Experimental studies are prevalent in (Bio)informatics, as in many fields involving computer science. While reproducibility is crucial for science, it is difficult and often overlooked. This presentation introduces a curated list of tools that can help improving reproducibility for experimental computer science. It may incidentally insists on testing...

• Keep track of changes you make to your code.

• Go back in time, which helps debugging.

• Work with others on the same codebase.

• Works offline.

Basic idea:

• All the source code is versioned (even tests).

• Note: you only version SOURCES, not generated files or data.

• You commit modifications to your code.

• You merge commits in the last version.

Tests

Golden rule of software engineering:

1. Modular code (= functions).

2. Tests = first lines of defense:

2.1 Asserts on pre and post-conditions. 2.2 Asserts everywhere in the code.

2.3 Unit tests (= stand-alone test of functions, on simple data).

2.4 Integration tests (= with real data).

3. When you finish a feature: RUN TESTS.

TEST!

Tests helps:

• Avoiding bugs.

• Finding bugs.

• Fixing bugs.

• On the long term.

• Actually coding faster.

• Double-checking intermediate data of your pipeline.

See also:

• R's "stopifnot()" or packages named "assert".

TEST!

Tests helps:

• Avoiding bugs.

• Finding bugs.

• Fixing bugs.

• On the long term.

• Actually coding faster.

• Double-checking intermediate data of your pipeline.

See also:

• R's "stopifnot()" or packages named "assert".

• Python's unittest: https://docs.python.org/3/library/unittest.html

• PyTest Framework: https://pypi.org/project/pytest

• Ease the not-built-here affliction.

• Get rid of the dependencies nightmare.

• Avoid the backward incompatibility plague.

Historically:

• Virtual Machines,

• Package Managers & Virtual Environments,

• Containers.

• Ease the not-built-here affliction.

• Get rid of the dependencies nightmare.

• Avoid the backward incompatibility plague.

Historically:

• Virtual Machines, • Package Managers & Virtual Environments, • Containers.

Metadata

License•s

Authors Rights Belongs to:

• Writings = you.

• Diagrams = you.

• Code = your employer(s).

• (But information disclosure authorizations may be limited)

License = what Authors Rights are given to Users, covers:

• Distribution of the work,

• Modification of the work,

• Sublicensing of derived work,

• Linking of the work,

• Patent & Trademark grants.

Metadata

License•s

Authors Rights Belongs to:

• Writings = you.

• Diagrams = you.

• Code = your employer(s).

• (But information disclosure authorizations may be limited)

License = what Authors Rights are given to Users, covers:

• Distribution of the work,

• Modification of the work,

• Sublicensing of derived work,

• Linking of the work,

• Patent & Trademark grants.

Minimal Workflow

• You start with a notebook, coding a simple proof of concept,

• Once it works, you modularize out some functions,

• You code a module, in a local Git repository.

• You add asserts as you type.

• When a function works, you write the related test.

• The notebook becomes a tutorial on a how to use your code.

• When a feature works, you test it in a container.

• The container installs dependencies via Conda.

• To run experiments, you write a pipeline script, calling the container.

• You push your repository on Gitlab.

• You archive the code & data on Zenodo.

• You write the publication, citing the archives.

• You put the publication on a preprint archive.

•

 Shortest tutorial: https://github.com/nojhan/gitcrux

			Local		Remote
		$_			
	Stash	Branch	Stage	Repository	Repository
				pull	
			checkout -b X	
		status		
		diff		
	stash save	add	commit	
			commit -a -v	
	stash pop		checkout master	
			pull master	
			checkout X		
			merge master	
					push
	• Gitk: https://www.atlassian.com/git/tutorials/gitk
	• Liquidprompt: https://github.com/nojhan/liquidprompt
	• Mercurial: https://www.mercurial-scm.org

Git: https://git-scm.com See also:

Modern Engineering

These freedoms are necessary to reproducibility, even more for replicability.

Metadata

Free (Software) Licenses

Guarantee Freedom of:

• Use (run) the work,

• Study the source code,

• Redistribute the work, • Improve the work. These freedoms are necessary to reproducibility, even more for replicability.

Metadata

Suggested Licenses

For source code:

• Affero GPL v3: https://www.gnu.org/licenses/agpl-3.0.en.html