LiRoT: A lightweight incremental reasoner for the Web of Things
Alexandre Bento, Lionel Médini, Kamal Singh, Frederique Laforest

To cite this version:
Alexandre Bento, Lionel Médini, Kamal Singh, Frederique Laforest. LiRoT: A lightweight incremental reasoner for the Web of Things. Colloque 2023 du GDR SoC2, Jun 2023, Villeurbanne, France. hal-04127326

HAL Id: hal-04127326
https://hal.science/hal-04127326
Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LiRoT: A lightweight incremental reasoner for the Web of Things

Alexandre Bento, INSA Lyon
alexandre.bento@liris.cnrs.fr
Lionel Médini, UCBL
lionel.medini@liris.cnrs.fr
Kamal Singh, Université Jean Monnet
kamal.singh@univ-st-etienne.fr
Frédérique Laforest, INSA Lyon
frederique.laforest@liris.cnrs.fr

CoSWoT
• Platform for the WoT
• Use Semantic Web technologies (ontologies, reasoning)
• Constrained and heterogeneous devices
• Decentralized architecture
• Applications in smart building and agriculture

Challenges and hypotheses
• Traditional reasoners are built for desktop computers or servers
• Targeted platforms are more constrained (desktop computer: ≈ 10GB RAM vs. ESP32: 320KB SRAM)
→ Reduce reasoning memory footprint
• Small datasets (= 1000 explicit facts)
• Dynamic data → incremental reasoning

ES32 platform

Conclusions
• Optimizing RETE reduces the memory footprint significantly
• On laptop and with small datasets (scope of CoSWoT), LiRoT performs better than Jena and RDFox
• LiRoT is the only reasoner to run on Arduino platforms

Future works
• Conversion of the algorithm to:
 • WASM for GPU
 • VHDL for FPGA

Publications and references
Do Arduinos dream of efficient reasoners?
Extended Semantic Web Conference 2022
A. Bento, L. Médini, K. Singh, F. Laforest

The CoSWoT project is supported by grant ANR-19-CE23-0012 from Agence Nationale de la Recherche.

Rule-based reasoning
• RDF data is stored in triples (e.g. coswot:Room1Thermometer1 rdf:type sosa:Sensor)
• Generic rules (multiple conditions with variables) are applied to explicit triples to derive new information (implicit triples). Example of a rule:

Running example

Thermometer
Thermometer :value “25”

Reasoner

CO₂ sensor
CO₂ Sensor :value "850"

Window
Window :state :Open

Proposed approach: LiRoT
• LiRoT [Bento22]: Lightweight incremental reasoner based on the RETE algorithm [Forgy89]
• Adapt the Backward/Forward algorithm to optimize incremental maintenance
• Custom Memory optimizations
 • Merge memory spaces for nodes that have equivalent conditions
 • Index terms to avoid duplicates
 • Encode data in CBOR (ongoing work)
• Open-source implementation in C

https://gitlab.com/coswot/lirot

Comparison between LiRoT, Apache Jena and RDFox on desktop

Comparison between different optimizations on ESP32 platform

LiRoT uses 46-91% less memory than RDFox and 91-98% less than Apache Jena
LiRoT has similar or better performance than RDFox for datasets of 500-1000 explicit facts, depending on the task and ruleset, and is generally faster than Jena
Incremental maintenance requires memory overhead, but improves performance