
HAL Id: hal-04127255
https://hal.science/hal-04127255

Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Practical Tools for Improving Reproducibility (of
Bioinformatics)

Johann Dreo

To cite this version:
Johann Dreo. Practical Tools for Improving Reproducibility (of Bioinformatics). Doctoral. Precision
Medicine at the Interface of Translational Research and Systems Medicine, Paris, France. 2021, pp.37.
�hal-04127255�

https://hal.science/hal-04127255
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Practical Tools for Improving
Reproducibility (of Bioinformatics)

• Johann Dreo • 25/11/2021

Abstract

Experimental studies are prevalent in (Bio)informatics, as in many fields
involving computer science.
While reproducibility is crucial for science, it is difficult and often overlooked.
This presentation introduces a curated list of tools that can help improving
reproducibility for experimental computer science.
It may incidentally insists on testing...

2 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Abstract

Experimental studies are prevalent in (Bio)informatics, as in many fields
involving computer science.
While reproducibility is crucial for science, it is difficult and often overlooked.
This presentation introduces a curated list of tools that can help improving
reproducibility for experimental computer science.
It may incidentally insists on testing...

2 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Summary

01
Why Reproducibility?

04
References

02
Tools that helps taking

practical actions

03
Conclusion

3 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Part 1

Why Reproducibility?

4 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

A little bit of Epistemology
The Reproducibility Crisis

The scientific method:
• Falsiability by experimental evidence.
• Experimental findings hold under similar conditions.
• Making for predictable outcoumes.
• That can be used to build up cumulative science.

5 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

A little bit of Epistemology
The problem

Anecdotal evidences:
• More than 70% of researchers have failed in an attempt to reproduce an

experiment [Baker 2016].
• Over 50% have even failed to reproduce THEIR OWN previous work.

6 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

A little bit of Epistemology
Some Terminology

Repeatability: same team, same experiment.
Reproducibility: different team, same experiment.
Replicability: different team, different experiment.
Generalisability: [López-Ibáñez et al. 2021]

7 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Possible Actions
Cultural Actions

Researchers in permanent positions, please, think of:
• Incentivize negative results publishing (e.g. reproducibility failure).
• Do not oversell positive results.
• Fight bibliometry optimization.
• Better statistics (avoid p-hacking).
• Refrain from hypothesising after results (HARKing).
• Advertise TESTING.

8 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Possible Actions
Technical Actions YOU can take

In a nutshell: automate everything.
• Keep track of Artifacts:

• Version Control.
• Lab Notebooks.
• Archive Code and Data.
• Save tests.

• Good Engineering:
• Modular Code.
• Test, tests, TESTS.
• Automate Everything.

• Help your future self:
• Containers.
• Pipeline Automation.
• Design of Experiment

Automation.
• Allow Reuse.
• Publish Code and Data.
• Automate tests.

9 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Possible Actions
Technical Actions YOU can take

In a nutshell: automate everything.
• Keep track of Artifacts:

• Version Control.
• Lab Notebooks.
• Archive Code and Data.
• Save tests.

• Good Engineering:
• Modular Code.
• Test, tests, TESTS.
• Automate Everything.

• Help your future self:
• Containers.
• Pipeline Automation.
• Design of Experiment

Automation.
• Allow Reuse.
• Publish Code and Data.
• Automate tests.

9 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Part 2

Tools that helps taking practical
actions

10 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

About This Presentation

Assumptions:
• You know how to read and search documentation.
• Difficulty is to know that a tool exists.
• Everybody likes Python.

This presentation:
• Curated list of tools.
• Insists on TESTING.
• Alternatives and more info in the ”see also” section.

11 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Version Control
Git: https://git-scm.com

Allows to:
• Keep track of changes you make to your code.
• Go back in time, which helps debugging.
• Work with others on the same codebase.
• Works offline.

Basic idea:
• All the source code is versioned (even tests).
• Note: you only version SOURCES, not generated files or data.
• You commit modifications to your code.
• You merge commits in the last version.

12 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://git-scm.com

Version Control
Git: https://git-scm.com
See also:

• Shortest tutorial: https://github.com/nojhan/gitcrux

push

pull master

checkout master

merge master

checkout X

stash save

stash pop

commitadd

commit -a -v

status

diff

checkout -b X

pull

Local Remote

Branch

$_

Stash Stage Repository Repository

• Gitk: https://www.atlassian.com/git/tutorials/gitk
• Liquidprompt: https://github.com/nojhan/liquidprompt
• Mercurial: https://www.mercurial-scm.org

13 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://git-scm.com
https://github.com/nojhan/gitcrux
https://www.atlassian.com/git/tutorials/gitk
https://github.com/nojhan/liquidprompt
https://www.mercurial-scm.org

Version Control
Gitlab: https://about.gitlab.com

Online service:
• Online backups of Git repositories (see push & pull commands).
• Issue tracker (e.g. test failure report).
• Merge requests from others (e.g. more tests).
• Basic public page hosting.

See also:
• Tutorial:

https://docs.gitlab.com/ee/topics/plan_and_track.html

• Github: https://github.com

• DevOps (= automate tests): https://en.wikipedia.org/wiki/DevOps

14 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://about.gitlab.com
https://docs.gitlab.com/ee/topics/plan_and_track.html
https://github.com
https://en.wikipedia.org/wiki/DevOps

Version Control
Gitlab: https://about.gitlab.com

Online service:
• Online backups of Git repositories (see push & pull commands).
• Issue tracker (e.g. test failure report).
• Merge requests from others (e.g. more tests).
• Basic public page hosting.

See also:
• Tutorial:

https://docs.gitlab.com/ee/topics/plan_and_track.html

• Github: https://github.com

• DevOps (= automate tests): https://en.wikipedia.org/wiki/DevOps

14 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://about.gitlab.com
https://docs.gitlab.com/ee/topics/plan_and_track.html
https://github.com
https://en.wikipedia.org/wiki/DevOps

Notebooks
Jupyter: https://jupyter.org/

Interactive page:
• Sequence of paragraphs, executable code, figures.
• Keep track of your ongoing pipeline/experiment.
• Easy to share with others (as a single archive or an online page).
• Perfect for tutorials or demo (tests are good candidates).

See also:
• Online demo: https://jupyter.org/try

• Tutorial·s: https:
//jupyter.readthedocs.io/en/latest/content-quickstart.html

• Serve notebooks: https://jupyter.org/hub

15 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://jupyter.org/
https://jupyter.org/try
https://jupyter.readthedocs.io/en/latest/content-quickstart.html
https://jupyter.readthedocs.io/en/latest/content-quickstart.html
https://jupyter.org/hub

Notebooks
Jupyter: https://jupyter.org/

Interactive page:
• Sequence of paragraphs, executable code, figures.
• Keep track of your ongoing pipeline/experiment.
• Easy to share with others (as a single archive or an online page).
• Perfect for tutorials or demo (tests are good candidates).

See also:
• Online demo: https://jupyter.org/try

• Tutorial·s: https:
//jupyter.readthedocs.io/en/latest/content-quickstart.html

• Serve notebooks: https://jupyter.org/hub

15 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://jupyter.org/
https://jupyter.org/try
https://jupyter.readthedocs.io/en/latest/content-quickstart.html
https://jupyter.readthedocs.io/en/latest/content-quickstart.html
https://jupyter.org/hub

Modern Engineering
Tests

Golden rule of software engineering:
1. Modular code (= functions).
2. Tests = first lines of defense:

2.1 Asserts on pre and post-conditions.
2.2 Asserts everywhere in the code.
2.3 Unit tests (= stand-alone test of functions, on simple data).
2.4 Integration tests (= with real data).

3. When you finish a feature: RUN TESTS.

16 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Modern Engineering
Test!

def f(arg):
assert(0 < len(arg) <= 100) # Pre-condition.
assert(all(0 < i <= 10 for i in arg))
inter = [float(i) for i in arg]
assert(len(inter) == len(arg)) # Intermediate.
result = sum(inter)
assert(0 < result <= len(arg)*10) # Post-condition.
return result

if __name__ == __main__:
assert(f(range(10)) == 45) # Basic unit test.
if __debug__: # Those are declutchable when running python -O

failed = False
try:

res = f([0]*10)
except AssertionError:

failed = True
assert(failed)

17 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Modern Engineering
TEST!
Tests helps:

• Avoiding bugs.
• Finding bugs.
• Fixing bugs.
• On the long term.
• Actually coding faster.
• Double-checking intermediate data of your pipeline.

See also:
• R’s ”stopifnot()” or packages named ”assert”.
• Python’s unittest:

https://docs.python.org/3/library/unittest.html

• PyTest Framework: https://pypi.org/project/pytest

18 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://docs.python.org/3/library/unittest.html
https://pypi.org/project/pytest

Modern Engineering
TEST!
Tests helps:

• Avoiding bugs.
• Finding bugs.
• Fixing bugs.
• On the long term.
• Actually coding faster.
• Double-checking intermediate data of your pipeline.

See also:
• R’s ”stopifnot()” or packages named ”assert”.
• Python’s unittest:

https://docs.python.org/3/library/unittest.html

• PyTest Framework: https://pypi.org/project/pytest

18 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://docs.python.org/3/library/unittest.html
https://pypi.org/project/pytest

Modern Engineering
Continuous Integration

Automate rule #3:
• Every time you push on Gitlab, tests are ran automatically.
• And someone (you) get blamed for pushing bugs.

See also:
• Documentation: https://docs.gitlab.com/ee/ci/

19 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://docs.gitlab.com/ee/ci/

Modern Engineering
Continuous Integration

Automate rule #3:
• Every time you push on Gitlab, tests are ran automatically.
• And someone (you) get blamed for pushing bugs.

See also:
• Documentation: https://docs.gitlab.com/ee/ci/

19 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://docs.gitlab.com/ee/ci/

Virtualization

Objectives:
• Ease the not-built-here affliction.
• Get rid of the dependencies nightmare.
• Avoid the backward incompatibility plague.

Historically:
• Virtual Machines,
• Package Managers & Virtual Environments,
• Containers.

20 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Virtualization

Objectives:
• Ease the not-built-here affliction.
• Get rid of the dependencies nightmare.
• Avoid the backward incompatibility plague.

Historically:
• Virtual Machines,
• Package Managers & Virtual Environments,
• Containers.

20 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Virtualization
VirtualBox: https://www.virtualbox.org

Virtual Machine:
• Replace the computer with software.
• Run any OS on any other OS.
• (A bit) slower.
• Takes a lot of space (all the OS is installed).

See also:
• WMware: https://www.vmware.com/

21 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://www.virtualbox.org
https://www.vmware.com/

Virtualization
VirtualBox: https://www.virtualbox.org

Virtual Machine:
• Replace the computer with software.
• Run any OS on any other OS.
• (A bit) slower.
• Takes a lot of space (all the OS is installed).

See also:
• WMware: https://www.vmware.com/

21 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://www.virtualbox.org
https://www.vmware.com/

Virtualization
Conda: https://conda.io

Package manager + virtual environments:
• Install (several) softwares with (several) specific versions.
• Environment = dependencies that just works.
• Run several environments on your machine.
• Distribute environments configurations.
• Historically for Python, but works for R (and other languages).

See also:
• Bioconda: https://bioconda.github.io

• Miniconda: https://docs.conda.io/en/latest/miniconda.html

22 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://conda.io
https://bioconda.github.io
https://docs.conda.io/en/latest/miniconda.html

Virtualization
Conda: https://conda.io

Package manager + virtual environments:
• Install (several) softwares with (several) specific versions.
• Environment = dependencies that just works.
• Run several environments on your machine.
• Distribute environments configurations.
• Historically for Python, but works for R (and other languages).

See also:
• Bioconda: https://bioconda.github.io

• Miniconda: https://docs.conda.io/en/latest/miniconda.html

22 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://conda.io
https://bioconda.github.io
https://docs.conda.io/en/latest/miniconda.html

Virtualization
Singularity: https://sylabs.io/singularity/

Containers:
• Virtual OS.
• Run any software on any OS.
• Faster than VM, take less space.
• More stable than virtual envionments.
• Install a container on your computer, run it on a cluster.
• (Do not forget to run tests)

See also:
• Docker: https://www.docker.com

• Docker hub: https://hub.docker.com

• docker2singularity:
https://github.com/singularityhub/docker2singularity

23 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://sylabs.io/singularity/
https://www.docker.com
https://hub.docker.com
https://github.com/singularityhub/docker2singularity

Virtualization
Singularity: https://sylabs.io/singularity/

Containers:
• Virtual OS.
• Run any software on any OS.
• Faster than VM, take less space.
• More stable than virtual envionments.
• Install a container on your computer, run it on a cluster.
• (Do not forget to run tests)

See also:
• Docker: https://www.docker.com

• Docker hub: https://hub.docker.com

• docker2singularity:
https://github.com/singularityhub/docker2singularity

23 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://sylabs.io/singularity/
https://www.docker.com
https://hub.docker.com
https://github.com/singularityhub/docker2singularity

Pipeline Management
SnakeMake https://snakemake.readthedocs.io

Pipeline Automation:
• Like a (Python) script calling every steps of your pipeline.
• States which step’s input depends on which step’s output.
• Automates:

• parallelization,
• job submission (e.g. on a cluster),
• Intermediate step tests.

• Works well with Conda and Singularity.
See also:

• Nextflow: https://www.nextflow.io

24 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://snakemake.readthedocs.io
https://www.nextflow.io

Pipeline Management
SnakeMake https://snakemake.readthedocs.io

Pipeline Automation:
• Like a (Python) script calling every steps of your pipeline.
• States which step’s input depends on which step’s output.
• Automates:

• parallelization,
• job submission (e.g. on a cluster),
• Intermediate step tests.

• Works well with Conda and Singularity.
See also:

• Nextflow: https://www.nextflow.io

24 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://snakemake.readthedocs.io
https://www.nextflow.io

Design of Experiment Management
openMOLE: https://openmole.org

DoE:
• Explore the parameters space of your model.
• Automates:

• sampling (understand the response function),
• calibration (optimize parameters to match reality),
• sensitivity analysis,
• job submission.

See also:
• modeFrontier: https://engineering.esteco.com/modefrontier

• ModelCenter:
https://www.phoenix-int.com/product/modelcenter-integrate/

25 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://openmole.org
https://engineering.esteco.com/modefrontier
https://www.phoenix-int.com/product/modelcenter-integrate/

Design of Experiment Management
openMOLE: https://openmole.org

DoE:
• Explore the parameters space of your model.
• Automates:

• sampling (understand the response function),
• calibration (optimize parameters to match reality),
• sensitivity analysis,
• job submission.

See also:
• modeFrontier: https://engineering.esteco.com/modefrontier

• ModelCenter:
https://www.phoenix-int.com/product/modelcenter-integrate/

25 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://openmole.org
https://engineering.esteco.com/modefrontier
https://www.phoenix-int.com/product/modelcenter-integrate/

Metadata
CookieCutter: https://cookiecutter.readthedocs.io

Projects Templates:
• Create project directories and base files.
• Allows to follow best practices.
• Avoids forgotting important features.
• Example: cookiecutter

gh:snakemake-workflows/cookiecutter-snakemake-workflow

See also:
• Search for templates:

https://github.com/search?q=cookiecutter&type=Repositories

26 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://cookiecutter.readthedocs.io
https://github.com/search?q=cookiecutter&type=Repositories

Metadata
CookieCutter: https://cookiecutter.readthedocs.io

Projects Templates:
• Create project directories and base files.
• Allows to follow best practices.
• Avoids forgotting important features.
• Example: cookiecutter

gh:snakemake-workflows/cookiecutter-snakemake-workflow

See also:
• Search for templates:

https://github.com/search?q=cookiecutter&type=Repositories

26 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://cookiecutter.readthedocs.io
https://github.com/search?q=cookiecutter&type=Repositories

Metadata
License·s

Authors Rights Belongs to:
• Writings = you.
• Diagrams = you.
• Code = your employer(s).
• (But information disclosure authorizations may be limited)

License = what Authors Rights are given to Users, covers:
• Distribution of the work,
• Modification of the work,
• Sublicensing of derived work,
• Linking of the work,
• Patent & Trademark grants.

27 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Metadata
License·s

Authors Rights Belongs to:
• Writings = you.
• Diagrams = you.
• Code = your employer(s).
• (But information disclosure authorizations may be limited)

License = what Authors Rights are given to Users, covers:
• Distribution of the work,
• Modification of the work,
• Sublicensing of derived work,
• Linking of the work,
• Patent & Trademark grants.

27 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Metadata
Free (Software) Licenses
Guarantee Freedom of:

• Use (run) the work,
• Study the source code,
• Redistribute the work,
• Improve the work.

These freedoms are necessary to reproducibility, even more for replicability.
• Distribution = essential,
• Modification = necessary,
• Sublicensing = necessary,
• Linking = important,
• Patent grant = important,
• Trademark grant = optionnal.

28 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Metadata
Free (Software) Licenses
Guarantee Freedom of:

• Use (run) the work,
• Study the source code,
• Redistribute the work,
• Improve the work.

These freedoms are necessary to reproducibility, even more for replicability.
• Distribution = essential,
• Modification = necessary,
• Sublicensing = necessary,
• Linking = important,
• Patent grant = important,
• Trademark grant = optionnal.

28 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Metadata
Suggested Licenses
For source code:

• Affero GPL v3: https://www.gnu.org/licenses/agpl-3.0.en.html

• LGPL v3: https://www.gnu.org/licenses/lgpl-3.0.html

• Apache license: https://www.apache.org/licenses/LICENSE-2.0

For generic work:
• Creative Commons Attribution Share-Alike (CC-BY-SA):

https://creativecommons.org/licenses/by-sa/4.0/

See also:
• Choose a Creative Commons license:

https://creativecommons.org/choose/

• https://en.wikipedia.org/wiki/Comparison_of_free_and_
open-source_software_licences

• YOUR EMPLOYER.
29 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/choose/
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences

Metadata
Suggested Licenses
For source code:

• Affero GPL v3: https://www.gnu.org/licenses/agpl-3.0.en.html

• LGPL v3: https://www.gnu.org/licenses/lgpl-3.0.html

• Apache license: https://www.apache.org/licenses/LICENSE-2.0

For generic work:
• Creative Commons Attribution Share-Alike (CC-BY-SA):

https://creativecommons.org/licenses/by-sa/4.0/

See also:
• Choose a Creative Commons license:

https://creativecommons.org/choose/

• https://en.wikipedia.org/wiki/Comparison_of_free_and_
open-source_software_licences

• YOUR EMPLOYER.
29 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/choose/
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences

Metadata
Suggested Licenses
For source code:

• Affero GPL v3: https://www.gnu.org/licenses/agpl-3.0.en.html

• LGPL v3: https://www.gnu.org/licenses/lgpl-3.0.html

• Apache license: https://www.apache.org/licenses/LICENSE-2.0

For generic work:
• Creative Commons Attribution Share-Alike (CC-BY-SA):

https://creativecommons.org/licenses/by-sa/4.0/

See also:
• Choose a Creative Commons license:

https://creativecommons.org/choose/

• https://en.wikipedia.org/wiki/Comparison_of_free_and_
open-source_software_licences

• YOUR EMPLOYER.
29 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/choose/
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences

Publication
Open-Access

Reproducibility needs open-access.
Preprints repositories:

• arXiv: https://arxiv.org

• bioRxiv: https://www.biorxiv.org

• HAL: https://hal.archives-ouvertes.fr

See also:
• https://en.wikipedia.org/wiki/Open_access

30 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://arxiv.org
https://www.biorxiv.org
https://hal.archives-ouvertes.fr
https://en.wikipedia.org/wiki/Open_access

Publication
Open-Access

Reproducibility needs open-access.
Preprints repositories:

• arXiv: https://arxiv.org

• bioRxiv: https://www.biorxiv.org

• HAL: https://hal.archives-ouvertes.fr

See also:
• https://en.wikipedia.org/wiki/Open_access

30 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://arxiv.org
https://www.biorxiv.org
https://hal.archives-ouvertes.fr
https://en.wikipedia.org/wiki/Open_access

Publication
Zenodo: https://zenodo.org

Long term archiving of code and data associated with a publication:
• Archive Code (with tests),
• Link to a Git tag on Github,
• Archive Data,
• Link to/from publications (via DOI or preprint ID),
• Get a DOI (easier to cite),
• Allows versions.

See also:
• Software Heritage: https://www.softwareheritage.org

31 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://zenodo.org
https://www.softwareheritage.org

Publication
Zenodo: https://zenodo.org

Long term archiving of code and data associated with a publication:
• Archive Code (with tests),
• Link to a Git tag on Github,
• Archive Data,
• Link to/from publications (via DOI or preprint ID),
• Get a DOI (easier to cite),
• Allows versions.

See also:
• Software Heritage: https://www.softwareheritage.org

31 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://zenodo.org
https://www.softwareheritage.org

Part 3

Conclusion

32 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Minimal Workflow
• You start with a notebook, coding a simple proof of concept,
• Once it works, you modularize out some functions,
• You code a module, in a local Git repository.
• You add asserts as you type.
• When a function works, you write the related test.
• The notebook becomes a tutorial on a how to use your code.
• When a feature works, you test it in a container.
• The container installs dependencies via Conda.
• To run experiments, you write a pipeline script, calling the container.
• You push your repository on Gitlab.
• You archive the code & data on Zenodo.
• You write the publication, citing the archives.
• You put the publication on a preprint archive.

33 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Summary
App management

HPC Cluster

Git repository

Step 1

Step 3

Step 2bStep 2aModule

Notebook

Container

Virtual Env

Dependencies

Container
definition
script

Pipeline
script

Gitlab

DockerhubJupyter hub

Built app

Script 1

Script 2

Script 3

Module

Pipeline
manager

34 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Summary
Essential tools

• Git — https://git-scm.com

• Gitlab — https://about.gitlab.com

• Jupyter — https://jupyter.org

• Conda — https://conda.io

• Singularity — https://syslabs.io/singularity

• SnakeMake — https://snakemake.readthedocs.io

• openMOLE — https://openmole.org

• CookieCutter — https://cookiecutter.readthedocs.io

• AGPLv3 — https://www.gnu.org/licenses/agpl-3.0.en.html

• bioRxiv — https://www.biorxiv.org

• Zenodo — https://zenodo.org

35 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://git-scm.com
https://about.gitlab.com
https://jupyter.org
https://conda.io
https://syslabs.io/singularity
https://snakemake.readthedocs.io
https://openmole.org
https://cookiecutter.readthedocs.io
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.biorxiv.org
https://zenodo.org

Happy reproducing.

Read more about reproducible pipelines: [Wratten et al. 2021]
—

Do not hesitate to test your code & to ask questions:
johann.dreo@pasteur.fr

Public benefit
foundation with
official charitable
status

Institut Pasteur
25–28, rue du Docteur Roux

75724 Paris Cedex 15 — France

Part 4

References

37 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

Baker, M., Is there a reproducibility crisis? Nature 533, 2016, 452–454.

Wratten, L., Wilm, A. & Göke, J., Reproducible, scalable, and shareable
analysis pipelines with bioinformatics workflow managers. Nat Methods 18,
2021, 1161–1168.
López-Ibáñez, M., Branke, J., Paquete, L., Reproducibility in Evolutionary
Computation, ACM Transactions on Evolutionary Learning and
Optimization, 1(4), 2021, 1–21.

38 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

	Abstract
	Why Reproducibility?
	A little bit of Epistemology
	Possible Actions

	Tools that helps taking practical actions
	About This Presentation
	Version Control
	Notebooks
	Modern Engineering
	Virtualization
	Pipeline Management
	Design of Experiment Management
	Metadata
	Publication

	Conclusion
	Minimal Workflow
	Summary

	References

