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In this paper, we developed an optimal control of a reaction-diffusion mathematical model, describing
the spatial spread of dengue infection. Compartments for human and vector populations are considered
in the model, including a compartment for the aquatic phase of mosquitoes. This enabled us to discuss
the vertical transmission effects on the spread of the disease in a two-dimensional domain, using
demographic data for different scenarios. The model was analyzed, establishing the existence and
convergence of the weak solution for the model. The convergence of the numerical scheme to the
weak solution was proved. For numerical approximation, we adopted the finite element scheme to
solve direct and adjoint state systems. We also used the nonlinear gradient descent method to solve
the optimal control problem, where the optimal management of government investment was proposed
and leads to more effective dengue fever infection control. These results may help to understand the
complex dynamics driven by dengue and assess the public health policies in the control of the disease.
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1. Introduction

Dengue disease is a major public health problem worldwide, especially in tropical and
subtropical countries such as Brazil, where it has increased in recent years. Preventions and
mechanisms of controlling it may reduce the fatalities to less than 1%.1 The World Health
Organization (WHO) states that about 100 million people have been infected in more than
100 countries from all continents and many people die as a consequence of dengue.1 It is a
viral infection2, 3 febrile disease caused by a virus of the family Flaviridae, transmitted by
female mosquito bites, usually of the genus Aedes aegypti.

There are four distinct serotypes of the dengue virus, DENV1 - DEN4, and any of these
can cause distinct severities: dengue fever (DF), in the classical form and dengue hemor-
rhagic fever (DHF), in the most severe case, causing serious illnesses and death among
children and elderly. In infants, for example, the number of DHF cases has been increas-
ing over the last years, In infants, for example, the number of DHF cases has increased in
recent years. A mathematical modeling of DHF in infants can be seen in Ref. 4.

Humans are the main host of the virus. The dengue virus circulating in the blood of
infected humans is ingested by female mosquitoes during feeding. The virus infects a
mosquito and it may spread over a period of 8–12 days. After this incubation period, influ-
enced by environmental conditions, especially temperature, the virus can be transmitted to
other humans during subsequent feeding and the mosquito remains infectious for the rest
of its life.1, 5

The first fundamental contribution to the mathematical epidemiology was introduced
by Bernoulli to analyze the mortality caused by smallpox.6 The modern study of the epi-
demiological phenomenon began with a study proposed by Ross, in Ref. 7, describing an
epidemic model for malaria. Then, generalization occurred with Kermack and McKendrick,
see Ref. 8 for more details. The progress of applied mathematical modeling in epidemiol-
ogy ranges from research using simple epidemiological models or classical models to the
most sophisticated, incorporating, for example, the class of a vector that causes disease
and interactions with a host. It is worth mentioning the most famous vector–born disease
model introduced by Macdonald et al., Ref. 9, in 1957 that combines Ross’s model with
epidemiological and entomological data to describe malaria transmission.10

In the case of the dengue problem, we can mention the model described in Ref. 11. In
this paper, the authors consider infected, susceptible and recovered human populations, as
well as populations of susceptible and recovered vectors. In our case study, we append a
compartment for mosquitoes in the aquatic phase. The spatial dynamic is also described in
the Ref. 12. The authors introduced a nonlocal and time delay model based on the fact that
mosquitoes can continue to move freely in the environment.

Aedes aegypti eggs are extremely resistant to the dry season. Therefore, in cases where
there are conditions favorable to their development, the eradication may be considered im-
possible. Therefore, efficient mechanisms need to be found to control the disease, reducing
the transmitting mosquito population. The possibilities of controlling the dengue transmit-
ter mosquito most commonly used are: mechanical control and chemical control.13 The
mechanical control, also known as the physical control, essentially consists of the action
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of removing or cleaning containers with clean water to prevent the development of Aedes
aegypti eggs into the adult form of the mosquito.

This action is taken by public health agents and should also be carried out by residents.
Chemical control is carried out using insecticides in regions with an outbreak of dengue. In
this case, the vectors acquire resistance to the insecticides over time,14 increasing the dose
of chemicals to be effective in mosquito control and, consequently, increasing the costs of
the control.

As an alternative, biological control can be used by inserting living organisms into the
environment. In particular, this can be done by inserting sterile male mosquitoes by ra-
diation into endemic regions, expecting that mating with fertile female transmitters will
not generate a new population of transmitting mosquitoes, as described in Refs. 15, 16.
However, this alternative alone is not effective in controlling dengue infection.17, 18 In or-
der to control the mosquito population that causes the transmission of infection, there are
biochemical products, for example biodiesel by-products (see for e.g. Ref. 19 for more
details).

Due to the co-circulation of these different serotypes, the development of a vaccine,
as a preventive control strategy, that is effective and durable for the four types of dengue
serotypes has been a big challenge. In terms of costs, the coexistence of multi serotypes
may causes enormous additional economic costs, as related in Refs. 20.

In Refs. 21, the authors states that vaccination in seropositive individuals reduced the
risk of hospitalizations. Therefore, he vaccine may be an economically viable control strat-
egy, since an infected individual can: (i) reduce the workforce, (ii) increase public costs
for treatment, and (iii) DHF cause high economic costs, due to the severe symptoms. How-
ever, as there is still no effective and durable vaccine providing immunity to all different
serotypes, this imperfect vaccine can give a false sense of protection.22 In this case, there
are serious risks of increases in dengue outbreaks.20

Therefore, the vaccination strategy alone is not enough to control the disease and min-
imize the associated costs. In the absence of effective and efficient vaccines, propagation
can only be done by controlling the population of Aedes.

Improvements in hygiene and in basic sanitation are not being enough to control the
disease, making it one of the biggest challenges in the world. Despite this, knowledge
about the development of new tools and strategies that lead to improvements and progress
in dengue prevention is very important, necessary and still far from ideal.5

In the observational study described in Ref. 23 is shown the epidemiological situation
of dengue in Brazil in the last three decades, by using data of dengue notifications of the
National Surveillance System from 1990 to 2017. In this study, the authors affirmed that
“dengue incidence increased in all Brazilian regions and the interepidemic periods are dis-
tinct in the different regions”.

In this context, we pay particular attention to the question of how to obtain an optimized
investment to reduce the number of cases of dengue infection in an affected area of a
tropical region, particularly in Brazil.

A multi–objective approach to optimal control dengue transmission was introduced in
Ref. 17, that aims to find the most effective ways of controlling the disease. We mention the
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work in Ref. 24 who established a cost function describing an infected population regarding
medical treatment and educational sanitation campaigns.

The focus of our study was to investigate the impact of human motivation to reduce the
mature and aquatic phase of mosquito populations on the dispersal of the vector population,
and the impact of vector dispersal behavior on the spread of disease. We also studied an
optimal control over a large geographic region regarding only the education and sanitation
campaigns in the mosquito compartment in order to analyze the dynamics of both mosquito
and human populations.

We aimed to understand how the disease spreads from a specific location to another,
considering the diffusion coefficients of both infected populations (mosquitoes and hu-
mans). To do this, we proposed an optimal control strategy to decrease the human infected
population acting on the mature and aquatic phase population. We also aimed to solve the
optimization problem using the available data in Brazil, in order to illustrate the reality of
disease spreading. Our contribution provides an in-depth analysis of the optimal control
problem and it outlines a more explicit modeling framework based on real spatial-temporal
data.

In particular, we offer spatially distributed optimal investment during the outbreak that
can help, for example, decision-makers in choosing the best investment strategy to combat
dengue, taking into account the characteristics of each of the five regions, of the Federative
Republic of Brazil. We compared the focus of the control between the whole vector pop-
ulation and aquatic phase population to draw conclusions on the investment effect in each
case.

This paper is organized as follows: in Section 2, we begin by discussing the epidemio-
logical model taking into account the spatial dynamics of the species and control. In Section
3 we perform the numerical simulations, illustrating the infection spreading using real data
under constant control and optimal control on the vector population. In the Appendices
(A.1), we show the numerical scheme proposed to solve the reaction-diffusion model. We
also investigate the existence and convergence of the weak solution of the optimal con-
trol problem. Additional numerical results of dengue dynamics were presented. Finally, we
conclude this paper by making a comparison between the optimal control in the aquatic
phase and the whole vector population.

2. Model Description

In our mathematical model we took into account the interaction between the dengue
mosquito and human populations. We also considered the circulation of a single serotype
of dengue, for both mosquito populations, susceptible and infected. Since we are not con-
sidering the data of the external infected population, we assumed no ongoing immigration
of infected humans. The influence of seasonality (rainfall and temperature) on the mosquito
population level is considered here via the entomological parameters varying with the tem-
perature (see Refs. 25, 26).
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2.1. Dengue Mathematical Model

The populations involved in the epidemiological dynamics proposed in this study are sus-
ceptible and infected for humans, as well as for mosquitoes. Herein, Hs and HI are the
density of human susceptible and infected populations. We denote by Ms and MI the den-
sity of adult susceptible and infected mosquito populations, respectively, while A presents
the density of mosquitoes in the aquatic phase (eggs and larvae). Moreover, the control ν
describes the human motivation to combat mosquitoes.

Fig. 1. Compartmental diagram representing population dynamics of human (H), mosquito (M ), aquatic phase
(A) and mosquito–human interactions.

Figure 1 illustrates all compartments for the aquatic phase, mosquito and human popu
lations separated into two compartments, susceptible and infected populations with their
interactions.

The susceptible mosquito, usually the female Aedes, can become infected if it bites
a human infected with dengue.27 Thus, in regions infected by Aedes, the transmission of
dengue to the population of susceptible humans occurs through the bite of the infected
mosquito Aedes. Note that the human-mosquito interaction is mathematically expressed
as the variation of the infected mosquitoes, positively proportional to the product of the
infected human population to the susceptible mosquito population, normalized by the to-
tal population of humans. Likewise, we consider that the population variation of infected
humans is proportional to the product of the human population susceptible to the infected
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mosquito population, also normalized by the total population of humans. The mosquitoes in
the aquatic phase can give rise to a small proportion of infected mosquitoes by the dengue
virus, through the phenomenon known as vertical transmission.28

The local characteristics are expressed via parameters of the transmission model of
disease and invasion by Aedes aegypti, Tables (1) and (2), respectively.

Table 1. Parameters of Aedes aegypti transmission.

H Human populations (susceptible, infected and recovered) indiv.× km−2

M Mosquito populations (susceptible and infected) indiv.× km−2

σ Recovery rate of humans day−1

µH Mortality rate of human population year−1

b Proportion of the effective bite that transmits infection day−1

βH Probability of vector transmission to humans −
βm Probability of human transmission to the vector −

Table 2. Parameters related to the Aedes aegypti invasion.

C Carrying capacity of aquatic phase of mosquitoes indiv.× km−2

k Ratio between male and female mosquitoes −
δ Per-capita oviposition rate day−1

µA Mortality rate of aquatic stages of mosquitoes day−1

µm Mortality rate of adult mosquito populations day−1

α Transformation rate of water phase to the adult phase day−1

ϵM Diffusion coefficient of mosquitoes km2 × day−1

DH Diffusion coefficient of humans km2 × day−1
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Assuming all assumptions above, we propose the following bidimensional Reaction-
Diffusion dengue model:

∂tMI = ϵM∆MI + fMI (MI , HI , A,Ms, Hs)− ανMI in ΩT := (0, T )× Ω,

∂tHI = DH∆HI + fHI (MI , HI , A,Ms, Hs) in ΩT ,

∂tA = fA(MI , HI , A,Ms, Hs)− ανA in ΩT ,

∂tMs = ϵM∆Ms + fMs(MI , HI , A,Ms, Hs)− ανMs in ΩT ,

∂tHs = DH∆Hs + fHs(MI , HI , A,Ms, Hs) in ΩT ,

∇MI · η = 0, ∇HI · η = 0, ∇Ms · η = 0, ∇Hs · η = 0 on ΣT = (0, T )× ∂Ω

MI(0) = MI,0, HI(0) = HI,0, A(0) = A0, Ms(0) = Ms,0, Hs(0) = Hs,0 in Ω,

(2.1)

where ϵM∆Mi and DH∆Hj are the diffusive fluxes, for i = S, I and j = S, I,R, with
ϵM and DH denoting the diffusion coefficients of mosquitoes and humans, respectively. ∆
and ∇ = x⃗ ∂

∂x + y⃗ ∂
∂y are the Lapacian and gradient operators in the x and y directions

in Cartesian coordinate system, respectively. Moreover, we denote by η(x, y) the normal
vector on ∂Ω. The parameter ν (indiv. × km−2) represents the control applied to the
mosquito population in the aquatic phase. The interaction terms are written as follows:

fMI (MI , HI , A,Ms, Hs) := αA− µmMI +
bβmMsHI

H

fHI (MI , HI , A,Ms, Hs) :=
bβHHsMI

H
− µHHI − σHI

fA(MI , HI , A,Ms, Hs) := kδ

(
1− A

C

)
(Ms +MI)− (µA + α)A

fMs(MI , HI , A,Ms, Hs) := α(1− ρ)A− µmMs −
bβmMsHI

H

fHs(MI , HI , A,Ms, Hs) := µH(H −Hs)−
bβHHsMI

H

The temperature can affect transmission dynamics, influencing rates of development
and mortality of immature mosquitoes, as well as the number of eggs deposited. As de-
scribed in Ref. 29, the entomological parameters can be established in the modeling ac-
cording to local characteristics, for example, by varying with temperature, as shown in
Table 3.

The dependence of the ovipositional rate on the temperature can be modeled consider-
ing the values of ovipositions published in Ref. 25, making it possible to define different
scenarios in relation to the temperature, at different temperatures. In addition, environmen-
tal carrying capacity and mosquito mortality rates may vary, depending on local rainfall and
temperature. Herein, the spatial domain of Brazil is given by a bounded open set Ω ⊂ R2

with a piecewise smooth boundary ∂Ω. The coefficients DH > 0 and ϵM > 0 are the diffu-
sion for human and mosquito populations, respectively, with DH > ϵM . For the boundary
condition on the brazilian coast, we are assuming null flux. Concerning the continental
borders of the country, we consider a neglected immigration from the human and mosquito
population, i.e. we consider a homogeneous Neumann boundary conditions.
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Table 3. Entomological parameters varying with the temperature.25, 26

oC δ µA µm α

15 0.66 0.038 0.02 0.019
25 6.353 0.061 0.033 0.423
27 7.741 0.071 0.03 0.45
30 8.916 0.098 0.029 0.58
32 8.622 0.123 0.038 0.726

2.2. Control Model

Due to the Aedes aegypti egg resistance to dry seasons, eradication is still far from becom-
ing a reality in areas where the conditions are favorable for the development of mosquitoes
in adult form. Therefore, we studied the optimal the effectiveness of population motiva-
tion on infection reduction. Here, we target the population behavioral activities to combat
mosquitoes, in order to study the effectiveness of the target population motivation effect to
reduce the infected population density.

The Aedes aegypti mosquito can be found in tropical and sub-tropical climates world-
wide living in urban areas in breeding sites such as containers. One of the main com-
plications of dengue disease is the fact that there are four distinct serotypes of dengue
virus (DENV 1–DENV 4). After the primary infection of one serotype of dengue virus, the
secondary infection may develop a lethal complication called Dengue Hemorrhagic Fever
(DHF).30 DHF causes serious illnesses and death among children in some Asian and Latin
American countries.1

In terms of costs, it is clear that the occurrence of at least two different serotypes causes
enormous additional economic costs, as described in Refs 20, in which the vaccination
strategy alone is not enough to control the disease, as well as minimizing the associated
costs.

Our model (2.1) describes the spatio-temporal dynamics of the involved population in
the epidemic scenario on a global scale. Here, we introduce a global strategy to reduce
infection of the human population in large geographical regions.

It is convenient to assume the control as a social action to prevent Aedes breeding
sites, promoving conditions unfavourable to breeding of vectors in their habitats, e.g, mak-
ing sure that all tanks, water deposits and containers are covered and sealed to keep out
mosquitoes. Despite this, the success of this action strongly depends on the government’s
investment, e.g, in educational campaigns.

Now, let the control function ν be governed by the following Ordinary Differential
Equation, based on Refs. 24, 31, where one can see more details and discussions:

d

dt
ν(t, x) = −τ1ν(t, x) + τ2(t, x), (2.2)

where we are denoting x = (x1, x2) ⊂ Ω and t ≥ 0. Also, −τ1 (day−1) and τ2 (value ×
day−1) mean the forgetting rate to promove conditions unfavourable to Aedes breending
and the government’s investment in the combat against Aedes, respectively. The expression
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−τ1ν(t, x), (t, x) ∈ Ω represents the decaying of the control effect, due to forgetfulness in
combating the reproductive mosquito life cycle.

Next Section, we described the optimal control framework for the dengue model.

2.3. Dengue Optimal Control Model

In this Subsection, the existence of the control, the complete optimality system and the
existence of the Lagrange multipliers are shown.32

First, we provide the existence of the solution for the optimal control problem of the
dengue model. Let us consider the following spatial problem for the optimization of our
model:

(P )

 min
τ2

[
J(τ2) =

1

2

(∫∫
ΩT

(
ε1|HI −HI,d|2 + ε2 |τ2|2

)
dx dt

)]
,

subject to the reaction-diffusion system (2.1),

(2.3)

where J(τ2) is the cost function related to τ2. Here ε1 and ε2 are the regularization param-
eters. The main idea is to compute the optimized control that minimizes the cost function
and makes the population of infected humans, HI , as small as possible over time. In Sec-
tion 3, we intend to observe the desired state of the infected human HI,d closer to 0, as
solutions of the optimization problem (P ).

The cost function, J , will be used in the following lemma concerning the existence of
an optimal solution for (2.3).

Lemma 2.1 Given u0 = (MI,0, HI,0, A0,Ms,0, Hs,0) ∈ L2(Ω,R5) and HI,d ∈ L2(ΩT ),
there is a solution τ∗2 of the optimal control dengue problem (2.3).

Proof: For the sequence (un)n = (Mn
I , H

n
I , A

n,Mn
s , H

n
s , τ

n
2 )n, let (τn2 )n be a mini-

mizing sequence. Since J is bounded, we deduce from the definition of J that∫∫
ΩT

|τn2 (t, x)|
2
dxdt ≤ C,

for some constant C > 0. Using this, Theorem Appendix A.1 and A.10, we deduce the
following convergence (upon a subsequence):

(Mn
I , H

n
I ,M

n
s , H

n
s )→ (MI , HI ,Ms, Hs) strongly in L2(ΩT ) and a.e. in ΩT , (2.4)

(Mn
I , H

n
I ,M

n
s , H

n
s ) ⇀ (MI , HI ,Ms, Hs) weakly in L2(0, T ;H1(Ω,R4)). (2.5)

An ⇀ A weakly in L2(ΩT ), (2.6)

With this convergence, we deduce easily:

min
τ2

J(τ2) ≤ J(τ∗2 ) ≤ lim inf
n→∞

J(τn2 ) = min
τ2

J(τ2).

This implies finally that τ∗2 is an optimal control solution to the problem (2.3). This con-
cludes the proof of Lemma 2.1.
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Now, we derive the optimality conditions based on the Lagrangian formulation which
is defined as follows:

L(θ) =

∫∫
ΩT

ε1
2
|HI(t, x)|2 dx dt+

∫∫
ΩT

ε2
2
|τ2(t, x)|2 dx dt+

∫∫
ΩT

∂tMI pMI
dx dt

+

∫∫
ΩT

∂tHI pHI
dx dt+

∫∫
ΩT

∂tApA dx dt+

∫∫
ΩT

∂tMs pMs
dx dt

+

∫∫
ΩT

∂tHs pHs
dx dt−

∑
i∈I

∫∫
ΩT

f i(MI , HI , A,Ms, Hs)pi dx dt

+ εMI

∫∫
ΩT

∇MI · ∇pMI
dx dt+ εMs

∫∫
ΩT

∇Ms · ∇pMs
dx dt (2.7)

+DHI

∫∫
ΩT

∇HI · ∇pHI
dx dt+DHs

∫∫
ΩT

∇Hs · ∇pHs dx dt

+

∫∫
ΩT

(ανMI PMI
+ ανApA + ανMs pMs

) dx dt

+

∫∫
ΩT

(∂tν + τ1ν − τ2)pν dx dt.

where θ = (MI , HI ,Ms, Hs, A, ν, τ2, pMI
, pHI

, pMs
, pHs

, pA, pν) and I = {MI ,

HI , A,Ms, Hs}. The first order optimality system characterizing the adjoint variables is
given by the Lagrange multipliers which result from equating the partial derivatives of
L,with respect to MI , HI , Ms, Hs, A and ν equal to zero:

−∂tpMI
− ϵMI

∆pMI
=
∑

i∈I f
i
MI

(uh)pi − ανpMI
in ΩT ,

−∂tpHI
−DHI

∆pHI
=
∑

i∈I f
i
HI

(uh)pi − ε1HI in ΩT ,

−∂tpA =
∑

i∈I f
i
A(u

h)pi − ανpA in ΩT ,

−∂tpMs
− ϵMs

∆pMs
=
∑

i∈I f
i
Ms

(uh)pi − ανpMs
in ΩT ,

−∂tpHs
−DHs

∆pHs
=
∑

i∈I f
i
Hs

(uh)pi in ΩT ,

(2.8)

where f j
i is the derivative of f j with respect to i for each i, j ∈ I = {MI , HI , A,Ms,

Hs}. We complete system (2.8) with the following conditions (boundary and final time
conditions): {

p(T, ·) = pT(·) = 0 in Ω,

∇p · η = 0 on ΣT ,
(2.9)

for p = pMI
, pHI

, pMs , pHs , pA, pν . Note that to find the optimal conditions, we calculate
the gradient of the functional J(τ2):

(
∂L

∂τ2
, δτ2) =

∫∫
ΩT

(ε2τ2(t, x)− pν(t, x))δτ2dxdt and ∇J(HI , τ2) =
∂L

∂τ2
.

Observe that the optimality condition can be written as follows

∇J(HI , τ2) = 0⇒
∫∫

ΩT

(ε2τ2(t, x)− pν(t, x))dxdt = 0. (2.10)
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Now, we define the following solution operator:
A : L2(ΩT )→ L2(0, T,H1(Ω,R5)), by (MI , HI , A,Ms, Hs) = S(τ2) for τ2 ∈ L2(ΩT )

and (MI , HI , A,Ms, Hs) is the solution to (2.1). Note that the control dengue system
(2.1) together with the initial data u0 ∈ L2(Ω,R5), the existence of the weak solution
(MI , HI , A,Ms, Hs) is guaranteed for any feasible control τ2 ∈ L2(ΩT ) by Theorem
Appendix A.1. Therefore, we have the following proposition.

2.1 Control to state map The control to state mapping

τ2 → (MI , HI , A,Ms, Hs)

is well defined for the problem: (2.8)-(2.9).

Now we have the following result where the proof is similar to Theorem (Appendix
A.1).

2.2 First order necessary optimality conditions Let u∗ = (M∗
I , H

∗
I , A

∗, M∗
s , H

∗
s ) be a

local solution to the control dengue system (2.1). Then, there is a unique Lagrange multi-
plier p∗ = (p∗MI

, p∗HI
, p∗Ms

, p∗Hs
, p∗A, p

∗
ν) in L2(0, T,H1(Ω,R5))×C([0, T ], L2(Ω)) such

that the pair (p∗MI
, p∗HI

, p∗Ms
, p∗Hs

, p∗A, p
∗
ν) is a weak solution to the adjoint equations (2.8)-

(2.9). Moreover, the optimality condition (2.10) holds for almost all t ∈ [0, T ].

3. Computational Simulations

In this section, we investigate the simulation output of the numerical methods described
above. We start by illustrating the evolution of infected humans with respect to various
governmental investments. Next, we explain the resolution steps of the optimization pro
blem, described in (8). Finally, we present the optimal control solution according to spatial
epidemiological data in Brazil.

3.1. Numerical results of the primal problem

Here, we implement the numerical schemes defined in Appendix (A.1).33, 34 First, we
choose different values of governmental investment τ2 in the direct problem to investigate
its influence on the infected population.

In Figure 2, we present the mosquito mortality (µm(x)) and transformation rate from
the aquatic to mature phase (α(x)) in a gray–scale map based on statistics from Brazil
issued by the Ministry of Health.35 Moreover, we plot the susceptible human distribution
throughout Brazil. The remaining parameters are taken as shown in Table (4)-(5). For the
spatial dynamics of human and mosquito populations, we chose classical diffusion. In the
absence of data to indicate the real proportion of mosquitoes per humans by regions, we
assume M(0)

H(0) = 2, as described in Ref. 36, considering Hs(0) = H(0) − HI(0) = and
Ms(0) = M(0) −MI(0). We intend to include in future works this heterogeneity in the
modeling, carrying out a careful study in order to determine the correct proportion for each
region of Brazil Tables (4) and (5) show all the biological parameters used for the numerical
simulations.
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(a) (b) (c)

Fig. 2. Brazil’s map and distributions of the data. (a) The mosquito population mortality; (b) The transformation
from aquatic to mature phase and (c) Susceptible humans initial distributions, to be considered for µm, α and
Hs(0), respectively.

Table 4. Biological parameters for the numerical simulations (days−1).

C µA µH µm δ σ b

13 0.0583 0.0457 Figure 2(a) 6.353 0.96 1.0

k βH βm α ϵM DH ρ

0.5 1.0 1.0 Figure 2(b) 0.005 0.007 0.01

Table 5. Initial conditions.

MI(0) HI(0) A(0) MS(0) HS(0) ν(0) τ2(0)

1.0 0.0 0.0 200.0 Figure 2(c) 0.05 0.004

In order to obtain a realistic epidemiological behavior of the spread of dengue infection
in Brazil, we use the real geometry of Brazil’s map as a computational domain in model
(2.1). We also extracted the distribution of mortality and birth rates of the vector population
from dengue risk distribution in 2008.35

First, we simulated the dynamics of the spread of dengue considering the absence of
any strategy of control. Figure 3 shows the sequences of numerical results for populations
of infected humans and susceptible mosquitoes in Brazil, when there was no government
intervention, ie., τ2 = 0.0.

These results are qualitatively similar to those obtained in 2015 and 2016, where the
outbreaks were recorded in 2015, with 1,688,688 cases, as noted in.23

The computational results in Figure 4 show the spatial distribution of dengue disease
in the epidemiological scenario described by the discretized model (2.1) and Eq. (2.2).
Using different values of governmental investment, we plot the corresponding results of
the infected population.

Figures 4(a), 4(c) and 4(e) present the dynamics of infected humans at time t = 200

and using τ2 = 0.0, τ2 = 5.0 and τ2 = 14.1, respectively. Figures 4(b), 4(d) and 4(f)
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(a) t=100 (b) t=100

(c) t=150 (d) t=150

(e) t=200 (f) t=200

Fig. 3. Numerical results of infected human and susceptible mosquito spatial distribution of densities using the
arbitrary values τ1 = 0.1 and τ2 = 0.0.



April 19, 2023 16:35 WSPC/INSTRUCTION FILE ws-jbs-fernandolps

14 dos Santos, Bendahmane, Erraji and Karami

(a) τ2 = 0.0 (b) τ2 = 0.0

(c) τ2 = 5.0 (d) τ2 = 5.0

(e) τ2 = 14.1 (f) τ2 = 14.1

Fig. 4. Numerical results of the two-dimensional spatial distribution of the population densities varying the values
for τ2 in the model (2.1). The left and right side figures correspond to densities of the infected human population
and the aquatic phase, respectively. Parameters for the numerical simulation: τ1 = 0.1 fixed and T = 200 days.
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show the corresponding aquatic phase distribution at time t = 200. From these results, one
can observe that in normal circumstances the dynamics of the infected population rises in
endemic areas in Brazil (Central-West).

Comparing the numerical results shown in the sequences of Figures 4(a), 4(c) and 4(e),
it can be observed that the infected population decreases when the governmental investment
values increase. In addition, the South and North of Brazil show lower growth in terms of
dengue infection.

These results strongly agree with the new Rapid Assessment Survey for Aedes aegypti
(LIRAa), which indicates 357 Brazilian municipalities at risk of dengue outbreak, Zika and
Chikungunya. Based on the last LIRAa bulletin, the northeastern region had the highest
number of probable cases in relation to the total number of probable cases of dengue in the
country (239,076 probable cases in November 2017), presenting 84,051 cases (35.2%). The
Central-West, Southeast, North and South regions presented 74,691 cases (31.2%), 55,381
cases, (23.2%), 21,057 cases (8,8%) and 3,896 cases (1,6%), respectively.37

Brazil has a diverse climate due to several factors, e.g., natural relief of the terrain
and territorial extension. The Northern area of Brazil includes most of the Amazon basin.
The Amazon region is notoriously humid, with high annual precipitation. Moreover, the
Amazon has the largest rainforest in the world.

In the South, the annual average temperatures range from 14oC to 22oC. In winter
and summer, the maximum and minimum rainfall ratios are recorded, respectively. These
conditions are not favorable for dengue mosquito growth.38 In agreement with this, we
present the numerical results shown in Figure 4(e), where the density of infected humans
in both these areas is less than the others.

Despite this result, using a time-space constant investment, τ2 = 14.1, may lead to
unsatisfying results. In the next Section, we will investigate the optimal control for the
dengue model, as the previous analysis described in Section 2.3.

3.2. Minimization Algorithm

We established the optimal control strategy for the problem. In a finite element framework,
we divided the map of Brazil into several parts (South (S), Northeast (NE), Northwest
(NW), Central-West (CW) and Southeast (SE)). Consequently, we define the investment
parameter τ2(t, x) as follows:

τ2(t, x) =τS2 (t)1ΩS
(x) + τNE

2 (t)1ΩNE
(x) + τNW

2 (t)1ΩNW
(x)

+ τCW
2 (t)1ΩCW

(x) + τSE
2 (t)1ΩSE

(x),

where τ i2 > 0 is the governmental investment in Ωi for i = S,NE,NW,CW,SE and 1 is
the indicator function. To implement the optimal control, we developed an algorithm with
all the computational requirements to ensure the global convergent. For this, a nonlinear
conjugate gradient method is considered in the algorithm based on the Hager and Zhang, in
Ref. 39. In order to investigate the optimal investment in each area of Brazil, we followed
the procedure of minimization, as described in Algorithm 3.1.
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Algorithm 3.1 The procedure of minimization to solve the optimal control problem.
1: Input: MI,0, HI,0, A0,Ms,0, Hs,0, ν0, err ← 1

2: Initialize: τ02 , α, tol, k ← 0

3:

4: while ||∇J(τk2 )|| > tol do
5: for t = t1, ..., tfinal do
6: Giving τk2 Compute Mh

I , H
h
I , A

h, Mh
s , H

h
s from the direct problem;

7: end for
8: Compute the cost function J(τk2 , HI)

9: for t = tfinal, ..., t0 do
10: Giving τk2 , M

h
I Mh

s , H
h
I , H

h
s and Ah, compute phMI

, phHI
, phA, p

h
Ms

, phHs

by solving the adjoint problem;
11: end for
12: Compute the gradient gk+1 = ∇J(τk2 , phν );
13: Compute yk = gk+1 − gk
14: Compute step length αk

15: Update the values of τ2 τk+1
2 = τk2 + αkdk;

16: Compute βk = (yk − 2dk
||yk||2

dTk yk
)T

gk+1

dTk yk
17: dk = −gk + βkdk−1;
18: Update the direction dk = gk + βkdk−1

19: k ← k + 1

20: end while

3.3. Numerical Results of the Optimal Control Problem

In this section, we aim to obtain an optimal governmental investment, τ2, in order to reduce
the spread of dengue fever in Brazil. We provide a comparative study between the dynamics
of infected population scenarios.

The reduction of infection in the domain, shown in the Figures 5(a), 5(c) and 5(e), is
induced by the reduction of the vector population in the critical regions, as shown in Figures
5(b), 5(d) and 5(f).

We observed in the controlled case that the susceptible mosquito population can be
found in targeted areas (Northeast, Southeast, Central-West). The spatial distribution den-
sities of infected mosquito can be see in Appendix B.
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(a) t=100 (b) t=100

(c) t=150 (d) t=150

(e) t=200 (f) t=200

Fig. 5. Spatial distribution of the densities of the infected human and the susceptible mosquito populations apply-
ing the optimal control solution for the optimal τ2(t), with τ1 = 0.1.
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3.4. Cost Function and Optimal Investment

We also investigate the infected population dynamics considering the optimal control ap-
plying in two different cases: 1. on the total of the mosquito population and 2. on the aquatic
phase. For example, in Figure 6 we have a larger controlled infected population in the first
case (Figure 6(b)) than in the second case (Figure 6(a)).

(a) t=200 (b) t=200

Fig. 6. Comparison of infected human population distribution applying the control in the cases: (a) on the total
mosquito population and (b) on aquatic phase.

We observe that the iterative process described previously in Algorithm 3.1 leads to the
optimal value of investment. In Figure 7, we depict the optimal control on human infection
acting only in the aquatic phase of the mosquitoes. In Figure 8, the optimal control was
applied in the aquatic phase, susceptible and infected populations.

During iterations of the optimization strategy, we describe the cost function values,
as illustrated in Figure 8(a). We compute the gradient norm at each iteration. Figure 8(b)
shows a decreasing value of the gradient norm with precision 10−13. Figure 8(c) presents
the optimal governmental investment over time. The corresponding minimum value of the
cost function is set to 3500. In this case, the optimal solution is better compared to its
counterpart in Figure 7.

In the Central-West, Northeast and Southeast the investment must maintain larger val-
ues. A reasonable investment in these areas must occur in order to lessen the infection,
which may relieve the transmission in epidemiologically active regions.

It can be concluded that the government investment should be intense in the middle
of the epidemiological period as a preventive dengue control. Otherwise, the densities of
infected humans may grow, if the government investment decrease. This is strongly cor-
roborated with Refs 38, where affirm that particular attention must be paid to the issue of
“sustainability” of dengue vector control strategies, which should be maintained, monitored
and with an “affordable cost”.
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To illustrate this fact, a similar behavior was appointed by Refs 22, where the authors
confirmed the hypothesis that populations affected by dengue tend to relax vector control
habits, if a vaccine is available. The authors also stated that the likely dengue vaccine may
not be 100% effective. This fact can cause a false sense of perfect protection and, therefore,
its introduction can increase the intensity of transmission.
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(a) J(τ2)

(b) ∇J(τ2)

(c) τ2

Fig. 7. Computational aspects of the Algorithm (3.1) applied only on the aquatic phase: (a) The optimal solution
for τ2; (b) The gradient norm, ∇J(τ2), at each iteration; (c) Cost function, J(τ2), evolution during the iterations.
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(a) J(τ2)

(b) ∇J(τ2)

(c) τ2

Fig. 8. Computational aspects of the Algorithm (3.1) applied on the susceptible and infected populations, and also
on the aquatic phase: (a) The optimal solution for τ2; (b) The gradient norm, ∇J(τ2), at each iteration; (c) Cost
function, J(τ2), evolution during the iterations.
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Based on the previous analysis and results, we may recommend the optimal manage-
ment as the most accurate solution for the government investment in terms of dengue con-
trol and also for the infection detraction. Next Section, we draw the main conclusions of
this analytical and numerical investigation on the dengue disease problem.

4. Conclusions

The dynamics of human-mosquito interaction in the dengue problem involves many com-
plexities. In the present work, we developed an optimal control for a spatial model to iden-
tify the most accurate optimal strategy to curtail the spread of the dengue infection in Brazil,
where the incidence continues to increase.

We proposed a numerical scheme in order to approximate the optimal control model
and we have investigated the convergence of the finite element scheme to the weak solution.

To obtain realistic epidemiological results of the spread, we solved the optimal problem
considering data of dengue disease in Brazil. The optimal control solutions was proposed
for different regions of Brazil, where the optimal management of government investment
leads to more accurate results, in terms of dengue fever infection detraction. However,
further studies should be undertaken to improve the results, especially in the diffusion phe-
nomenon in the context of dengue.

Therefore, the main conclusions that can be drawn are the following:

(1) The dynamic of the infected population rises in endemic areas in Brazil’s Central-West
region;

(2) The infection is higher in the Central-West, Northeast and Southeast of Brazil than in
the North and South, in agreement with the data;

(3) In order to optimize the infection, we strongly suggest maintaining the control dur-
ing the epidemic period in the Central-West, Northeast and Southeast regions of the
country;

(4) In the presence of control, our results show that the infected population decreases when
the governmental investment values are increased.

In summary, this research may help to understand the complicated dynamics driven
by tropical diseases, and in the generation of knowledge for the implementation of public
health policies in the control of dengue.
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Appendix A. Analysis of Optimal Control Dengue Model

Here, we establish the existence and convergence of the weak solution of the control dengue
model (2.1) by a discrete Galerkin approach. The convergence proof is based on deriving
a series of a priori estimates and using a general L2-compactness criterion. Moreover, we
show that our optimal control problem has a solution that we characterize using relaxation
techniques to obtain the optimality system.
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A.1. Existence of Weak Solution to the Primal Problem

We will use the following spaces. By Hm(Ω), we denote the usual Sobolev space of order
m. Given T > 0 and 1 ≤ p ≤ ∞, Lp(0, T ;R) denotes the space of Lp integrable functions
from the interval [0, T ] into R. Let T be a regular partition of Ω into tetrahedral K with
boundary ∂K and diameter hK . We define the mesh parameter h = maxK∈T {hK} and
the associated finite element space V h, for the approximation of the population density.
That is, the involved space is defined as:

V h = {s ∈ C0(Ω̄) : v|K ∈ P1(K) for all K ∈ T }.

The semidiscrete Galerkin finite element formulation then reads: For t > 0, find
Mh

I (t), H
h
I (t), A

h(t),Mh
s (t), H

h
s (t) ∈ V h such that (with the standard finite element no-

tation for L2 scalar products), one has:



∫∫
ΩT

∂tM
h
I (t)ϕ

h
1dxdt+ ϵM

∫∫
ΩT

∇Mh
I (t) · ∇ϕh

1dxdt

=

∫∫
ΩT

(
fMI (uh)− ανhMh

I

)
ϕh
1dxdt∫∫

ΩT

∂tH
h
I (t)ϕ

h
2dxdt+DH

∫∫
ΩT

∇Hh
I (t) · ∇ϕh

2dxdt

=
∫∫

ΩT

(
fHI (uh)

)
ϕh
2dxdt∫∫

ΩT

∂tA
h(t)ϕh

3dxdt =

∫∫
ΩT

(fA(uh)− ανhAh)ϕh
3dxdt,∫∫

ΩT

∂tM
h
s (t)ϕ

h
4dxdt+ ϵM

∫∫
ΩT

∇Mh
s (t) · ∇ϕh

4dxdt

=
∫∫

ΩT
(fMs(uh)− ανhMh

s )ϕ
h
4dxdt,∫∫

ΩT

∂tH
h
s (t)ϕ

h
5dxdt+DH

∫∫
ΩT

∇Hh
s (t) · ∇ϕh

5dxdt

=
∫∫

ΩT
fHs(uh)ϕh

5dxdt,

(A.1)

for all ϕh
i ∈ V h for i = 1, 2, 3, 4, 5. In addition, we set Mh

I (0) = PV h(MI,0), Hh
I (0) =

PV h(HI,0), Ah(0) = PV h(A0), Mh(0) = PV h(M0), and Hh
s (0) = PV h(Hs,0).

A classical backward Euler integration method is used for the time discretization of
(A.1) with time step ∆t = T/N . This results in the following fully discrete method: for
t > 0, find Mh

I (t), H
h
I (t), A

h(t),Mh
s (t), H

h
s (t) ∈ V h such that:

(
Mh

I , H
h
I , A

h,Mh
s , H

h
s

)
(t,x) =

(
Mh,n

I , Hh,n
I , Ah,n,Mh,n

s , Hh,n
s

)
(x)11((n−1)∆t,n∆t](t),
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satisfies the following system:

(
Mh,n

I −Mh,n−1
I

∆t
, ϕh

1

)
Ω

+ ϵM

(
∇Mh,n

I ,∇ϕh
1

)
Ω

=
(
fMI (uh,n)− ανn,hMn,h

I , ϕh
1

)
Ω(

Hh,n
I −Hh,n−1

I

∆t
, ϕh

2

)
Ω

+DH

(
∇Hh,n

I ,∇ϕh
2

)
Ω
=
(
fHI (uh,n), ϕh

2

)
Ω(

Ah,n−Ah,n−1

∆t
, ϕh

3

)
Ω

=
(
fA(uh,n)− ανn,hAh,n, ϕh

3

)
Ω
,(

Mh,n
s −Mh,n−1

s

∆t
, ϕh

4

)
Ω

+ ϵM
(
∇Mh,n

s ,∇ϕh
4

)
Ω

=
(
fMs(uh,n)− ανn,hMn,h

s , ϕh
4

)
Ω
,(

Hh,n
s −Hh,n−1

s

∆t
, ϕh

5

)
Ω

+DH (∇Hs(t),∇ϕ5)Ω =
(
fHs(uh,n), ϕh

5

)
Ω
,

(A.2)

for all ϕh
i ∈ V h with i = 1, ..., 5 and for all n ∈ {1, . . . , N}; the initial condition takes the

form of:

(Mh,0
I , Hh,0

I , Ah,0,Mh,0
s , Hh,0

s ) = (PV h(MI,0),PV h(HI,0),PV h(A0),PV h(Ms,0),PV h(Hs,0)).

Before stating our main results in this section, we give the definition of a weak solution
of our optimal control dengue problem (2.1).

Definition Appendix A.1 A weak solution to dengue system (2.1) is the vec-
tor (MI , HI , A,Ms, Hs) such that MI , HI ∈ L2(0, T,H1(Ω)), ∂tMI , ∂tHI ∈
L2(0, T, (H1(Ω)′)), A,Ms, Hs ∈ C([0, T ], L2(Ω)), and satisfying the following weak
formulation:

∫∫
ΩT

∂tMI(t)ϕ1dxdt+ ϵM

∫∫
ΩT

∇MI(t) · ∇ϕ1dxdt

=
∫∫

ΩT

(
fMI (u)− ανMI

)
ϕ1dxdt∫∫

ΩT

∂tHI(t)ϕ2dxdt+DH

∫∫
ΩT

∇HI(t) · ∇ϕ2dxdt =

∫∫
ΩT

fHI (u)ϕ2dxdt∫∫
ΩT

∂tA(t)ϕ3dxdt =

∫∫
ΩT

(
fA(u)− ανA

)
ϕ3dxdt,∫∫

ΩT

∂tMs(t)ϕ4dxdt+ ϵM

∫∫
ΩT

∇Ms(t) · ∇ϕ4dxdt

=
∫∫

ΩT

(
fMs(u)− ανMs

)
ϕ4dxdt,∫∫

ΩT

∂tHs(t)ϕ5dxdt+DH

∫∫
ΩT

∇Hs(t) · ∇ϕ5dxdt =

∫∫
ΩT

fHs(u)ϕ5dxdt,

(A.3)

for all ϕ1, ϕ2, ϕ4, ϕ5 ∈ L2(0, T,H1(Ω)) and ϕ3 ∈ C([0, T ], L2(Ω)).

Our first result for the primal control dengue equations is as follows.

Theorem Appendix A.1 Assume u0 = (MI,0, HI,0, A0,Ms,0, Hs,0) ∈ L2(Ω,R5), then

the finite element solution uh,n =
(
Mh,n

I , Hh,n
I , Ah,n,Mh,n

s , Hh,n
s

)
, generated by (A.2),
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converges along a subsequence to u = (MI , HI , A,M,H) as h → 0, where u is a weak
solution of (2.1).

Proof sketched: First, we prove that (A.2) admits a discrete solution un
h =

(
Mh,n

I ,

Hh,n
I , Ah,n,Mh,n

s , Hh,n
s

)
. Let Eh := (V h

H)5 be a Hilbert space endowed with the obvious

norm and Φh =
(
ϕh
1 , ϕ

h
2 , ϕ

h
3 , ϕ

h
4 , ϕ

h
5

)
∈ Eh. We now define the mapping A : Eh → Eh

by[
A
(
uh,n),Φh]
=

(
Mh,n

I −Mh,n−1
I

∆t
, ϕh

1

)
Ω

+ϵMI

(
∇Mh,n

I ,∇ϕh
1

)
Ω
−
(
fMI (un

h)− ανn,hMn,h
I , ϕh

1

)
Ω

+

(
Hh,n

I −Hh,n−1
I

∆t
, ϕh

2

)
Ω

+DHI

(
∇Mh,n

I ,∇ϕh
2

)
Ω
−
(
fHI (un

h) , ϕ
h
2

)
Ω

+

(
Ah,n−Ah,n−1

∆t
, ϕh

3

)
Ω

−
(
fA(un

h)− ανn,hAh,n , ϕh
3

)
Ω

+

(
Mh,n

s −Mh,n−1
s

∆t
, ϕh

4

)
Ω

+ϵMs

(
∇Mh,n

s ,∇ϕh
4

)
Ω
−
(
fMs(un

h)− ανn,hMn,h
s , ϕh

4

)
Ω

+

(
Hh,n

s −Hh,n−1
s

∆t
, ϕh

5

)
Ω

+DHs

(
∇Hh,n

s ,∇ϕh
5

)
Ω
−
(
fHs(un

h) , ϕ
h
5

)
Ω
,

for all Φh ∈ Eh. Note that the mapping A depends formally on a fixed uh,n−1. Next, it is
easy to obtain the following bounds from the discrete Hölder inequality.[

A
(
uh,n

)
,Φh

]
≤ C

∥∥uh,n
∥∥
Eh

∥∥Φh
∥∥
Eh

,

for all uh and Φh in Eh. This implies that A is continuous. Our goal now is to show that

[A(uh,n),uh,n] > 0 for
∥∥uh,n

∥∥
Eh

= r > 0, (A.4)

for a sufficiently large r. This implies (see for e.g. Ref.33) that there exists uh,n such that
A(uh,n) = 0. We can observe that from Young and Poincare inequalities:

[A(uh,n),uh,n] ≥ C1(∆t)
∥∥uh,n

∥∥2
Eh
− C2(∆t)

∥∥uh,n−1
∥∥2
L2(Ω)

+ C3. (A.5)

Then, for a given ,uh,n−1 we deduce from (A.5) that (A.4) holds for r large enough (recall
that

∥∥∥uh,n
h

∥∥∥
Eh

= r). Hence, we obtain the existence of at least one solution to the discrete

Galerkin scheme (A.2).
Next, we establish several a priori (discrete energy) estimates, which will eventually imply
the desired convergence results.

We start by proving the non-negativity of the discrete solution. To do this, we use
(A.2) with ϕh

1 = −(Mh,n
I )−, ϕh

2 = −(Hh,n
I )−, ϕh

3 = −(Ah,n)−, ϕh
4 = −(Mh,n

s )−

and ϕh
5 = −(Hh,n

s )−, and we sum over n = 1, . . . , k for all 1 < k ≤ N . Using discrete
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Granwall inequality, the result is:∫
Ω

(∣∣∣(Mh,k
I )−

∣∣∣2 + ∣∣∣(Hh,k
I )−

∣∣∣2 + ∣∣(Ah,k)−
∣∣2 + ∣∣(Mh,k

s )−
∣∣2 + ∣∣(Hh,k

s )−
∣∣2) dx

≤
∫
Ω

(∣∣∣(Mh,0
I )−

∣∣∣2 + ∣∣∣(Hh,0
I )−

∣∣∣2 + ∣∣(Ah,0)−
∣∣2 + ∣∣(Mh,0

s )−
∣∣2 + ∣∣(Hh,0

s )−
∣∣2) dx,

(A.6)

for all 1 < k ≤ N . Since the initial condition is non-negative, we deduce from (A.6)
the non-negativity of the discrete solution uh. To obtain energy estimates, we substitute
ϕh
1 = Mh,n

I , ϕh
2 = Hh,n

I , ϕh
3 = Ah,n, ϕh

4 = Mh,n
s and ϕh

5 = Hh,n
s in (A.2), and we sum

over n = 1, . . . , k for all 1 < k ≤ N . An application of Young and Gronwall inequalities
yields:

∥(Mh
I , H

h
I , A

h,Mh
s , H

h
s )∥L∞(0,T ;L2(Ω,R5)) ≤ C,∥∥∥∇Mh

I

∥∥∥
L2(ΩT )

+
∥∥∥∇Hh

I

∥∥∥
L2(ΩT )

+
∥∥∥∇Mh

s

∥∥∥
L2(ΩT )

+
∥∥∥∇Hh

s

∥∥∥
L2(ΩT )

≤ C, (A.7)

for some constant C > 0.
Let us now derive estimates of the space and time differences of the uh, which implies

that the uh sequences are relatively compact in L2(ΩT ).
However, this can be done exactly as in 32 and we obtain the following estimates: there

is a positive constant C > 0 depending on Ω, T and u0 , such that:∫∫
Ω′×(0,T )

∣∣∣uh(t, x+ r)− uh(t, x)
∣∣∣2 dx dt ≤ C |r|2+T sup

0<|r|≤δ

∫
Ωr

|uh
0 (x+r)−uh

0 (x)|2,(A.8)

for all r ∈ R3 with Ω′ = {x ∈ Ω, [x, x+ r] ⊂ ΩH}, and:∫∫
ΩH×(0,T−τ)

∣∣uh(t+ τ, x)− uh(t, x)
∣∣2 dx dt ≤ C(τ +∆t). (A.9)

for all τ ∈ (0, T ).
In the next step, we introduce ūh the piecewise affine in t functions in

W 1,∞([0, T ];V h) interpolating the state (uh,n)n=0..N ⊂ V h at the points (n∆t)n=0..N .
From the system (A.2), it is easy to obtain the uniform bound of ∂tū

h in
L2(0, T ; (H1(Ω,R5))∗). Then, the consequence of (A.7), (A.8), (A.9) and Kolmogorov’s
compactness criterion (see, e.g., 34, Theorem IV.25): there exists a subsequence of uh =

(Mh
I , H

h
I , A

h,Mh
s , Hh

s ), not relabeled, such that, as h→ 0:

(Mh
I , H

h
I ,M

h
s , H

h
s )→ (MI , HI ,Ms, Hs) strongly in L2(ΩT )

4 and a.e. in ΩT ,

(Mh
I , H

h
I ,M

h
s , H

h
s ) ⇀ (MI , HI ,Ms, Hs) weakly in L2(0, T ;H1(Ω,R4)),

(∂tM̄
h
I , ∂tH̄

h
I , ∂tM̄

h
s , ∂tH̄

h
s ) ⇀ (∂tMI , ∂tHI , ∂tMs, ∂tHs)

weakly in L2(0, T ; (H1(Ω,R4))∗),

Ah ⇀ A weakly in L2(ΩT )

∂tA
h ⇀ ∂tA weakly in L2(ΩT ). (A.10)
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With the above convergences, we are ready to identify the limit u =

(MI , HI , A,Ms, Hs) as a (weak) solution of the system (2.1). Finally, let ϕ1, ϕ2, ϕ4, ϕ5 ∈
L2(0, T,H1(Ω)) and ϕ3 ∈ C([0, T ], L2(Ω)), then by passing to the limit h → 0 in the
following weak formulation:∫∫

ΩT

∂tM̄
h
I ϕ1dxdt+ ϵM

∫∫
ΩT

∇Mh
I · ∇ϕ1dxdt

=

∫∫
ΩT

(
fMI (uh)− ανhMh

I

)
ϕ1dxdt∫∫

ΩT

∂tH̄
h
I ϕ2dxdt+DH

∫∫
ΩT

∇Hh
I · ∇ϕ2dxdt =

∫∫
ΩT

fHI (uh)ϕ2dxdt∫∫
ΩT

∂tĀ
hϕ3dxdt =

∫∫
ΩT

(
fA(uh)− ανhAh

)
ϕ3dxdt,∫∫

ΩT

∂tM̄
h
s ϕ4dxdt+ ϵM

∫∫
ΩT

∇Mh
s · ∇ϕ4dxdt

=

∫∫
ΩT

(
fMs(uh)− ανhMh

s

)
ϕ4dxdt,∫∫

ΩT

∂tH̄
h
s ϕ5dxdt+DH

∫∫
ΩT

∇Hh
s · ∇ϕ5dxdt =

∫∫
ΩT

fHs(uh)ϕ5dxdt,

thus, we obtain the limit u = (MI , HI , A,Ms, Hs) which is a solution of system (2.1) in
the sense of Definition Appendix A.1.

Appendix B. Optimal Results for Infected Mosquito
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(a) t=100 (b) t=150

(c) t=200

Fig. 9. Spatial distribution of the population density of infected mosquitoes applying optimal control solutions for
τ2(t), with τ1 = 0.1.


