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Abstract

Experimental studies are prevalent in (Bio)informatics, as in many fields
involving computer science.
While reproducibility is crucial for science, it is difficult and often overlooked.
This presentation introduces a curated list of tools that can help improving
reproducibility for experimental computer science.
It may incidentally insists on testing...

2 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021



Abstract

Experimental studies are prevalent in (Bio)informatics, as in many fields
involving computer science.
While reproducibility is crucial for science, it is difficult and often overlooked.
This presentation introduces a curated list of tools that can help improving
reproducibility for experimental computer science.
It may incidentally insists on testing...

2 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021



Summary

01
Why Reproducibility?

04
References

02
Tools that helps taking

practical actions

03
Conclusion

3 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021



Part 1

Why Reproducibility?
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A little bit of Epistemology
The Reproducibility Crisis

The scientific method:
• Falsiability by experimental evidence.
• Experimental findings hold under similar conditions.
• Making for predictable outcoumes.
• That can be used to build up cumulative science.
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A little bit of Epistemology
The problem

Anecdotal evidences:
• More than 70% of researchers have failed in an attempt to reproduce an

experiment [Baker 2016].
• Over 50% have even failed to reproduce THEIR OWN previous work.
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A little bit of Epistemology
Some Terminology

Repeatability: same team, same experiment.
Reproducibility: different team, same experiment.
Replicability: different team, different experiment.
Generalisability: [López-Ibáñez et al. 2021]
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Possible Actions
Cultural Actions

Researchers in permanent positions, please, think of:
• Incentivize negative results publishing (e.g. reproducibility failure).
• Do not oversell positive results.
• Fight bibliometry optimization.
• Better statistics (avoid p-hacking).
• Refrain from hypothesising after results (HARKing).
• Advertise TESTING.
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Possible Actions
Technical Actions YOU can take

In a nutshell: automate everything.
• Keep track of Artifacts:

• Version Control.
• Lab Notebooks.
• Archive Code and Data.
• Save tests.

• Good Engineering:
• Modular Code.
• Test, tests, TESTS.
• Automate Everything.

• Help your future self:
• Containers.
• Pipeline Automation.
• Design of Experiment

Automation.
• Allow Reuse.
• Publish Code and Data.
• Automate tests.
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Part 2

Tools that helps taking practical
actions
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About This Presentation

Assumptions:
• You know how to read and search documentation.
• Difficulty is to know that a tool exists.
• Everybody likes Python.

This presentation:
• Curated list of tools.
• Insists on TESTING.
• Alternatives and more info in the ”see also” section.
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Version Control
Git: https://git-scm.com

Allows to:
• Keep track of changes you make to your code.
• Go back in time, which helps debugging.
• Work with others on the same codebase.
• Works offline.

Basic idea:
• All the source code is versioned (even tests).
• Note: you only version SOURCES, not generated files or data.
• You commit modifications to your code.
• You merge commits in the last version.
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Version Control
Git: https://git-scm.com
See also:

• Shortest tutorial: https://github.com/nojhan/gitcrux

push

pull master

checkout master

merge master

checkout X

stash save

stash pop

commitadd

commit -a -v

status

diff

checkout -b X

pull

Local Remote

Branch

$_

Stash Stage Repository Repository

• Gitk: https://www.atlassian.com/git/tutorials/gitk
• Liquidprompt: https://github.com/nojhan/liquidprompt
• Mercurial: https://www.mercurial-scm.org
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Version Control
Gitlab: https://about.gitlab.com

Online service:
• Online backups of Git repositories (see push & pull commands).
• Issue tracker (e.g. test failure report).
• Merge requests from others (e.g. more tests).
• Basic public page hosting.

See also:
• Tutorial:

https://docs.gitlab.com/ee/topics/plan_and_track.html

• Github: https://github.com

• DevOps (= automate tests): https://en.wikipedia.org/wiki/DevOps
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Notebooks
Jupyter: https://jupyter.org/

Interactive page:
• Sequence of paragraphs, executable code, figures.
• Keep track of your ongoing pipeline/experiment.
• Easy to share with others (as a single archive or an online page).
• Perfect for tutorials or demo (tests are good candidates).

See also:
• Online demo: https://jupyter.org/try

• Tutorial·s: https:
//jupyter.readthedocs.io/en/latest/content-quickstart.html

• Serve notebooks: https://jupyter.org/hub
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Modern Engineering
Tests

Golden rule of software engineering:
1. Modular code (= functions).
2. Tests = first lines of defense:

2.1 Asserts on pre and post-conditions.
2.2 Asserts everywhere in the code.
2.3 Unit tests (= stand-alone test of functions, on simple data).
2.4 Integration tests (= with real data).

3. When you finish a feature: RUN TESTS.
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Modern Engineering
Test!

def f(arg):
assert(0 < len(arg) <= 100) # Pre-condition.
assert(all(0 < i <= 10 for i in arg))
inter = [float(i) for i in arg]
assert(len(inter) == len(arg)) # Intermediate.
result = sum(inter)
assert(0 < result <= len(arg)*10) # Post-condition.
return result

if __name__ == __main__:
assert( f(range(10)) == 45 ) # Basic unit test.
if __debug__: # Those are declutchable when running python -O

failed = False
try:

res = f([0]*10)
except AssertionError:

failed = True
assert(failed)
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Modern Engineering
TEST!
Tests helps:

• Avoiding bugs.
• Finding bugs.
• Fixing bugs.
• On the long term.
• Actually coding faster.
• Double-checking intermediate data of your pipeline.

See also:
• R’s ”stopifnot()” or packages named ”assert”.
• Python’s unittest:

https://docs.python.org/3/library/unittest.html

• PyTest Framework: https://pypi.org/project/pytest

18 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://docs.python.org/3/library/unittest.html
https://pypi.org/project/pytest


Modern Engineering
TEST!
Tests helps:

• Avoiding bugs.
• Finding bugs.
• Fixing bugs.
• On the long term.
• Actually coding faster.
• Double-checking intermediate data of your pipeline.

See also:
• R’s ”stopifnot()” or packages named ”assert”.
• Python’s unittest:

https://docs.python.org/3/library/unittest.html

• PyTest Framework: https://pypi.org/project/pytest

18 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://docs.python.org/3/library/unittest.html
https://pypi.org/project/pytest


Modern Engineering
Continuous Integration

Automate rule #3:
• Every time you push on Gitlab, tests are ran automatically.
• And someone (you) get blamed for pushing bugs.

See also:
• Documentation: https://docs.gitlab.com/ee/ci/
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Virtualization

Objectives:
• Ease the not-built-here affliction.
• Get rid of the dependencies nightmare.
• Avoid the backward incompatibility plague.

Historically:
• Virtual Machines,
• Package Managers & Virtual Environments,
• Containers.
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Virtualization
VirtualBox: https://www.virtualbox.org

Virtual Machine:
• Replace the computer with software.
• Run any OS on any other OS.
• (A bit) slower.
• Takes a lot of space (all the OS is installed).

See also:
• WMware: https://www.vmware.com/
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Virtualization
Conda: https://conda.io

Package manager + virtual environments:
• Install (several) softwares with (several) specific versions.
• Environment = dependencies that just works.
• Run several environments on your machine.
• Distribute environments configurations.
• Historically for Python, but works for R (and other languages).

See also:
• Bioconda: https://bioconda.github.io

• Miniconda: https://docs.conda.io/en/latest/miniconda.html
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Virtualization
Singularity: https://sylabs.io/singularity/

Containers:
• Virtual OS.
• Run any software on any OS.
• Faster than VM, take less space.
• More stable than virtual envionments.
• Install a container on your computer, run it on a cluster.
• (Do not forget to run tests)

See also:
• Docker: https://www.docker.com

• Docker hub: https://hub.docker.com

• docker2singularity:
https://github.com/singularityhub/docker2singularity
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Pipeline Management
SnakeMake https://snakemake.readthedocs.io

Pipeline Automation:
• Like a (Python) script calling every steps of your pipeline.
• States which step’s input depends on which step’s output.
• Automates:

• parallelization,
• job submission (e.g. on a cluster),
• Intermediate step tests.

• Works well with Conda and Singularity.
See also:

• Nextflow: https://www.nextflow.io
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Design of Experiment Management
openMOLE: https://openmole.org

DoE:
• Explore the parameters space of your model.
• Automates:

• sampling (understand the response function),
• calibration (optimize parameters to match reality),
• sensitivity analysis,
• job submission.

See also:
• modeFrontier: https://engineering.esteco.com/modefrontier

• ModelCenter:
https://www.phoenix-int.com/product/modelcenter-integrate/
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Metadata
CookieCutter: https://cookiecutter.readthedocs.io

Projects Templates:
• Create project directories and base files.
• Allows to follow best practices.
• Avoids forgotting important features.
• Example: cookiecutter

gh:snakemake-workflows/cookiecutter-snakemake-workflow

See also:
• Search for templates:

https://github.com/search?q=cookiecutter&type=Repositories
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Metadata
License·s

Authors Rights Belongs to:
• Writings = you.
• Diagrams = you.
• Code = your employer(s).
• (But information disclosure authorizations may be limited)

License = what Authors Rights are given to Users, covers:
• Distribution of the work,
• Modification of the work,
• Sublicensing of derived work,
• Linking of the work,
• Patent & Trademark grants.
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Metadata
Free (Software) Licenses
Guarantee Freedom of:

• Use (run) the work,
• Study the source code,
• Redistribute the work,
• Improve the work.

These freedoms are necessary to reproducibility, even more for replicability.
• Distribution = essential,
• Modification = necessary,
• Sublicensing = necessary,
• Linking = important,
• Patent grant = important,
• Trademark grant = optionnal.
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Metadata
Suggested Licenses
For source code:

• Affero GPL v3: https://www.gnu.org/licenses/agpl-3.0.en.html

• LGPL v3: https://www.gnu.org/licenses/lgpl-3.0.html

• Apache license: https://www.apache.org/licenses/LICENSE-2.0

For generic work:
• Creative Commons Attribution Share-Alike (CC-BY-SA):

https://creativecommons.org/licenses/by-sa/4.0/

See also:
• Choose a Creative Commons license:

https://creativecommons.org/choose/

• https://en.wikipedia.org/wiki/Comparison_of_free_and_
open-source_software_licences

• YOUR EMPLOYER.
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Publication
Open-Access

Reproducibility needs open-access.
Preprints repositories:

• arXiv: https://arxiv.org

• bioRxiv: https://www.biorxiv.org

• HAL: https://hal.archives-ouvertes.fr

See also:
• https://en.wikipedia.org/wiki/Open_access
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• HAL: https://hal.archives-ouvertes.fr

See also:
• https://en.wikipedia.org/wiki/Open_access
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Publication
Zenodo: https://zenodo.org

Long term archiving of code and data associated with a publication:
• Archive Code (with tests),
• Link to a Git tag on Github,
• Archive Data,
• Link to/from publications (via DOI or preprint ID),
• Get a DOI (easier to cite),
• Allows versions.

See also:
• Software Heritage: https://www.softwareheritage.org

31 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://zenodo.org
https://www.softwareheritage.org


Publication
Zenodo: https://zenodo.org

Long term archiving of code and data associated with a publication:
• Archive Code (with tests),
• Link to a Git tag on Github,
• Archive Data,
• Link to/from publications (via DOI or preprint ID),
• Get a DOI (easier to cite),
• Allows versions.

See also:
• Software Heritage: https://www.softwareheritage.org

31 | Johann Dreo | Practical Tools for Improving Reproducibility (of Bioinformatics) | 25/11/2021

https://zenodo.org
https://www.softwareheritage.org


Part 3

Conclusion
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Minimal Workflow
• You start with a notebook, coding a simple proof of concept,
• Once it works, you modularize out some functions,
• You code a module, in a local Git repository.
• You add asserts as you type.
• When a function works, you write the related test.
• The notebook becomes a tutorial on a how to use your code.
• When a feature works, you test it in a container.
• The container installs dependencies via Conda.
• To run experiments, you write a pipeline script, calling the container.
• You push your repository on Gitlab.
• You archive the code & data on Zenodo.
• You write the publication, citing the archives.
• You put the publication on a preprint archive.
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Summary
App management
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Summary
Essential tools

• Git — https://git-scm.com

• Gitlab — https://about.gitlab.com

• Jupyter — https://jupyter.org

• Conda — https://conda.io

• Singularity — https://syslabs.io/singularity

• SnakeMake — https://snakemake.readthedocs.io

• openMOLE — https://openmole.org

• CookieCutter — https://cookiecutter.readthedocs.io

• AGPLv3 — https://www.gnu.org/licenses/agpl-3.0.en.html

• bioRxiv — https://www.biorxiv.org

• Zenodo — https://zenodo.org
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Happy reproducing.

Read more about reproducible pipelines: [Wratten et al. 2021]
—

Do not hesitate to test your code & to ask questions:
johann.dreo@pasteur.fr

Public benefit
foundation with
official charitable
status

Institut Pasteur
25–28, rue du Docteur Roux

75724 Paris Cedex 15 — France
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