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ABSTRACT
Sampling timed words out of a timed language described as a timed
automaton may seem a simple task: start from the initial state,
choose a transition and a delay and repeat until an accepting state
is reached. Unfortunately, simple approach based on local, on-the-
fly rules produces timed words from distributions that are biased
in some unpredictable ways. For this reason, approaches have been
developed to guarantee that the sampling follows a more desirable
distribution defined over the timed language and not over the au-
tomaton. One such distribution is the maximal entropy distribution,
whose implementation requires several non-trivial computational
steps. In this paper, we present Wordgen which combines those
different necessary steps into a lightweight standalone tool. The
resulting timed words can be mapped to signals used for model-
based testing and falsification of cyber-physical systems thanks to
a simple interface with the Breach tool.
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1 INTRODUCTION
Timed automata (TA) is a well-known formalism to describe real-
time systems. They are used in many verification tools such as
Uppaal [12, 16] or Prism [15] since the algorithms behind their
analysis are well understood. Verification can be conducted either
exactly, using regions or zone graph abstractions, or approximately
using statistical model checking (SMC) when the size of the system
is too large. SMC can also deal with more complex systems, like
hybrid systems and/or probabilistic systems.

Statistical model checking relies on the sampling of large num-
bers of trajectories of the system under test, which can be difficult.
In [9], many examples are shown where the sampling of TA using
current tools (e.g., UPPAAL SMC [12] or Modes[11]) is not satis-
factory for various reasons. The main observation of the authors
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is that these tools sample TA differently leading to different and
often contradicting results. Indeed when sampling a TA, discrete
and continuous choices must be made in each state. The order of
these choices lead to different algorithms with different results.
Moreover the distribution used for both the discrete and the contin-
uous choice should not be arbitrary (see section 2.2 or [9] for more
details).

To overcome these shortfalls, probability distribution over delay
and transitions must be more formally specified. Distributions that
maximize the entropy of the sampling process are a good choice
because they are known to be the least biased [14]. They are uniform
distributions (UD) over timed languages which have the following
characteristics:

(1) UD being defined over the timed language and not over
the automaton, two automata recognizing the same timed
language will have the same UD;

(2) UD guarantee that given two timed words of the same length
they are chosen with the same probability;

(3) UD can be computed using time-language volume [1] for
which tractable algorithms have been described in [5];

(4) However, UD computation relies on an analysis of the au-
tomaton which can be costly, in particular it can be sig-
nificantly more costly than more "naïve" statistical model
checking methods.

To our knowledge the only implementation of the computation
of the uniform distribution over timed language is the tool-chain
described in [5], which is not satisfactory for several reasons which
we detail in Section 3.4.

The computation of UD requires the computation of the zone
graph and thus is more involved than most classical computations
on time automata (reachablility, emptiness, TCTL model check-
ing). As a consequence there is no point to use UD sampling to
solve these problems. UD sampling can, however, be used to con-
struct probabilistic semi-algorithms to undecidable problems like
the inclusion of time language [5].

Another application of TA sampling is the validation of Cyber
Physical System (CPS). In this setting we are interested in hybrid
systems containing both a discrete part (e.g., modeled by finite state
automata) and a continuous part (e.g., modeled by a system of ordi-
nary differential equations) which interact with their environment
through real-valued time signals. The formal verification of such
systems is known to be difficult. A commonly used alternative is,
similarly to SMC, to rely on generating time signals and check that
the system behaves according to its specification over these signals.
It is then crucial to sample signals that cover the space of admis-
sible input signals well. This space is not always easily described,
and by extension sampled, using standard numerical constraints
or even advanced specification languages such as signal temporal
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logics (STL). In [6, 7], the authors show that TA can provide concise
descriptions of the spaces of input signals for complex CPS mod-
els, and validate them using UD sampling. The cost of computing
and sampling UD for a TA in these cases is negligible compared to
other methods to generate admissible input signals (e.g., using STL
monitoring-based rejection methods) to run and simulate the CPSs,
making the method a good fit.

In this paper we presents the tool Wordgen which takes as
input a TA, compute the UD over the timed language of the TA and
outputs timed words sampled from this language using UD. We also
present a simple interface for timed word based signal generation
with the tool Breach [13], which is a well-known tool for CPS
validation. The paper is structured a follows: Section 2 describes
the necessary definition, Section 3 describes the computational
steps of Wordgen, Section 4 presents some implementation details,
Section 5 presents a case study, and Section 6 concludes.

2 DEFINITIONS
2.1 Timed Automata
A timed automaton (TA) A is defined as a tuple (Σ, 𝑋,𝑄, 𝑖0, F ,Δ)
where Σ is a finite set of events; 𝑋 is a finite set of clocks; 𝑄 is a
finite set of locations; 𝑖0 is the initial location; F ⊆ 𝑄 is a set of final
locations and Δ is a finite set of transitions. The finite set of clock
𝑋 is a finite set of non-negative real-valued variables . A guard is a
finite conjunction of clock constraints of the form 𝑥 ⊲⊳ 𝑐 with 𝑥 ∈ 𝑋 ,
𝑐 ∈ N+ and ⊲⊳∈ {<, ≤,=, ≥, >} . For a clock vector ®𝑥 ∈ [0,∞[𝑋 and
a non-negative real 𝑡 , we denote by ®𝑥 + 𝑡 the vector ®𝑥 + (𝑡, . . . , 𝑡).
A transition 𝛿 ∈ Δ has an origin 𝛿− ∈ 𝑄 , a destination 𝛿+ ∈ 𝑄 ,
a label 𝑎𝛿 ∈ Σ, a guard 𝔤𝛿 and a reset function 𝔯𝛿 determined by
a subset of clocks 𝐵 ⊆ 𝑋 . Fig. 1(left) depicts an automaton with
two clocks 𝑥 and 𝑦, a single location 𝑙1 and two transitions. The
transition labelled by 𝑎 is guarded by 𝑥 < 10 ∧ 𝑦 < 3 and reset 𝑦
while transition labelled by 𝑏 is guarded by 8 ≤ 𝑥 ≤ 10∧ 1 ≤ 𝑦 ≤ 2.

Additional clock constraints can be added to each location, these
are known as invariants. In our setting, an automaton without
invariant is obtained by adding the constraint of the invariant to
all outgoing guard of a location.

A configuration 𝑠 = (𝑞, ®𝑥) ∈ 𝑄 × [0,∞)𝑋 is a pair of location
and a clock vector. The initial configuration of A is (𝑖0, ®0). A timed
transition is a pair (𝑡, 𝛿) of a time delay 𝑡 ∈ [0,∞) followed by a
discrete transition 𝛿 ∈ Δ. The delay 𝑡 represents the time before
firing the transition 𝛿 .

A run is an alternating sequence (𝑞0, ®𝑥0)
𝑡1,𝛿1−−−−→ (𝑞1, ®𝑥1) . . .

𝑡𝑛,𝛿𝑛−−−−→
(𝑞𝑛, ®𝑥𝑛) of configurations where 𝑞𝑖 is the successor of 𝑞𝑖−1 by 𝛿𝑖 ,
and the vector ®𝑥𝑖−1 + 𝑡 satisfies the guard 𝔤𝛿 and ®𝑥𝑖 = 𝔯𝛿 ( ®𝑥𝑖−1 + 𝑡).
This run is labelled by the timed word (𝑡1, 𝑎1) · · · (𝑡𝑛, 𝑎𝑛) where for
every 𝑖 ≤ 𝑛, 𝑎𝑖 is the label of 𝛿𝑖 . The set of timed words labelling
all the runs leading from the initial configuration (𝑖0, ®0) to a final
configuration (𝑞𝑛 ∈ F ) is called the timed language of A.

2.2 Isotropic Sampling
Isotropic sampling is the sampling of timed words implemented in
tools like UPPAAL-SMC or Modes with some variation. Given an
automaton (Σ, 𝑋,𝑄, 𝑖0, F ,Δ) and a configuration of the automaton
(𝑞, ®𝑥) the next delay and next event is computed by choosing:

• The next transitions 𝛿 ∈ Δ such that 𝛿− = 𝑞 and ∃𝑡 ≥
0 s.t. ®𝑥 + 𝑡 |= 𝔤𝛿 , i.e., transition for which there exists a time
where the guard is satisfied. All such transition are given the
same probability to be chosen (discrete uniform law);

• The next delay 𝑡 such that ∃𝛿 ∈ Δ s.t. 𝛿− = 𝑞∧ ®𝑥 +𝑡 |= 𝔤𝛿 , i.e.,
delay for which there exists at least one acceptable transition
at this time. Time 𝑡 is chosen uniformly (continuous uniform
law) among acceptable times if this set is bounded and using
an exponential distribution otherwise.

The order of these two choices will substantially change the sam-
pling algorithm and its performance. Thus isotropic sampling is
not well defined and as a consequence, different tools implement
different strategies. As an example, if transitions are chosen first,
an analysis of reachable guards must be conducted to select a sat-
isfiable one, but then the time has to satisfy a single guard which
is usually a convex set and thus is easy to sample. The other way
around requires a similar trade-off. In [9] the authors show that
these choices (and other choices of implementation) lead to tools
giving contradictory results on some examples.

Another problem with isotropic sampling is that it is local to
each step. More precisely along a timed word, a choice of time at
step 𝑖 can make a guard at step 𝑗 > 𝑖 unsatisfiable. For example, in
Fig. 1 the bottom plot shows isotropic sampling of the automaton
on the left. Most transitions are sampled in the bottom right corner
because the local rule cannot stir the simulation toward the green
transition to avoid becoming stuck in a time lock.

3 COMPUTATIONAL STEPS
Given a timed automaton, Wordgen computes the UD over its time
language and samples it. In this section, we explain the different
operations performed by Wordgen to achieve this. Fig. 2 depicts
an overview of the tool architecture and Fig. 3 shows a running
example illustrating each computation step. The computation starts
by parsing the input file which can be either in the Prism PTA or
Uppaal file format. The result is a data structure containing a TA
A. Fig. 3(a) shows an example of TA.

3.1 Forward Reachability and Splitting
First the automaton is transformed into a standard zone graph [8]
by performing a forward reachability analysis as the traversal of a
graph. Zones are sets of clock constraints implemented as Differ-
ence Bound Matrices (DBM) for which intersection time elapse (TE)
and reset (𝑅𝑒𝑠𝑒𝑡 ) are efficient. The vertices of the graph are pairs
of automaton location and zone, edges are automaton transitions
with guard specified as zone. Starting from the initial location and
the zone containing the clock vector ®0, a graph is constructed by
computing for each vertex of the graph (𝑙, 𝑧) and each transition
𝛿 s.t. 𝛿− = 𝑙 the new vertex (𝛿+, 𝑅𝑒𝑠𝑒𝑡 (𝑇𝐸 (𝑧) ∩ 𝔤𝛿 , 𝔯𝛿 ). Fig. 3(b)
shows the reachability graph of automaton Fig. 3(a) as computed
by Wordgen.

Then, the zone graph is split so that for any vertex of the zone
graph, for each available transition 𝛿 , there exists two functions lb𝛿
and ub𝛿 of the clock vector ®𝑥 such that, for all 𝑡 ∈ R+, ®𝑥 + 𝑡 |= 𝔤𝛿 is
equivalent to 𝑡 ∈ [lb( ®𝑥), ub( ®𝑥)] with lb and ub of the form ®𝑥 ↦→
𝑐−𝑥 where 𝑐 ∈ N and 𝑥 is a clock or zero. This is always possible by
splitting a zone in smaller one. Detail on the computation and proof
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𝑙1

𝑎, {𝑦},
𝑥 < 10
∧𝑦 < 3

𝑏, {𝑥},
𝑥 ∈ [8; 10]
∧𝑦 ∈ [1; 2]

Figure 1: (Left) A TA with 2 clocks 𝑥 and 𝑦, 1 location and 2 transitions. The transition labeled by 𝑎 is guarded by upper-bounds
on clocks, while the guard on the transition labeled by 𝑏 is a small box 𝑥 ∈ [8; 10] ∧𝑦 ∈ [1; 2]. The only way to reset the clock 𝑥 is
to hit the box. (Top Right) discounted uniform sampling with 10 iterations (m=10), (Bottom Right) isotropic sampling, each
sampling contains 50000 trajectories of length 100 where a pixel is drawn at each transitions at positions (𝑥,𝑦) before applying
resets.
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Figure 2: Architecture ofWordgen. Round part represents computation steps while square one represents data. Arrows represent
flow of data. Lines are dependencies.

of correctness can be found in [5]. In Fig. 3(b) only one transition
does not satisfy the splitting constraint (in black), Fig. 3(c) shows
the result of the splitting algorithm, the vertex (1) have been split.
In the worst case zone are spitted until only region remains which
leads to an exponential blow up in the number of clocks.

3.2 Weight and Distribution Computation
Each vertex (respectively, each edge) of the zone graph is equipped
with a weight function 𝑣𝑚 (𝑙, ®𝑥) (respectively, 𝑣𝑚 (𝛿, ®𝑥)) which maps
a clock vector to the volume of the timed language reachable from
this clock vector in 𝑚 steps. The weight is computed with the
following recursive equations following the theory of volume of
timed language of [1]:

𝑣0 (𝑙, ®𝑥) = 1𝑙∈F ;

𝑣𝑚 (𝛿, ®𝑥) =
∫ 𝑡=ub𝛿

𝑡=lb𝛿
𝑣𝑚−1

(
𝛿+, 𝔯𝛿 ( ®𝑥 + 𝑡)

)
d𝑡 ;

𝑣𝑚 (𝑙, ®𝑥) =
∑︁
𝛿−=𝑙

𝑣𝑚 (𝛿, ®𝑥) .

(1)

Since lb𝛿 and ub𝛿 are linear functions of clock vectors, 𝑣𝑚 (_)
are polynomials with the clocks set as set of variable. The degree
of the polynomials are𝑚 and can be computed in polynomial time
with respect to the graph size but exponential in𝑚 and the number
of clocks. Figure 3(d) shows the weights computed by Wordgen
for the transition from 1 to 2 labeled by 𝑏.

The zone graph is finally augmented with a probability distri-
bution to become a stochastic process. Discrete choices between
transitions are computed using the weights of the transitions. Let
us consider a vertex (𝑙, ®𝑥) where 𝑘 transitions are available: 𝛿1,
𝛿2, . . . 𝛿𝑘 . The probability to sample 𝛿𝑖 is 𝑣𝑚 (𝛿𝑖 ,®𝑥 )∑𝑘

𝑗=1 𝑣𝑚 (𝛿 𝑗 ,®𝑥 )
. Continuous

time distributions are computed as the derivative of the weight
normalized by the total weights, that is from vertex (𝑙, ®𝑥) for tran-
sition 𝛿 the probability density function (PDF) of the time 𝑇 is
𝑇 ↦→

∫ 𝑡=𝑚𝑖𝑛 (𝑇,ub𝛿 )
𝑡=lb𝛿

𝑣𝑚−1
(
𝛿+, 𝔯𝛿 ( ®𝑥 + 𝑡)

)
d𝑡 1

𝑣𝑚 (𝛿,®𝑥 ) . Note that the
variable 𝑡 appears only in the numerator thus the PDF is a polyno-
mial in 𝑡 . The Cumulative Density function (CDF) is the integral of
the PDF from 0 to 𝑡 . It is denoted for transition 𝛿 and clock vector
®𝑥 as (𝐶𝐷𝐹𝑚 (𝛿, ®𝑥) (𝑡)). It is also a polynomial in 𝑡 . In Fig. 3(d) the
volume and CDF of the transitions between 1 and 2 are reported.

3.3 Sampling
The last step consists of sampling the stochastic process obtained
from the previous operation. To generate a timed word of length
𝑛, one starts with a sequence (𝑢𝑖 )2𝑛𝑖=1 ∈ [0, 1] of real values, which
corresponds to a point in the unit box of dimension 2𝑛. These
values can either be computed by Wordgen using pseudo-random
number generators or low discrepancy sequences, they can also be
computed by an external optimization algorithm like in [7] where
Breach [13] was used to drive the generation.
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𝑙1

[𝑎], (𝑥 < 2) ∧ (𝑦 < 4), {𝑦}

[𝑏 ], (𝑥 < 3) ∧ (𝑦 < 2), {𝑥 }

(2) y in [0,2); x=0 b, [0 ; 2-y]

(1) y=0; x in [0,2)

a, [0 ; 2-x] b, y in [0,2);
x < 3

a, [0 ; 2-x]

(0) y=0; x=0

b, [0 ; 2-x]

a, [0 ; 2-x]

(2) y in [0,2);
x=0 b, [0 ; 2-y]

(3) y=0;
x in [0,1)

a, [0 ; 1-x]

(1) y=0;
x in (1,2)

a, [1-x ; 2-x]

b, [0 ; 2-y]

a, [0 ; 1-x]

a, [1-x ; 2-x]

b, [0 ; 3-x]

a, [0 ; 2-x]

(0) y=0;
x=0

b, [0 ; 2-x]

a, [0 ; 1-x]

a, [1-x ; 2-x]

(a) (b) (c)

(𝑑)

𝑚 1 2 3 4

𝑣𝑚 (1→2, (𝑥,𝑦)) 3 − 𝑥 15−2𝑥−𝑥2

2
126−24𝑥−3𝑥2−𝑥3

6
1389−256𝑥−48𝑥2−4𝑥3−𝑥4

24

𝐶𝐷𝐹𝑚 (1→2, (𝑥,𝑦)) (𝑡) 𝑡
3−𝑥

2𝑡−𝑡2
15−2𝑥−𝑥2

69𝑡−12𝑡2+𝑡3
126−24𝑥−3𝑥2−𝑥3

760𝑡−138𝑡2+16𝑡3−𝑡4
1389−256𝑥−48𝑥2−4𝑥3−𝑥4

(e) 1.37294[𝑏 ]0.29924[𝑎]1.14380[𝑎]0.54786[𝑏 ]0.19368[𝑎]0.69567[𝑏 ]0.13582[𝑏 ]0.94777[𝑏 ]

Figure 3: Illustration of the different steps of computation. (a) a TA; (b) the forward reachability zone graph, red edges are
already split; (c) the split zone graph; (d) weights and distribution computed on edge from vertices 1 to 2 with 0 to 4 iterations;
(e) a timed word sampled by Wordgen.

The parameter𝑚 of the distribution should be equal to 𝑛 − 𝑖 at
step 𝑖 for exact uniform sampling, however, as the computation
of distribution for large value of𝑚 became intractable, receding
horizon can be used, a maximal value 𝑚0 is computed then the
distribution with 𝑚 = min(𝑚0, 𝑛 − 𝑖) is used at each step. The
correction of this approach and rate of convergence are discussed
in [5].

Starting from the initial configuration of the automaton, the
timed word is computed iteratively. At step 𝑖 , in configuration (𝑙, ®𝑥)
the next transition 𝛿 is chosen by sampling the discrete probability
distribution 𝑣𝑚 (𝛿, ®𝑥) using real 𝑢2𝑖 . Then delay 𝑡 is distributed
according to the PDF of 𝛿 . This is done using the so-called inverse
transform sampling method. This consists of computing the root
of the CDF minus 𝑢2𝑖+1. Such root exists as the CDF is a strictly
increasing polynomial taking values in [0, 1]. This root can be
effectively computed using Newton’s method. When a timed word
of desired length is produced, it is outputted and the next timed
word is computed. Fig. 3(e) shown an example of a timed word.
We could have sampled first the time and then the transitions; the
sampling distribution would be the same (see [5]) but requires to
sample from a piece-wise polynomial distribution.

3.4 Motivation for a New Implementation
In [5, 6] a tool-chain was implemented to conduct the same compu-
tation as Wordgen. The different parts of the computation were
performed by specialized tools: the TA analysis was performed
by a modified version of the model checker Prism, the probability
distribution was computed by a script written in SageMath, a com-
puter algebra system well suited for computation over polynomials,
and the sampling was performed by the statistical model checker
Cosmos. This work is a new standalone implementation in the
OCaml programming language of all these steps. The main focus
was to make this tool easier to use and to extend than the previous
implementation. We describe some of the main advantages next.

Performance.While for their original purpose, each tool used in
the legacy tool-chain are known to be very efficient, the specific op-
erations they were used for in this work are not the ones they were
designed and optimized for. Hence, a specialized re-implementation
of these operations does not harm performance.

• Prism forward reachability algorithm is faster than our im-
plementation over large automata. However, automaton size
is not the bottle neck here: on all examples we tried, this
time was small for both tools as compared to the other com-
putational steps.

• SageMath has an efficient library to handle polynomials
formally and can handle various operations but only a few
of these operations are relevant to our setting and those can
be implemented with more specialized algorithms and data
structures. In Table 1 we show on an example that Wordgen
is faster, even when using exact rational numbers.

• Cosmos is designed to simulate large concurrent systems
specified as Petri Nets; in our setting we are only simulating
single automata and thus many optimizations of Cosmos
are pure overhead. In Table 1 we can see that Wordgen and
Cosmos sampling times are of the same order of magnitude,
Wordgen being faster for small automata.

Moreover, these tools have a large constant startup time (Loading
the JVM for Prism, loading Python libraries for Sage, code genera-
tion and compilation for Cosmos) making running the tool-chain a
long and tedious process when designing a given model.
Usability.Making the tools of the legacy tool-chain work together
is quite cumbersome. Indeed, each of them is written in a different
programming languages (Java, Python/Sage , C++) which requires
to serialize data to files between each operation. The coordination
between the three tools requires several scripts and adding new
features means implementing modifications in each individual tools
as well as in the file format of the exchange file.
New features. InWordgen the data-structure to represent distribu-
tions can be replaced easily. On-going work uses this to implement
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𝑚 Sage Cosmos Wordgen
Sampling Float Rationnal Sampling

1 2.4 163 0.02 0.03 51
5 4.8 179 0.1 0.1 122
10 16.2 265 0.5 0.12 208
15 48 383 2.2 3.1 374
20 114 542 6.7 9.7 475

Table 1: Performance ofWordgen compared to previous tools
for distribution computation and sampling. All times are
in seconds. All computations have been done on a single
core of an Intel i7-6700 processor. Sampling generates 50000
trajectories of length 100, which is the number of trajectories
used to plot Fig. 1

sampling algorithms over different kinds of automata: symbolic
automata and extensions over the work of [5, 6]. The modularity
of Wordgen makes it easy to prototype new ideas.

4 DATA STRUCTURE AND IMPLEMENTATION
Wordgen is written in OCaml with some borrowing from other
projects. It is freely available under the GPLv3 licence here [3]. The
Uppaal file parser, time-automaton data structure and Differential
Bound Matrix (DBM) library are taken from SymRob, a tool for the
symbolic robustness analysis of time automata [18]. The automata
data structure compute the synchronized automaton from a net-
work of automata in the Uppaal formalism. The Prism file parser is
taken from Cosmos [2].

4.1 Rational numbers representation
The polynomials ring is built upon a rational field, two implemen-
tations are provided for rationals, either as floating point numbers
or as exact rationals using arbitrary precision integers. Wordgen
can use an exact rational number library based on GMP1. Floating
point numbers are faster but prone to numerical errors.

4.2 Web application
The tool Wordgen features a graphical user interface available
at [4]. This webpage is a slightly modified version of the full tool
compiled to JavaScript. It fully run in the browser without any
installation. It featured two editors for the timed automaton either
as a graph or as a Prism file and provide visualization of the results
and internal representation using graphviz and gnuplot. Some func-
tionalities are missing notably the Uppaal file parser and the speed
of the tool is reduced compared to the native desktop version. It is
very user-friendly compared to the native command-line version.

4.3 Usage of the command-line application
To run Wordgen on a unix commandline, one is to specify the
automaton, the number of iteration of the distribution computation
(the 𝑚 in equation 1) and the number of trajectories. Assuming
the file twoears.prism contains the automaton describes in fig-
ure 3(a) we can run Wordgen as follows where --poly specify the
parameter𝑚 and --traj specify the number of trajectories:
>wordgen twoears.prism --poly 5 --traj 2
Reading Prism automaton file. [0.0s]

1https://gmplib.org
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Figure 4: Three trajectories generated from the driving au-
tomata of [7].

Computing forward reachability graph ... 3 states found. [0.0s]
Splitting reachability graph ... 4 states and 15 DBMs found. [0.0s

]
Computing Distribution [...]] -> 5: [|||||] [0.0s]
Volume in initial state :240.283333333 , degree of liberty :5
0.108885[b] 1.156834[b] 0.473015[a] 1.147844[b] 1.410200[a]
0.380190[a] 0.104014[a] 1.730205[b] 0.220164[a] 0.692068[a]

Wordgen features many options and parameters, the web appli-
cation is a great way to explore them as they are displayed as a
HTML form.

4.4 Signal Generation with Breach
To convert a timed word into a𝑛−dimensional signal, i.e., a function
from time in R+ to R𝑛 , the idea is to map the sequence of pairs
of durations and labels to a sequence of control points which are
vectors in the time domainR+×R𝑛 that Breach2 can use as a base for
interpolation using different interpolation schemes, e.g., constant,
linear, splines, etc. In practice, we need to define parameters for
control points for each transition in a timed word of a given length,
which is a tedious process. To make it easier, we implemented a
wrapper class that only requires the user to map each event in the
alphabet Σ to values or ranges of values for signals. To sample a
signal, Wordgen sample a timed word, then Breach uses its builtin
sampling methods to generate a value in the domain defined by
each label of each transition.

As an example, consider the automata used in [7] to define inputs
to an automatic transmission system for a car. We first indicate the
name of the file defining the automaton, the timed word length
and the names of the signals to generate, namely for throttle and
braking.

TA_filename = 'driving_TA.prism';
num_evts = 10;
signals = {'throttle ','brake '};

Then for each symbol in the alphabet of the automaton, we
define either a single value or a range of values that the signals
will be in when a label in a transition corresponds to this symbol.

2https://github.com/decyphir/breach

https://github.com/decyphir/breach
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(a)

𝑞4

𝑞5

𝑞6

𝑞3𝑞2𝑞1𝑞0

𝑏,
𝑥1 > 8
𝑥1 := 0

𝑐,
𝑥2 > 8
𝑥2 := 0𝑑,

𝑥3 > 8
𝑥3 := 0

𝑎,
𝑥4 > 8
𝑥4 := 0

𝑏, 𝑥1 := 0 𝑐, 𝑥2 := 0 𝑑, 𝑥3 := 0

(b)

Figure 5: (a) A timed automaton for pseudo-periodic signal. To avoid overloading the figure, a global clock 𝑥 (reset to 0 at each
transition) and the global invariant 𝑥1, 𝑥2, 𝑥3, 𝑥4 < 12 and 𝑥 < 4 hold for each guard and are not depicted. (b) Five time words of
length 40 sampled from (a) with the discounted uniform sampling with𝑚 = 5, each action a,b,c,d are given a value shown in
ordinates.

% label init: Throttle range [0, 100] but brake is 0
labels_ranges.init.brake = 0;
labels_ranges.init.throttle = [0 100];

% label a: no acceleration and no braking
labels_ranges.a.throttle =0;
labels_ranges.a.brake =0;

% label b: no acceleration , braking in range [0, 350]
labels_ranges.a.brake = [0 350];
labels_ranges.b.throttle =0;

% label c: no braking
labels_ranges.c.brake =0;
(...)

A BreachTASignalGen can then be created and used to generate
signals. It is derived from Breach native class BreachSignalGen.

B_ta = BreachTASignalGen(signals , TA_filename ,labels_ranges ,
num_evts);

B_ta.SampleDomain (5) % sample 5 timed words calling wordgen
B_ta.Sim (0:0.01:50); % interpolate control points for t in [0, 50]
B_ta.PlotSignals ();

The resulting figure is shown on Fig. 4.

5 APPLICATION TO CPS FALSIFICATION
In [7] two case studies are proposed where Wordgen is used to
falsify CPS by generating timed words interpreted as signals. We
mentioned the driving automata in the previous section and give
more details about the second one related to ΔΣ modulators. ΔΣ
modulators are important components of analog-to-digital con-
verters. Practical quantizers have limited input and output ranges,
which may lead them to saturation, and we want to check whether
the output ever saturates. Specifically, we consider the falsification
of the absence of saturation of some quantizer signal Out under a
certain class of nearly oscillatory inputs In. Formally In and Out
must satisfy for some t𝑠 ≥ 0 and ∀𝑡 ≥ 0,

|Out(𝑡) | < 2 (2)
∃𝑇 ∈ [8t𝑠 , 12t𝑠 ] such that In(𝑡 +𝑇 ) = In(𝑇 ) (3)

Standard falsification approaches translates requirements in Signal
Temporal Logic (STL). Encoding (2) as an STL formula is trivial:
𝜑¬sat = □|Out| < 𝑝𝑠𝑎𝑡 . However, enforcing that In satisfies (3) is not
so simple. For instance, unbounded periodic properties are known
to be beyond STL expressivity [17], and this is before considering
that periods may be uncertain.

To solve this problem using Wordgen, an automata was de-
signed as a model of a pseudo-periodic signal, shown on Fig. 5(a).
The important part is the cycle of length 4, each transition of this TA
has its own clock (𝑥1, 𝑥2, 𝑥3, 𝑥4) which is reset when the transition
is taken. Fig. 5(b) depicts time words sampled from this automaton
by Wordgen. The idea is to extend this automaton into a signal
generator interpolating the signal values between points of a peri-
odic discrete sequence of the form:
𝑢0 𝜏0 𝑢1 𝜏1 𝑢2 𝜏2 𝑢3 𝜏3 𝑢0 𝜏4 𝑢1 𝜏5 𝑢2 𝜏6 𝑢3 𝜏7 𝑢0 𝜏𝑁 𝑢

𝑁̂
. . ..

The value In(𝑡) is obtained by finding 𝑘 such that
∑𝑘
0 𝜏𝑖 ≤ 𝑡 <∑𝑘+1

0 𝜏𝑖 and interpolating between 𝑢
𝑘
and 𝑢

𝑘+1 where 𝑘 is the re-
mainder of 𝑘/4. Since the discrete sequence𝑢𝑖 is periodic, the result-
ing signal satisfies (3) iff ∀𝑖, 8t𝑠 ≤ 𝜏𝑖 +𝜏𝑖+1 +𝜏𝑖+2 +𝜏𝑖+3 ≤ 12t𝑠 . Note
that this constraint is satisfied by the delays of the timed words of
our TA of Fig. 5(a). Hence by using Wordgen to generate timed
words and mapping labels a, b, c, d to values 𝑢0, 𝑢1, 𝑢2, 𝑢3 we obtain
the desired signals.

For the saturation threshold 𝑝𝑠𝑎𝑡 = 2 used in the model [10],
the property 𝜑¬sat was easily falsified in our optimization setting
for arbitrary long timed word. Using other falsification methods
required to use rejection sampling which was only tractable for
signals of length up to three periods.

6 CONCLUSION AND FUTUREWORK
We have presented Wordgen, a uniform sampler for timed lan-
guage. To our knowledge it is the first standalone tool able to
perform this sampling. Compared to previous tool, Wordgen is
faster, easier to use, feature a graphical user interface and have
more features. It has been successfully used for signal generation in
the context of falsification of cyber-physical systems where other
approaches fail.

Wordgen was designed as a fast prototyping tool, in the future
we plan to incorporate several new features. By using Boltzmann
sampling, we will be able to sample words of different lengths.
Using recent work on time automaton volume computation, we
will be able to control the average duration of generated timed word
and to deal with unbounded clocks.
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