LiRoT: A lightweight incremental reasoner for the Web of Things
Alexandre Bento, Lionel Médini, Kamal Singh, Frederique Laforest

To cite this version:
Alexandre Bento, Lionel Médini, Kamal Singh, Frederique Laforest. LiRoT: A lightweight incremental reasoner for the Web of Things. Colloque 2023 du GDR SoC2, Jun 2023, Villeurbanne, France. hal-04127326

HAL Id: hal-04127326
https://hal.science/hal-04127326
Submitted on 13 Jun 2023
LiRoT: A lightweight incremental reasoner for the Web of Things

Alexandre Bento, INSA Lyon
alexandre.bento@liris.cnrs.fr

Lionel Médini, UCBL
lionel.medini@liris.cnrs.fr

Kamal Singh, Université Jean Monnet
kamal.singh@univ-st-etienne.fr

Frédérique Laforest, INSA Lyon
frederique.laforest@liris.cnrs.fr

1. Experimentations

- LiRoT uses 46-91% less memory than RDFox and 91-98% less than Apache Jena
- LiRoT has similar or better performance than RDFox for datasets of 500-1000 explicit facts, depending on the task and ruleset, and is generally faster than Jena
- Incremental maintenance requires memory overhead, but improves performance

2. Publications and references

Do Arduinos dream of efficient reasoners?
Extended Semantic Web Conference 2022
A. Bento, L. Médini, K. Singh, F. Laforest

The CoSWoT project is supported by grant ANR-19-CE23-0012 from Agence Nationale de la Recherche.

3. Conclusions

- Optimizing RETE reduces the memory footprint significantly
- On laptop and with small datasets (scope of CoSWoT), LiRoT performs better than Jena and RDFox
- LiRoT is the only reasoner to run on Arduino platforms

4. Future works

- Conversion of the algorithm to:
 - WASM for GPU
 - VHDL for FPGA

5. CoSWoT

- Platform for the WoT
- Use Semantic Web technologies (ontologies, reasoning)
- Constrained and heterogeneous devices
- Decentralized architecture
- Applications in smart building and agriculture

6. Challenges and hypotheses

- Traditional reasoners are built for desktop computers or servers
- Targeted platforms are more constrained (desktop computer: ≈ 10GB RAM vs. ESP32: 320KB SRAM)

7. Running example

Thermometer

Thermometer :value "25"

Reasoner

(CO₂ Sensor :value "850")

Window

Window :state :Open

8. CoSWoT project

2022-2024

- Web of Things
- Industrial applications

9. Proposed approach: LiRoT

- LiRoT [Bento22]: Lightweight incremental reasoner based on the RETE algorithm [Forgy89]
- Adapt the Backward/Forward algorithm to optimize incremental maintenance
- Custom Memory optimizations
 - Merge memory spaces for nodes that have equivalent conditions
 - Index terms to avoid duplicates
 - Encode data in CBOR (ongoing work)
- Open-source implementation in C

https://gitlab.com/coswot/lirot

10. More experiments

- Comparison between LiRoT, Apache Jena and RDFox on desktop
- Comparison between different optimizations on ESP32 platform

- LiRoT uses 46-91% less memory than RDFox and 91-98% less than Apache Jena
- LiRoT has similar or better performance than RDFox for datasets of 500-1000 explicit facts, depending on the task and ruleset, and is generally faster than Jena
- Incremental maintenance requires memory overhead, but improves performance

11. Rule-based reasoning

- RDF data is stored in triples (e.g. coswot:Room1Thermometer rdf:type sosa:Sensor)
- Generic rules (multiple conditions with variables) are applied to explicit triples to derive new information (implicit triples). Example of a rule: