROPs

We can now state the main result of this section, which relates TRAPs and various
known objects.

Theorem 6.11 The categories of ��-algebras and of unitary TRAPs are isomorphic.
Similarly, the categories of sol��-algebras and of TRAPs are isomorphic.

Remark 6.12 Wheeled PROPs are defined (for example in [27]) as ��-algebras. Thus
Theorem 6.11 precisely says that wheeled PROPs and unitary TRAPs coincide, and
that TRAPs can be viewed as non-unitary wheeled PROPs.
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Proof Let us start with the non-unitary case.
From Proposition 6.3, we know that sol��(P) is the free TRAP generated

by the S×Sop-module P . If P is a TRAP, then the canonical TRAP morphism
αP : sol��(P) −→ P of Proposition 6.3 makes it a sol��-algebra. Furthermore,
since sol�� is a functor by Definition-Proposition 6.6, for any TRAP morphism
φ : P −→ Q we have the existence of sol��(φ) : sol��(P) −→ sol��(Q). Then
by construction φ ◦αP = αQ ◦sol��(φ)|P . By unicity of the lift of φ ◦αP given by
Theorem 4.14 we obtain φ ◦αP = αQ ◦sol��(φ)|P , that is that diagram (6.5) com-
mutes. Thus we have defined a functor from the category of TRAPs to the category of
sol��-algebras.

Conversely, if (P, α) is a sol��-algebra:

• For any (p, p′) ∈ P(k, l)× P(k′, l ′),we define p∗ p′ by applying α to the follow-
ing graph:

p

1 . . . k

1 . . . l

p′

k + 1 . . . k + k′

l + 1 . . . l + l ′

• For any p ∈ P(k, l), for any (i, j) ∈ [k]×[l], we define ti, j (p) by the application
of α to the following graph:

p

1

. . .

i − 1 i

. . .

k − 1

1

. . .

j − 1 j

. . .

l − 1

Let us prove some of the axioms of TRAPs for P . The others can be proved in the
same way and are left to the reader.

1. holds by the functoriality of sol��.

2.(a): let (p, p′, p′′) ∈ P(k, l)× P(k′, l ′)× P(k′′, l ′′). Then (p∗ p′)∗ p′′ is obtained
by the application of αP to the graph

p ∗ p′

. . .

. . .

p′′

. . .

. . .
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(For the sake of simplicity, we delete the indices of the input and output edges of this
graph: they are always indexed from left to right). Hence, (p∗ p′)∗ p′′ is obtained by
application of α ◦��(α) to the graph

p

. . .

. . .

p′

. . .

. . .

p′′

. . .

. . .

. . .

. . .

. . .

. . .

Note that for the second connected component of this graph, this comes from

α ◦��(α)◦��(νP )(p′′) = α ◦��(α ◦νP )(p′′) = α ◦��(IdP )(p′′) = α(p′′).

As α ◦��(α) = α ◦μP , (p∗ p′)∗ p′′ is obtained by applying α to the graph

p

. . .

. . .

p′

. . .

. . .

p′′

. . .

. . .

The same computation canbe carried out for p∗ (p′∗ p′′), which gives the associativity
of ∗.
2.(b): the unity I0 of the concatenation product of graph is the empty graph, which is
the image of the unity of P for the horizontal concatenation under α.

2.(c) holds trivially by definition of the horizontal concatenation product on P , the
S×Sop-module structure of P , and the fact that solCGr�(X) is a TRAP.

3.(c): for any k, l, k′, l ′ � 1, for any i ∈ [k], j ∈ [l], for any p ∈ P(k, l), p′ ∈ P(k′, l ′),
ti, j (p∗ p′) is the image under αP of the graph

p

1

. . .

i − 1 i

. . .

k − 1

1

. . .

j − 1 j

. . .

l − 1

p′

k

. . .

k + k′ − 1

l

. . .

l + l′ − 1

(6.6)
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On the other hand, ti, j (p)∗ p′ is the image under αP of the graph

α( p̃)

1

. . .

k − 1

1

. . .

l − 1

p′

k

. . .

k + k′ − 1

l

. . .

l + l′ − 1

(6.7)

with p̃ the image under αP of the graph

p

1

. . .

i − 1 i

. . .

k − 1

1

. . .

j − 1 j

. . .

l − 1

The images of the graphs (6.6) and (6.7) under αP are identical by the commutativity
of the first diagram of (6.4). The case l + 1 � j � l + l ′ and k + 1 � i � k + k′ holds
by the same argument.

Let us now focus on the unitary case.
First if P is a unitary TRAP, then by Theorem 4.14, (P, μP ) is a ��-algebra with

exactly the same argument as in the non-unitary case.
Conversely, let (P, αP ) be a ��-algebra. We then set

I ..= αP (I1)

where I1 is the graph with only one input-output edge.
Let p ∈ P(k, l) and 2 � j � l + 1. Then t1, j (I ∗ p) is obtained by applying

α ◦��(α) to the graph:

p

. . .

. . .

. . .

. . . . . .
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where the curved edge relate the first edge at the bottom to the j-th edge on the top.
As α ◦��(α) = α ◦μP , t1, j (I ∗ p) is obtained by application of α to the graph:

p

. . .

. . . . . .

where the curved edge relate the first edge on the bottom to the j-th edge on the top
(note that this edge is also the ( j − 1)-th outgoing the vertex decorated by p). As α is
a S×Sop-morphism, we obtain that this is (1, . . . , j − 1) ·α ◦νP (p), that is to say
(1, . . . , j − 1) · p.

In this way, we define a functor from the category of sol��-algebras to the category
of TRAPs. In the same way, we define a functor from the category of ��-algebras to
the category of unitary TRAPs.

We obtain in this way two functors

F : TRAP −→ Alg(sol��), G : Alg(sol��) −→ TRAP.

Let P be a TRAP and P ′ the TRAP G◦F(P), with concatenation ∗′ and trace oper-
ators t ′i, j . We set F(P) ..= (P, αP ): in other words, αP is the TRAP morphism from

sol��(P) to P which is the identity on P . For any p, q ∈ P:

p∗′ q = αP (νP (p)∗νP (q)) = p∗q,

where in the middle term ∗ is the concatenation in the TRAP sol��(P) and where
we used that αP is a TRAP morphism by Proposition 6.3. Therefore, ∗ = ∗′. If
p ∈ P(k, l), (i, j) ∈ [k]×[l], then t ′i, j is obtained by the application of αP to the
graph:

p

1

. . .

i − 1 i

. . .

k − 1

1

. . .

j − 1 j

. . .

l − 1

which is ti, j (νP (p)), where here ti, j is the trace operator of sol��(P). As αP is a
TRAP morphism:

t ′i, j (p) = αP ◦ ti, j ◦νP (p) = ti, j ◦αP ◦νP (p) = ti, j (p),
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so P ′ = P and G◦F is the identity functor of TRAP.
Let now (P, α) be a sol��-algebra and (P ′, α′) be the sol��-algebra F◦G(P).

Both α and α′ are TRAP morphisms from sol��(P) to G(P); for any p ∈ P ,

α ◦νP (p) = α′◦νP (p) = p.

Since sol��(P) viewed as a TRAP is generated by the elements νP (p), α = α′, it
follows that F◦G is the identity functor of Alg(sol��).

The proof is similar in the unitary case. 
�
Remark 6.12 gives a straightforward corollary of Theorems 6.11 and 4.14, thus

confirming previous statements.

Corollary 6.13 CGr�(X) is the free wheeled PROP generated by X.

Remark 6.14 The monad �� contains an interesting sub-monad, formed by graphs
without any oriented cycle (which includes also loops). This submonad is denoted by
�↑. It is well-known that �↑ is the monad of PROPs [26]. Hence, unitary TRAPs are
PROPS. In particular, a unitary TRAP P inherits a vertical composition denoted by ◦,
which is the one described in Definition-Proposition 5.2 in the more general frame of
(non-unitary) TRAPs.

Appendix 1: Topologies on tensor products

Tensor products ot topological spaces can be equipped with various topologies. A
first possibility is the so-called ε-topology; [35, Definition 43.1]. For two topological
vector spaces E and F , one can show [35, Proposition 42.4] the isomorphism of
vector spaces E⊗F ∼= Bc(E ′

σ ×F ′
σ , K) where Bc(E ′

σ ×F ′
σ , K) denotes the space of

continuous bilinearmaps from E ′
σ ×F ′

σ toK and E ′
σ (respectively, F ′

σ ) the topological
dual of E (respectively, F) for σ , the weak topology.

Recall that a bilinear map f : E×F −→ K is called separately continuous if, for
any pair (x, y) ∈ E×F , the maps z �−→ f (x, z) and z �−→ f (z, y) are continuous.
We then clearly have that continuous bilinear maps build a linear subspace of the space
Bsc(E×F, K) of separately continuous bilinear maps.

The space Bsc(E×F, K) can be equipped with the topology of uniform conver-
gence on products of equicontinuous subsets of E ′

σ with equicontinuous subsets of
F ′

σ . Recall that, for a topological space X and a topological vector space G, a set
S of maps from X to G is said to be equicontinuous at x0 ∈ X if, for any V ⊆ G
neighbourhood of zero, there is some neighbourhood V (x0) ⊆ X of x0, such that

for all f ∈ S, x ∈ V (x0) ⇒ f (x) − f (x0) ∈ V .

In our case,G isK and X is Eσ (respectively, Fσ ). This topology induces a topology on
the subspaceBc(E ′

σ ×F ′
σ , K) and thus on E⊗ F .Wedenote by E⊗ε F the topological

vector space obtained by endowing E⊗F with this topology.
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There is another topology on E⊗F called the projective topology; [35, Definition
43.2]. The projective topology is defined as the strongest locally convex topology on
E⊗F such that the canonical map φ : E×F −→ E⊗F is continuous. We write
E⊗π F the topological vector space obtained by endowing E⊗F with this topology.

The neighbourhoods of zero of the projective topology can be simply described in
terms of neighbourhoods of zero in E and V . A convex subset S of E⊗F containing
zero is a neighbourhood of zero if it exist a neighbourhoodU (respectively, V) of zero
in E (respectively, F) such that U ⊗V ..= {u⊗v | u ∈ U ∧v ∈ V } ⊆ S.

Various topologies can be defined on the vector space E⊗F for E and F two
topological vector spaces. However the projective topology and the ε-topology play
an important special role since they allow to define nuclear spaces (see Definition 3.7).

Appendix 2: Definition of the partial tracemaps on Gr�

We give a rigorous definition of the partial trace maps on the space of graphs Gr�,
which were only loosely defined in the bulk of the article.

Let G ∈ Gr�(k, l) with k, l � 1, i ∈ [k] and j ∈ [l]. We put ei = α−1
G (i) and

f j = β−1
G ( j). We define the graph G ′ = ti, j (G) in the following way:

1. If ei ∈ I (G) and f j ∈ O(G), then

V (G ′) = V (G), E(G ′) = E(G) � {(ei , f j )},
I (G ′) = I (G)\{ei }, O(G ′) = O(G)\{ f j },

IO(G ′) = IO(G), L(G ′) = L(G),

sG ′(e) =
{

sG( f j ) if e = (ei , f j ),

sG(e) otherwise,
tG ′(e) =

{

tG(ei ) if e = (ei , f j ),

tG(e) otherwise,

αG ′(e) =
{

αG(e) if αG(e) < i,

αG(e) − 1 if αG(e) � i,
βG ′(e) =

{

βG(e) if βG(e) < j,

βG(e) − 1 if βG(e) � j .

2. If ei ∈ IO(G) and f j ∈ O(G), then

V (G ′) = V (G), E(G ′) = E(G),

I (G ′) = I (G), O(G ′) = O(G)\{ f j } � {(ei , f j )},
IO(G ′) = IO(G)\{ei }, L(G ′) = L(G),

sG ′(e) =
{

sG( f j ) if e = (ei , f j ),

sG(e) otherwise,
tG ′(e) = tG(e),

αG ′(e) =
{

αG(e) if αG(e) < i,

αG(e) − 1 if αG(e) � i,
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βG ′(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

βG(ei ) if e = (ei , f j ) and βG(ei ) < j,

βG(ei ) − 1 if e = (ei , f j ) and βG(ei ) � j,

βG(e) if e �= (ei , f j ) and βG(e) < j,

βG(e) − 1 if e �= (ei , f j ) and βG(e) � j .

3. If ei ∈ I (G) and f j ∈ IO(G), then

V (G ′) = V (G), E(G ′) = E(G),

I (G ′) = I (G)\{ei } � {(ei , f j )}, O(G ′) = O(G),

IO(G ′) = IO(G)\{ f j }, L(G ′) = L(G),

sG ′(e) = sG(e),

tG ′(e) =
{

tG(ei ) if e = (ei , f j ),

tG(e) otherwise,

αG ′(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

αG( fi ) if e = (ei , f j ) and αG( f j ) < i,

αG( fi ) − 1 if e = (ei , f j ) and αG( f j ) � i,

αG(e) if e �= (ei , f j ) and αG(e) < i,

αG(e) − 1 if e �= (ei , f j ) and αG(e) � i,

βG ′(e) =
{

βG(e) if βG(e) < j,

βG(e) − 1 if βG(e) � j .

4. If ei ∈ IO(G), f j ∈ IO(G) and ei �= f j , then

V (G ′) = V (G), E(G ′) = E(G),

I (G ′) = I (G), O(G ′) = O(G),

IO(G ′) = {(ei , f j )} � IO(G)\{ei , f j }, L(G ′) = L(G),

sG ′(e) = sG(e), tG ′(e) = tG(e),

αG ′(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

αG( fi ) if e = (ei , f j ) and αG( f j ) < i,

αG( fi ) − 1 if e = (ei , f j ) and αG( f j ) � i,

αG(e) if e �= (ei , f j ) and αG(e) < i,

βG(e) − 1 if e �= (ei , f j ) and αG(e) � i,

βG ′(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

βG(ei ) if e = (ei , f j ) and βG(ei ) < j,

βG(ei ) − 1 if e = (ei , f j ) and βG(ei ) � j,

βG(e) if e �= (ei , f j ) and βG(e) < j,

βG(e) − 1 if e �= (ei , f j ) and βG(e) � j .

5. If ei ∈ IO(G), f j ∈ IO(G) and ei = f j , then:

V (G ′) = V (G), E(G ′) = E(G),
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I (G ′) = I (G), O(G ′) = O(G),

IO(G ′) = IO(G)\{ei , f j }, L(G ′) = L(G) � {(ei , f j )},
sG ′(e) = sG(e), tG ′(e) = tG(e),

αG ′(e) =
{

αG(e) if αG(e) < i,

αG(e) − 1 if αG(e) � i,

βG ′(e) =
{

βG(e) if βG(e) < j,

βG(e) − 1 if βG(e) � j .

Appendix 3: Freeness of CGr�(X)

We now give a detailed proof of Theorem 4.14. We simultaneously prove the unitary
and non-unitary cases. Let P be a TRAP or a unitary TRAP and let φ : X −→ P be
a map.

Let us first prove the existence of �. We define � : CGr�(X) −→ P by assigning
to any graphG ∈ CGr�(X)(k, l), orG ∈ solCGr�(X)(k, l) for the non-unitary case,
an element �(G) ∈ P(k, l). We proceed by induction on the number N of internal
edges of G. If N = 0, then G can be written (non-uniquely) as

G = O∗p∗σ ·(I ∗q ∗G1 ∗ · · · ∗Gr ) ·τ, (6.1)

where p, q, r in N0 are unique, (ki , li ) in N
2
0 for any i , unique up to a permutation,

σ in Sq+k1+···+kr , τ ∈ Sq+l1+...+lr and Gi ∈ X(ki , li ) for any i . Note that in the
non-unitary case we necessarily have p = q = 0, and we have set in this case
H∗0 = I0 = ∅, the empty graph, for any graph H . We then put

�(G) = t1,1(I )
∗p∗σ ·(I ∗q ∗φk1,l1(G1)∗ · · · ∗φkr ,lr (Gr )) ·τ,

where as before x∗0 = I0 (the unit for horizontal concatenation in the image P of �)
for any x ∈ P; and I is now the unit of P in the unitary case.

Let us assume now that �(G ′) is defined for any graph with N − 1 internal edges,
for a given N � 1. Let G be a graph with N internal edges and let e be one of these
edges. Let Ge be a graph obtained by cutting this edge in two:

• V (Ge) = V (G).
• E(Ge) = E(G)\{e}, I (Ge) = I (G) � {e}, O(Ge) = O(G) � {e}, IO(Ge) =
IO(G), L(Ge) = L(G).

• sGe = sG and tGe = tG .
• For any e′ ∈ I (Ge) � IO(Ge), for any f ′ ∈ O(Ge) � IO(Ge):

αGe (e
′) =

{

1 if e′ = e,

αG(e′) + 1 if e′ �= e,
βGe ( f

′) =
{

1 if f ′ = e,

βG( f ′) + 1 if f ′ �= e.
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Notice that if G ∈ solCGr�(X) (that is IO(G) = L(G) = ∅) then Ge also lies
in solCGr�(X). Then, as before, we can treat the unitary and non-unitary cases
simultaneously. In both cases we have G = t1,1(Ge) and Ge has N −1 internal edges.
We then put

�(G) = t1,1◦�(Ge). (6.2)

Lemma 9.1 The map � is well-defined. Moreover, for any ∈ solCGr�(X)(k, l) or in
CGr�(X)(k, l), with (k, l) ∈ N

2
0, for any σ ∈ Sl , for any τ ∈ Sk ,

�(σ ·G ·τ) = σ ·�(G) ·τ.

Proof We proceed by induction on the number N of internal vertices. For N = 0, we
have to show that �(G) does not depend on the choice of the decomposition (6.1) of
G. Such a decomposition is determined modulo a permutation of the vertices and of
the choice of σ and τ . Thus, we can go from one decomposition of G to any other one
by means of a finite-number of steps among the following two types:

1. We consider two decompositions of G of the form

G = O∗p∗σ · (I ∗q ∗G1 ∗ · · · ∗Gi ∗Gi+1∗ · · · ∗Gr ) ·τ,
G = O∗p ∗σ ′ ·(I ∗q ∗G1∗ · · · ∗Gi+1∗Gi ∗ · · · ∗Gr ) ·τ ′,

with

σ ′ = σ(Idq+l1+···+li−1 ⊗cli ,li+1⊗ Idli+2+···+lr ),

τ ′ = (Idq+k1+···+ki−1 ⊗cki+1,ki ⊗ Idki+2+···+kr ) τ.

Then, by commutativity of ∗:

σ ′ ·(I ∗q ∗φ(G1)∗ · · · ∗φ(Gr )) ·τ ′

= σ ·(I ∗q ∗φ(G1)∗ · · · ∗cli ,li+1 ·(φ(Gi+1)∗φ(Gi )) ·cki+1,ki ∗ · · · ∗φ(Gr )) ·τ
= σ ·(I ∗q ∗φ(G1)∗ · · · ∗φ(Gi )∗φ(Gi+1)∗ · · · ∗φ(Gr )) ·τ.

2. We consider two decompositions of G of the form

G = O∗p ∗σ ·(I ∗q ∗G1 ∗ · · · ∗Gr ) ·τ,
G = O∗p ∗σ ′ ·(I ∗q ∗G1 ∗ · · · ∗Gr ) ·τ ′,

with

σ ′ = σ(σ0⊗σ1⊗ · · · ⊗σr ), τ ′ = (σ−1
0 ⊗τ1⊗ · · · ⊗τr ) τ,
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with σ0 ∈ Sq , σi ∈ Ski and τi ∈ Sli if i � 1. Using the commutativity of ∗ and
the invariance of the xk,l , we find

σ ′ ·(I ∗q ∗φ(G1)∗ . . . ∗φ(Gr )) ·τ ′

= σ ·(σ0 · I ∗q ·σ−1
0 ∗σ1 ·φ(G1) ·τ1 ∗ · · · ∗σr ·φ(Gr ) ·τr ) ·τ

= σ ·(I ∗q ∗φ(G1)∗ . . . ∗φ(Gr )) ·τ.

Notice that setting p = q = 0 in these computations does not change the result.
Hence,�(G) is well-defined. Moreover, for any τ ′ ∈ Sk , σ ′ ∈ Sl , a decomposition

of G of the form

G = O∗p∗σ ·(I ∗q ∗G1∗ · · · ∗Gr ) ·τ,

give rise to a decomposition of G ′ = σ ′ ·G ·τ ′ given by

O∗p∗σ ′σ ·(I ∗q ∗G1∗ · · · ∗Gr ) ·ττ ′,

and, by definition of �(G ′):

�(G ′) = t1,1(I )
∗p∗σ ′σ ·(I ∗q ∗φ(G1)∗ · · · ∗φ(Gr )) ·ττ ′

= σ ′ ·(t1,1(I )∗p∗σ ·(I ∗q ∗φ(G1)∗ · · · ∗φ(Gr )) ·τ)∗τ ′

= σ ′ ·�(G) ·τ ′.

Here again, the computations are valid in particular in the case p = q = 0, so for the
non-unitary case.

Let us assume the result at rank N − 1 and let G be a graph with N internal edges.
Let us prove that �(G) defined in (6.2) does not depend on the choice of e. If e′ is
another internal edge of G, then

(Ge)e′ = (12) ·(Ge′)e ·(12),

which implies, by definition of �(Ge) and �(Ge′)

t1,1 ◦�(Ge) = t1,1 ◦ t1,1 ◦�((Ge)e′)

= t1,1 ◦ t1,1 ◦((12) ·�((Ge′)e) ·(12))
= t1,1 ◦ t2,2 ◦�((Ge′)e)

= t1,1 ◦ t1,1 ◦�((Ge′)e)

= t1,1 ◦�(Ge′).

So �(G) is well-defined. Let σ ∈ Sk and τ ∈ Sl . Then

(σ ·G ·τ)e = ((1)⊗σ) ·(Ge) ·((1)⊗τ),
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so

�(σ ·G ·τ) = t1,1 ◦�((σ ·G ·τ)e)

= t1,1((1)⊗σ) ·�(Ge) ·((1)⊗τ)

= ((1)⊗σ)1 · t1,1 ◦�(Ge) ·((1)⊗τ)1

= σ ·�(G) ·τ,

where, for σ ∈ Sk we use σi for the permutation in Sk−1 defined by

σi ( j) =
{

σ( j) if j � i − 1,

σ ( j − 1) if j � i .

�

We have therefore defined a map � : CGr�(X) −→ P , or � : solCGr�(X) −→
P in the non-unitary case, compatible with the action of the symmetric groups. It
remains to prove that � is compatible with the horizontal concatenation ∗ and with
the partial trace maps.

Lemma 9.2 For any graphs G,G ′,

�(G ∗G ′) = �(G)∗�(G ′).

Proof We proceed by induction on the number N of internal edges ofG ∗G ′. If N = 0,
we put

G = O∗p∗σ ·(I ∗q ∗G1∗ · · · ∗Gr ) ·τ,
G ′ = O∗p′∗σ ′ · · · (I ∗q ′∗G ′

1∗ · · · ∗G ′
r ′) ·τ ′.

As before, if we are in the non-unitary case we set p = q = p′ = q ′ = 0 and the
whole discussion still holds. We obtain

G ∗G ′ = O∗(p+p′)∗(σ ⊗σ ′)
(

Idq ⊗ck1+···+kr ,q ′ ⊗ Idk′
1+...+k′

r ′
)

· (I q+q ′∗G1 ∗ · · · ∗G ′
r ′) ·(Idq ⊗cq ′,l1+···+lr ⊗ Idl ′1+···+l ′

r ′
)

(τ ⊗τ ′),

which gives, by commutativity of ∗:

�(G ∗G ′) = t1,1(I )
∗(p+p′) ∗ (σ ⊗σ ′)

(

Idq ⊗cl1+···+lr ,q ′ ⊗ Idl ′1+···+l ′
r ′
)

·(I q+q ′ ∗ φ(G1)∗ · · · ∗φ(G ′
r ′)) ·(Idq ⊗cq ′,k1+···+kr ⊗ Idk′

1+···+k′
r ′
)

(τ ⊗τ ′)

= t1,1(I )
∗p∗σ ·(I ∗q∗φ(G1)∗ · · · ∗φ(Gr )) ·τ

∗ t1,1(I )
∗p′∗σ ′ ·(I ∗q ′∗φ(G ′

1)∗ · · · ∗φ(G ′
r ′)) ·τ ′

= �(G)∗�(G ′).
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In the non-unitary case, the TRAP P has no unit P and one simply removes the terms
with the identity I in the above computation and sets p = q = p′ = q = 0. In this
case, the result is the same as in the unitary case: �(G ∗G ′) = �(G)∗�(G ′).

If N � 1, let us assume that the result holds at rank N −1 and take an internal edge
e of G ∗G ′. If e is an internal edge of G, then (G ∗G ′)e = Ge ∗G ′, and

�(G ∗G ′) = t1,1 ◦�((G ∗G ′)e)
= t1,1 ◦�(Ge ∗G ′)
= t1,1(�(Ge)∗�(G ′)) by the induction hypothesis

= (t1,1 ◦�(Ge))∗�(G ′) by Axiom 3.(c) of Definition 2.2

= �(G)∗�(G ′).

If e is an internal edge of G ′, we obtain similarly that �(G ′ ∗ G) = �(G ′) ∗ �(G).
The result then follows from the commutativity of ∗ (Axiom 2.(d) of Definition 2.2).
�
We still need to prove the compatibility of � with the partial trace maps.

Lemma 9.3 Let G in CGr�(X)(k, l) or in solCGr�(k, l) with (k, l) ∈ N
2
0, i ∈ [k]

and j ∈ [l]. Then

ti, j ◦�(G) = �◦ ti, j (G).

Proof By Lemma 2.9, it is enough to prove that � is compatible with t1,1. Let G ∈
CGr�(X)(k, l), or G ∈ solCGr�(X)(k, l) in the non-unitary case, e1 = α−1(1),
f1 = β−1(1). We set G ′ = t1,1(G) and e = {e1, f1} to be the edge of G ′ created in
the process. Notice that if G ∈ solCGr�(X) then G ′ ∈ solCGr�(X). There are five
different cases (but only the first cases appear if G ∈ solCGr�(X)):

1. If e1 ∈ I (G) and f1 ∈ O(G), then e ∈ E(G ′) and G ′
e = G. By construction of

�(G ′),

�◦ t1,1(G) = �(G ′) = t1,1 ◦�(G ′
e) = t1,1 ◦�(G).

2. If e1 ∈ IO(G) and f1 ∈ O(G), let us put j = β(e1). Then there exists a graph H
such that (1, j) ·G = I ∗H , hence

t1,1(G) = t1,1((1, j) ·(I ∗H)) = (1, . . . , j) · (t1,i (I ∗H)) = (1, . . . , j) ·H ,

so

t1,1 ◦�(G) = t1,1((1, j) · (I ∗�(H))

= (1, j)(1, . . . , j − 1) ·�(H)

= (1, . . . , j) ·�(H)

= �((1, . . . , j) ·H)

= �◦ t1,1,(G).
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3. If e1 ∈ I (G) and f1 ∈ IO(G) the computation is similar.

4. If e1, f1 ∈ IO(G), with e1 �= f1 the computation is similar.

5. If e1 = f1 in IO(G), then G = I ∗H for a certain graph G and t1,1(G) = O∗H .
Then

�◦ t1,1(G) = �(O)∗�(H) = t1,1 ◦�(I )∗�(H) = t1,1(�(I )∗�(H)) = t1,1 ◦�(G).

So � is compatible with the partial trace maps, both in the unitary and non-unitary
cases. 
�

We have proved the existence of �. It remains to prove the unicity. In the non-
unitary case, any solar graph can be obtained from graphs with only one vertex, with
the help of the horizontal concatenation and the partial trace maps, which allow to
create the missing internal edges. Hence, solCGr�(X) is generated by X as a TRAP,
which implies the unicity of �. In the unitary graph, any graph can be obtained from
graphs with only one vertex and copies of the graph I , with the help of the horizontal
concatenation and the partial trace maps, which allow to create the missing internal
edges and the copies of O when applied to I . Hence, CGr�(X) is generated by X as
a unitary TRAP, which implies the unicity of �.
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