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Abstract

Given a finite extension K{F of degree r of a finite field F in characteristic p, we enumerate all

selfdual skew cyclic codes in the Ore quotient ring Ek :“ KrX˘1; θs{pXkr ´ 1q for any positive

integer k coprime to the characteristic p. We use a new approach based on vector space duality,

which establishes an order reversing and orthogonality preserving bijection between skew codes

and vector subspaces. Finally we implement this enumeration in SageMath.
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Selfdual skew cyclic codes

1 Introduction

Among linear codes, cyclic codes enjoy a rich algebraic structure as they are defined as ideals

of quotient polynomial ring. It endows them with good properties (encoding, decoding, duality,

dimension, distance, length). Coding theorists are searching for generalizations that preserve

these good properties. In this paper, following the paper of D. Boucher, W. Geiselmann and F.

Ulmer from 2006 [BGU06], we generalize cyclic codes by considering left ideals in Ore polynomial

rings rather than in polynomial rings. We thus obtain a much larger class of linear codes called

skew cyclic codes. In our study, we will focus on the selfdual property of these codes.

For a finite extension K{F of finite field of degree r, we define the Ore Laurent polynomial

ring KrX˘1; θs as the quotient of the free K-algebra K〈X〉 by the noncommutative relation:

@k P K, X.k “ θpkq.X , where θ is the Frobenius automorphism of K{F. The center of this

algebra being FrX˘rs, in particular, the ideal generated by the polynomial Xrk ´1 is two-sided.

So we can define skew cyclic pXrk ´ 1,K{Fq-codes in Hamming metric as ideals of the quotient:

Ek :“ KrX˘1; θs{pXrk ´ 1q. We notice that cyclic codes correspond to the special case of skew

cyclic codes where r “ 1.

The duality of skew cyclic codes has been studied by D. Boucher among others. In her paper

[Bou16], an enumeration of selfdual cyclic skew codes for r “ 2 and q prime is given. In her

subsequent article [BBB20], an enumeration of selfdual cyclic skew codes for k “ 1, r “ n and q

prime is provided. In both articles the duality considered is induced by the coordinatewise bilinear

form on the vector space K
rk: ppxiq0ďiărk, pyiq0ďiărkq ÞÑ ř

0ďiărk xiyi. In their conclusions, the

papers suggest to further enumerate all selfdual skew cyclic codes for any values of the order r,

the degree k and the finite base field F. In our paper, we give a complete answer to this question

in the separable case, where k is coprime to the characteristic of F.

For the purpose of stating our main results, we note
ś

1ďlďn

Fl the decomposition of

FrY s{pY k ´ 1q as a product of field extensions of F in an algebraic closure. We note yl, a

primitive element of Fl such that: Fpylq “ Fl. We note Kl :“ K bF Fl. We also note τ , the

involution on the index l induced by the aforementioned duality on K
rk. We get the following

main result.

Theorem 2 (Cf. theorem 43) There exists an explicit bijection between the set of selfdual skew

cyclic codes of Ek and the cartesian product of sets Wpalindromic ˆ Wnonpalindromic, where:

Wpalindromic is the cartesian product over all indexes l invariant by τ of the sets of maximal

isotropic Fl-vector subspaces of Kl.
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Wnonpalindromic is the cartesian product over all remaining unordered pairs of indexes pl, τplqq
(verifying l ‰ τplq) of the sets of Fl-vector subspaces of Kl.

As a byproduct, we get the following counting of selfdual skew cyclic codes of Ek.

Theorem 3 (Cf. theorem 58) The number of selfdual skew cyclic codes of Ek is given by:$
’’’&

’’’%

If p “ 2,
ś

tl|l“τplq,yl“˘1u

sś

i“1

`
qil ` 1

˘ ś

tl|l“τplq,yl‰˘1u

sś

i“1

´
q
i`1{2
l ` 1

¯ ś

ttl,τplqu|l‰τplqu

řk“r
k“0

pqrl ´1q...pqr´k`1

l
´1q

pqkl ´1q...pql´1q

If p ‰ 2,
ś

tl|l“τplq,yl“˘1u

s´1ś

i“0

`
qil ` 1

˘ ś

tl|l“τplq,yl‰˘1u

s´1ś

i“0

´
q
i`1{2
l ` 1

¯ ś

ttl,τplqu|l‰τplqu

řk“r
k“0

pqrl ´1q...pqr´k`1

l
´1q

pqkl ´1q...pql´1q

where ql denotes the cardinal of Fl

Organization of the paper

In section 2, we give an insight for future work on the inseparable case.

In section 3, we give general definitions and notations used in this paper.

In section 4, we define selfdual skew codes.

In section 5, we introduce the evaluation isomorphism Jl. For each xl in Kl satisfying

NormKl{Fl
pxlq “ yl, The isomorphism Jl is the evaluation at xlθ from the central simple Fl-

algebra E
plq
k :“ KlrX˘1; θs{pXr ´ ylq to the simple matrix algebra: EndFl

pKlq.
In section 6, the duality between the left ideals of the endomorphism ring and the kernels

of their generators being order reversing and orthogonality preserving, we deduce from it that

selfdual skew cyclic codes correspond to maximal isotropic subspaces.

In section 7, we provide enumeration algorithms for separable selfdual skew cyclic codes of

the Ore quotient ring: KrX˘1; θs{pXrk ´ 1q.
In section 8, computation results are provided for skew cyclic pXrk ´1,K{Fq-codes and skew

negacyclic pXrk ` 1,K{Fq-codes for |F| ď 9, k ď 9 and r P t4, 6, 8u. The source code of the

SageMath implementation is available at this location:

https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

In appendix A, we provided enumeration algorithms for inseparable selfdual skew cyclic codes

of the Ore quotient ring: KrX˘1; θs{pXrkpm ´ 1q.

2 Insight for future work on the inseparable case

We intend, in a future paper, to address the inseparable case using analogue methods. How-

ever, several crucial elements of the theory have to be adapted in the inseparable case:

Isotropic spaces have to be enumerated on free modules over power series rings with coeffi-

cients in a finite field, and not on finite vector spaces anymore.
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The echelon matrix representation of vector spaces has to be replaced by the Iwasawa de-

composition of free sub-modules over a power series ring.

Fortunately, we can easily enumerate all selfdual skew cyclic codes by multiplying properly

twisted separable selfdual skew cyclic codes with each other as described and illustrated by hand

of SageMath computations in the appendix A.

3 General definitions and notations

3.1 Definitions in finite geometry

Let F be a finite field and let σ be an involutive automorphism of F , we recall that a F -vector

space V can be equipped with a σ-sesquilinear form B satisfying:

Bpxu, yvq “ xσpyqBpu, vq @u, v P V, @x, y P F

We will consider the four following main types of finite geometries.

V equipped with B is said to be an Euclidean space if we have:

σ “ Id and Bpu, vq “ Bpv, uq @u, v P V

V equipped with B is said to be a skew-Euclidean space if we have:

σ “ Id and Bpu, vq “ ´Bpv, uq @u, v P V

V equipped with B is said to be a Hermitian space if we have:

σ2 “ Id , σ ‰ Id and Bpu, vq “ ρpBpv, uqq @u, v P V

V equipped with B is said to be a skew-Hermitian space if we have:

σ2 “ Id , σ ‰ Id and Bpu, vq “ ´ρpBpv, uqq @u, v P V
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Moreover, the endomorphism ring of F -linear endomorphisms EndF pV q is equipped with an

involutive anti-automorphism f ÞÑ f˚ characterised by:

@f P EndF pV q, @u, v P V,Bpu, f˚pvqq “ Bpfpuq, vq

We call this involutive anti-automorphism the adjunction relative to the bilinear form B.

We recall also that a totally isotropic subspace W of V is characterised by W Ă WK and that

such a subspace of (maximal) dimension, half the dimension of the ambiant space, is characterised

by W “ WK.

Finally a hyperbolic pair in V equipped with B is a pair of vectors tu, vu of V satisfying

Bpu, uq “ 0, Bpv, vq “ 0 and Bpu, vq “ 1.

The 2-dimensional subspace ă u, v ą of V spanned by a hyperbolic pair tu, vu is called a

hyperbolic plane.

3.2 Notations

In this paper, we will use the following notations:

• Fq will denote a finite field of cardinal q

• Fl will denote the finite field extension of F such that,
ś

1ďlďn

Fl “ FrY s{pY k ´ 1q

• yl will denote a primitive element of the finite field extension Fl{F, so that we have:

Fpylq :“ Fl

• ql will denote the cardinal of Fl.

• Kl will denote the finite etale Fl-algebra K bF Fl.

• Ek,l will denote the central simple Fl-algebra K bF FlrX ; θs{pXr ´ 1q.

• EndRpV q will denote, for any ring R and R-module V , the endomorphism ring of all R-

linear endomorphisms of V .

• MatR,rˆr will denote, for any ring R, the matrix ring of all r ˆ r square matrices with

entries in R.

• M tr will denote the transpose of the matrix M .

• Id will denote the identity morphism.
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• Jl will denote the evaluation isomorphism

Jl :

$
’&

’%

KlrX˘1; θs „ÝÑ EndFl
pKlq

X ÞÑ xlθ

(3.1)

where NormKl{Fl
pxlq “ yl

• f˚ will denote the adjunction in Ek or E
plq
k .

• f‚ will denote the adjunction in Ek,l or EndFl
pKlq.

• GLnpF q will denote the general linear group of the vector space Fn over the finite field F .

• Lσ will denote the subfield of the field L fixed by the automorphism σ.

• V K will denote the orthogonal of a vector subspace V .

4 Skew cyclic codes

Let F be a finite field of cardinal q and characteristic p. Let K{F be a finite extension of

F of degree r. Let θ be the Frobenius automorphism of K{F: x ÞÑ x
q. Let KrX˘1; θs be the

corresponding Ore Laurent polynomial ring defined as the quotient of the free K-algebra K〈X〉

by the noncommutative relation: @k P K, X.k “ θpkq.X , localized by the powers of X . As

shown in Theorem 1.1.22 in [Jac96], the center of the Ore Laurent polynomial ring KrX˘1; θs is

FrXs Ş
KrX˘rs “ FrX˘rs.

Definition 4 A skew quotient algebra is a quotient algebra KrX˘1; θs{pfpXqq, where f is taken

in the center FrX˘rs.

Remark 5 As quotient ring of the left and right Euclidean domain of skew Laurent polynomials,

KrX˘1; θs, it is a left and right principal ideal ring.

We now turn to the definition of selfdual skew cyclic codes.

Definition 6 The Hamming distance on left ideals of any skew quotient algebra

KrX˘1; θs{pP pXqq is defined as the Hamming distance of the underlying K-vector spaces.

Definition 7 The skew codes of a skew quotient algebra KrX˘1; θs{pP pXqq are its left ideals

seen as vector subspaces over K and equipped with the Hamming metric.
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The skew cyclic codes are skew codes of a skew quotient algebra of the form

KrX˘1; θs{pXkr ´ 1q.
The skew negacyclic codes are skew codes of a skew quotient algebra of the form

KrX˘1; θs{pXkr ` 1q.
The skew constacyclic codes are skew codes of a skew quotient algebra of the form

KrX˘1; θs{pXkr ` αq with α P F
˚.

Definition 8 Choosing for any element of Ek the unique lift in KrX ; θs Ă KrX˘1; θs of degree

strictly less than kr defines an isomorphism of K-vector spaces.

λ : Ek Ñ K
rk

f ÞÑ λpfq
(4.1)

We are interested in the skew code duality for the following coordinatewise bilinear form.

Definition 9 In the canonical base of Krk, we define the coordinatewise bilinear form on K
rk

by: ppxiq0ďiărk, pyiq0ďiărkq ÞÑ
ř

0ďiărk xiyi.

We note that this bilinear form is nondegenerate.

Definition 10 The self-orthogonal skew codes are the skew codes I such that: λpIq Ă λpIqK.

The selfdual skew codes are the skew codes I such that: λpIq “ λpIqK.

As we have dimpλpIqq ` dimpλpIqKq “ r, a necessary condition for selfdual skew codes to

exist is that r is even.

Hypothesis 11 We restrict the study in this paper to even orders 2s :“ r.

5 On the semisimple algebra Ek

5.1 Semi-simplicity of the algebra Ek

For any nonnegative integer k, Xrk ´ 1 is in the center. We can thus quotient the Ore

Laurent polynomial ring by the two-sided ideal pXrk ´ 1q to build the skew cyclic quotient

algebra Ek :“ KrX˘1; θs{pXrk ´ 1q.

Proposition 12 The algebra Ek is semisimple in the separable case where k is coprime to p.
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Proof. The detail of the following proof can be found in Proposition 20.7 in [Wis91]. The quotient

Ek is Artinian so its Jacobson radical must be nilpotent. As k is coprime to p, Ek is separable

and its Jacobson radical must thus be trivial. It follows that Ek is a semisimple algebra over F.

As it is finite-dimensional, it is a cartesian product of simple algebras over F which reduces by

the Wedderburn theorem to a product of matrix algebras over finite, hence commutative, fields

extensions of F.

Remark 13 In the inseparable case where k is not coprime to the characteristic p, the Jacobson

radical is equal to the nilradical generated by pXrk ´ 1q, so Ek is not semisimple anymore. It is

still a product of matrix algebras though, but over an Artinian F-algebra, and not over a field

F anymore.

Hypothesis 14 We place ourselves in the separable case where k is coprime to p, except in the

appendix A where we treat the inseparable case

5.2 The evaluation isomorphism Jl

We will show that the family of evaluation isomorphisms pJlql where Jl is defined by:$
’&

’%

Ek Ñ EndFl
pKlq

X ÞÑ xlθ

with NormKl{Fl
pxlq “ yl, when applied to the chinese remainder decom-

position of the central semi-simple F -algebra Ek, realizes an explicit isomorphism between Ek

and a product of matrix algebras.

Indeed, expressing Ek as an FrY s{pY k ´ 1q-algebra and decomposing Y k ´ 1 in a product of

irreducible polynomials PlpY q over F, we obtain from the chinese remainder theorem:

Ek » KrY,X ; θs{ppY k ´ 1q, Xr ´ Y q » pKrY,X ; θs{pY k ´ 1qq{pXr ´ Y q

Ek »
ˆ
KrY,X ; θs{p ś

1ďlďn

PlpY qq
˙

{pXr ´ Y q

(5.1)

Noting Fl :“ FrY s{pPlpY qq, Kl :“ K bF Fl E
plq
k :“ KlrX˘1; θs{pXr ´ ylq, we get the following

lemma:
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Lemma 15 The map:

Ek
„ÝÑ ś

1ďlďn

E
plq
k

P ÞÑ P mod pXr ´ ylq

(5.2)

is an isomorphism of rings.

We will now study each E
plq
k . Kl is a finite etale extension of the finite field Fl, i.e. a finite

product of finite extensions of Fl. As it has finite cardinality, its norm is surjective and there

exists an element xl in Kl satisfying: NormKl{Fl
pxlq “ yl, so that the evaluation isomorphism

at xlX from E
plq
k :“ KlrX˘1; θs{pXr ´ NormKl{Fl

pxlqq to Ek,l :“ KlrX˘1; θs{pXr ´ 1q is well

defined:

E
plq
k

ĞEvalxlXÑ Ek,l

P pXq ÞÑ P pxlXq

(5.3)

Now we have the obvious evaluation isomorphism X ÞÑ θ, from Ek,l to EndFl
pKlq

Ek,l
EvalθÑ EndFl

pKlq

P pXq ÞÑ P pθq

(5.4)

Composing both evaluation isomorphisms and using lemma 15, we get:

Proposition 16 (see theorem 1.3.12 in [Jac96]) The evaluation map:

pJlql : Ek

pEvalxlθ
q1ďlďnÝÑ ś

1ďlďn EndFl
pKlq

P pXq ˜ÞÝÑ pP pxlθqq1ďlďn

(5.5)

is an isomorphism of central simple algebra over Fl.

Proof. The family pbiXjq0ďiăr,0ďjăr for an Fl base pbiq0ďiăr of Kl is a free family of E
plq
k seen

as Fl vector space. It has cardinality r2. Now the evaluation morphism Evalxlθ is obviously

injective on E
plq
k . So its image has dimension at least r2. But the global dimension of EndFl

pKlq
over Fl is exactly r2. So the evaluation morphism Evalxlθ is surjective as well.
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Moreover we get:

Corollary 17 There is an isomorphism Ek » ś
1ďlďn MatFl,rˆr.

Remark 18 To realize the evaluation isomorphism Jl, a fast computation of preimages of

the norm is needed. One possible method consists in finding an irreducible factor of the skew

polynomial Xr ´ yl in KlrX ; θs. It is described in [CL17].

Remark 19 The evaluation isomorphism Jl is unique up to conjugation by an element of norm

1, i.e. up to another choice of xl as preimage for yl.

5.3 Adjunction on Ek

We will now equip Ek with a nondegenerate bilinear form for which orthogonal left-ideals are

mapped via λ to orthogonal vector spaces. We begin by defining the corresponding adjunction

on Ek. We start from the following F-linear automorphism on KrX˘1; θs

KrX˘1; θs ˚Ñ KrX˘1; θs

ř
i fiX

i ÞÑ ř
iX

´ifi

(5.6)

By linearity one checks on monomials that it is an anti-automorphism:

pfiX igjX
jq˚ “ pfiθipgjqX i`jq˚ “ X´pi`jqfiθ

ipgjq “ X´jgjX
´ifi “ pgjXjq˚pfiX iq˚

Definition 20 We define the adjunction on Ek as the automorphism of Ek induced by the

composition of the adjunction on KrX˘1; θs with the projection on Ek.

Ek
˚Ñ Ek

Ğř
i fiX

i ÞÑ Ğř
i X

´ifi

(5.7)

This definition is licit because the adjunction maps the two-sided ideal pXrk ´ 1q on itself.

Indeed pXrk ´1q˚ is equal to the two-sided ideal pXrk˚ ´ 1q i.e. ´X´rkpXrk ´1q i.e. pXrk ´1q.
We also notice that the adjunction of Ek, as quotient map of an anti-automorphism, is an anti-

automorphism. So it maps the left ideals of Ek to its right ideals.
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We now define a nondegenerate bilinear form corresponding to this adjunction.

Definition 21 The reduced trace bilinear form on Ek is the bilinear map sending f and g in Ek

to TraceK{F ppfg˚qp1qq in F.

The licitness of this definition is readily seen. It does not depend on the choice of repre-

sentatives in KrX˘1; θs. It is readily seen that the adjunction f ÞÑ f˚ satisfies the adjunction

characterisation relative to the reduced trace bilinear form. Indeed for any f,g,h in Ek, we have:

TraceK{F ppfphgq˚qp1qq “ TraceK{F ppfg˚h˚qp1qq “ TraceK{F ppph˚fqg˚qp1qq

Proposition 22 For a left ideal I of Ek, we have λpIKq “ λpIqK.

Proof. Let I be a left ideal of Ek. An element g of Ek is orthogonal to I if and only if we

have: TraceK{Fppfg˚qp1qq “ 0 for all elements f P I. By K-linearity, this holds if and only

if we have TraceK{Fppκfg˚qp1qq “ 0 for all elements κ P K and all elements f P I. By non-

degeneration of TraceK{F, the condition becomes pfg˚qp1q “ 0 for all elements f P I. This in turn

is true if and only if: př
0ďiăkr λpfqiX iXkr´iλpgqpkr´pkr´iqqqp1q “ 0 for all elements f P I since

g˚ “ ř
0ďiăkr X

igkr´i. Finally we obtain the orthogonality condition for the coordinatewise

bilinear form on K
rk:

ř
0ďiăkr λpfqiλpgqi “ 0 for all elements f P I.

We work with the reduced trace bilinear form rather than the coordinatewise bilinear form,

so that we can induce corresponding reduced trace bilinear forms on the Fl-algebras E
plq
k . We

now describe them.

Definition 23 We say that a polynomial is palindromic if the set of its roots in an algebraic

closure does not contain zero and is stable under the inversion map x ÞÑ 1
x
.

Definition 24 Fixing yl, a primitive element in Fl » FrY s{pPlpY qq, we define

the involution τ on the index set t1, . . . , nu of the chinese remainder decomposition,

F rY s{pY k ´ 1q „ÝÑ ś

1ďlďn

F rY s{pPlpY qq, by the relation Pτplqp 1
yl

q “ 0.

As the polynomial Y k ´ 1 is palindromic, the index τplq exists, and τ is obviously invo-

lutive. On the other hand, we can define an involutive F-linear automorphism σ on the ring
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FrY s{pY k ´ 1q by:

σ : FrY s{pY k ´ 1q „ÝÑ FrY s{pY k ´ 1q

Y ÞÑ 1
Y

(5.8)

Definition 25 We induce from σ an automorphism σl from Fl to Fτplq by σl : yl ÞÑ 1
yτplq

. We

define also Id b σl as the involutive isomorphism from Kl to Kτplq that acts trivially on K and

whose restriction to Fl is σl.

The licitness of this definition is readily seen from the chinese remainder decomposition 15.

Definition 26 We define the adjoint of f “ ř
i fiX

i in E
plq
k by f˚ “ ř

i X
´ipId b σlqpfiq in

E
pτplqq
k .

Taking the adjoint mod PlpY q is well defined as PlpY q is central:

pEplq
k PlpY qq˚ “ PlpY q˚

E
plq˚
k “ E

plq˚
k PlpY q˚ “ E

pτplqq
k PτplqpY q

The definition is thus licit.

Proposition 27 The following diagram commutes:

Ek Ek

ś

1ďlďn

E
plq
k

ś

1ďlďn

E
pτplqq
k

˚

„ „

˚

f f˚

pfpPlpXrqqql pf˚pPτplqpXrqqql

˚

„ „

˚

(5.9)

Proof. We check the commutativity of the diagram on an arbitrary element
ř

i fiX
i of the Fl-
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algebra E
plq
k :

ř
0ďiăr

ř
0ďjiădegPl

fiX
i`rji

ř
0ďiăr

ř
0ďjiădegPl

Xrpk´jiq´ifi

př
0ďiăr

ř
0ďjiădegPl

Xrpk´jiq´ifi bF 1pPτplqpXrqqql

př
0ďiăr

ř
0ďjiădegPl

fi bF 1X i`rjipPlpXrqqql př
0ďiăr

ř
0ďjiădegPl

X´ifi bF yτplq
´jipPτplqpXrqqql

př
0ďiăr

ř
0ďjiădegPl

fi bF yl
jiX ipPlpXrqqql př

0ďiăr

ř
0ďjiădegPl

X´ipId b σlqpfi bF yl
jiqpPτplqpXrqqql

˚

„

„

˚

(5.10)

Having defined the adjunction on E
plq
k , we now determine its transformation under the eval-

uation isomorphism Jl. We define the automorphism Zl by:

Zl : Ek,l
„ÝÑ Ek,l

X ÞÑ xl.pId b στplqqpxτplqq.X
(5.11)

In order to make the diagram 5.13 commutative, we have to twist the adjunction ˚ on the target

side into an adjunction x ÞÑ x‚ :“ Zlpx˚q using the additional automorphism Zl, so that we

have:

TracepJlpEplq
k fqJτplqppEpτplqq

k gq
˚

qp1qq “ 0 ðñ TracepEk,lJlpfqpEk,τplqJτplqpgqq‚p1qq “ 0

where Ek,l denotes the central semi-simple algebra: KlrX˘1; θs{pXr ´ 1q

Lemma 28 The automorphism of Ek,l, Zl : X ÞÑ xl.pId b στplqqpxτplqq.X , is the conjugation

with respect to an explicit element ζl of Kl

Proof. The norm of xlpId b στplqqpxτplqq is equal to

NormKl{Fl
pxlqpId b στplqqpNormKτplq{Fτplq

pxτplqqq “ ylpId b στplqqpyτplqq “ 1

Hence the automorphism of KrX˘1; θs: X ÞÑ xl.pId b στplqqpxτplqq.X is well defined in
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Ek,l. The Hilbert 90 theorem guarantees the existence of an element ζl of Kl such that:

θpζlq “ xlpId b στplqqpxτplqqζl. We have xl.pId b στplqqpxτplqq.X “ ζ´1
l Xζl.

Lemma 29 The element ζl can be chosen invariant by pIdbσlq in the palindromic case (τplq “ l).

Proof. As pId b σlqpζlq satisfies θppId b σlqpζlqq “ xlpId b σlqpxlqpId b σlqpζlq, we can take,

ζl ` pId b σlqpζlq. In the special case where ζl ` pId b σlqpζlq is equal to zero, obviously

Id b σl is not trivial and we are in the Hermitian case where yl ‰ ˘1. As ζl
yl

satisfies also

θp ζl
yl

q “ xlpId bστplqqpxτplqq ζl
yl

, we can thus take ζl
yl

` pId bσlqp ζl
yl

q “ ζlp 1
yl

´ ylq, which is nonzero

in this case.

Remark 30 The element ζl can be efficiently computed using the cohomological formula in the

proof of the Hilbert 90 theorem. It is the inverse of any nonzero element in the image of the

endomorphism:
ř

0ďiăr

ś
0ďjăi θ

jpxlpId b στplqqpxτplqqqθi, as one can readily check.

Definition 31 We define the involutive anti-isomorphism ‚ from each Ek,l into Ek,τplq by com-

posing ˚ with Zl.

Zl ˝ ˚ : Ek,l
‚Ñ Ek,τplq

f “ ř
i fiX

i ÞÑ f‚ “ ζ´1
τplq

ř
i X

´ipId b σlqpfiqζτplq

(5.12)

Proposition 32 The following diagram commutes:

ś

1ďlďn

E
plq
k » Ek

ś

1ďlďn

E
pτplqq
k » Ek

ś

1ďlďn

Ek,l

ś

1ďlďn

Ek,τplq

˚

„pX ÞÑxl.Xql „pX ÞÑxl.Xql

‚

(5.13)

Proof. By additivity, it suffices to check the commutativity on monomials κX i. On one hand,

we have: pκX iq˚ “ X´ipId bστplqqpκq. The evaluation isomorphism Jl maps the right hand side

to

X´ipId b στplqqpκqp
ź

0ďtăi

θtpxlqq´1 (5.14)
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On the other hand, it maps the left hand side to κ
ś

0ďtăi θ
tpxlqX i, whose adjoint is:

pxlpId b στplqqpxτplqqXq´ipId b στplqqpκ
ź

0ďtăi

θtpxτplqqq (5.15)

Both terms 5.15 and 5.14 coincide.

Definition 33 We define the involutive isomorphism ‚ from EndFl
pKlq into EndFτplq

pKτplqq
by:

‚ : EndFl
pKlq ‚Ñ EndFτplq

pKτplqq

f “ ř
0ďiăr fiθ

i ÞÑ f‚ “ ζ´1
l

ř
0ďiăr θ

´ippId b στplqqpfiqqθ´iζl

(5.16)

Definition 34 We define the corresponding trace form over the product of the Fl-linear vector

space Kl with the Fτplq-linear vector space Kτplq, by:

pκ, ρqFl
:“ TraceKbFFl{Fl

pζl.κ.pId b στplqqpρqq

Remark 35 We notice that this trace form is bilinear in the nonpalindromic and in the Euclidean

(for yl “ ˘1) palindromic case and sesquilinear in the Hermitian (for yl ‰ ˘1) palindromic case.

Proposition 36 The involutive isomorphism ‚ is the adjunction relative to the trace bilinear

form defined in 34.

Proof. We have to check the adjunction characterisation. For any element

f :“ ř
0ďiďr´1 fiθ

i P EndFl
pKlq, we must have pκ, fpρqqFl

“ pf‚pκq, ρqFl
. By r-periodicity of

pθiq0ďiďr´1 and re-indexation k ÞÑ k ´ i, we get:

pκ, fpρqqFl
“ ř

0ďkďr´1 θ
kpζlκpId b στplqqpř

0ďiďr´1 fiθ
ipρqqq

pκ, fpρqqFl
“ ř

0ďkďr´1 θ
kpř

0ďiďr´1 ζlθ
´ippId b στplqqpfiqq θ´ipζlq

ζl
θ´ipκqρq

pκ, fpρqqFl
“ TraceKbFFl{Fl

pζl.f‚pκqρq
(5.17)
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Composing both isomorphisms: X ÞÑ xlX and X ÞÑ θ, we obtain the following commutative

diagram:

E
plq
k Eyl

:“ KlrX˘1; θs{pXr ´ 1q Klrθs » EndFl
pKlq

E
pτplqq
k Ek,τplq :“ KτplqrX ; θs{pXr ´ 1q Kτplqrθs » EndFτplq

pKτplqq

f ÞÑf˚

ĞEvalxlX

f ÞÑf‚

Evalθ

f ÞÑf‚

ĞEvalxlX Evalθ

(5.18)

Finally, we state and prove the following product criterion, that will be used first in the proof

of the orthogonality preservation of vector space duality and secondly for checking the validity

of our symbolic computation of selfdual skew codes in SageMath.

Proposition 37 Let E be either the algebra Ek ˆ Ek, E
plq
k ˆ E

pτplqq
k , Ek,l ˆ Ek,τplq or

EndFl
pKlq ˆ EndFτplq

pKτplqq. Let r_,_s be the corresponding trace bilinear form, and f ÞÑ f‹

the corresponding adjunction. The skew codes generated by f and g in E are orthogonal if and

only if we have fg‹ “ 0 in E.

Proof. By nondegeneration of r_,_s, fg‹ “ 0 is equivalent to: rE, fg‹s “ 0 By adjunction

relation, the condition becomes: rgE, f s “ 0 Since the adjunction is an isomorphism, we have:

rgEE‹, f s “ 0 And since r_,_s is a trace form: rgE, fEs “ 0

Corollary 38 With the same notations as in Proposition 37, a skew code of E generated by an

element f P E, is selfdual if and only if we have ff‹ “ 0 and degpfq “ s

Remark 39 The product criterion f‹g “ 0 is equivalent to g‹f “ 0 by adjunction. It is also

equivalent to gf‹ “ 0 and fg‹ “ 0. Indeed if we have g‹f “ 0, fg‹f is also equal to zero in E

and by left and right divisibility, taking lifts of f and g, we obtain: f̃ g̃‹f̃ “ pXrk ´ 1qf̃ h̃f̃ , for

some h̃. So by right Euclidean division by f̃ , we get f̃ g̃‹ “ pXrk ´ 1qf̃ h̃, which implies fg‹ “ 0

in E.

6 Vector space duality

In the preceding section we reduced the problem of finding selfdual skew cyclic codes in Ek

to that of finding selfdual skew cyclic codes in EndFl
pKlq for each index l. We will now further

reduce the problem to the enumeration of maximal isotropic spaces of Kl for each index l. To this
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end we apply the classical duality between Fl-vector subspaces of Kl and left ideals of EndFl
pKlq

[Ber] (Cf. definition of τ 24):

• In the palindromic case where τplq “ l

• In the nonpalindromic case where τplq ‰ l

Definition 40 Given a field L and any L-vector spaces W , the vector space duality associates to

every L-vector subspace V of W , the left ideal IV of EndLpW q constituted by the endomorphisms

vanishing on V . It associates dually to every left ideal I of EndLpW q, the L-vector subspace

intersection of the kernels of the morphisms in I. This correspondence can be expressed as:

$
’&

’%

VI “ Ş
fPI kerpfq

IV “ tf P EndFl
pKlq|V Ă kerpfqu

(6.1)

This duality map is obviously order reversing. Moreover it is a bijective and involutive corre-

spondence between the set of left ideals of EndLpW q and the set of L-vector subspaces of W .

Lemma 41 For a Hermitian bilinear form, the orthogonal vector space of the image of

f P EndLpV q is equal to the kernel of its adjoint.

Proposition 42 For any L-vector space V , and any nondegenerate bilinear form, along with its

corresponding adjunction ‹, and defined on V ˆ V ‹, we have: IK
V “ IV K

Proof. For g P EndLpV ‹q, CK
g is a left-submodule of EndLpV q. We thus have Cf “ CK

g for some

f P EndLpV q. By the product criterion 37, this corresponds to the condition: fg‹ “ 0. But

tf P EndLpV q|f ˝ g‹ “ 0u “ tf P EndLpV q|fpg‹pLqq “ 0u is the left ideal vanishing on Impg‹q,
i.e. on kerpgqK by lemma 41. We conclude: CK

g “ Cf “ IkerpgqK .

We can now prove the main Proposition 2.

Theorem 43 There exists an explicit bijection between the set of selfdual skew cyclic codes of

Ek and the cartesian product of sets Wpalindromic ˆ Wnonpalindromic, where:

• Wpalindromic is the cartesian product over all indexes l invariant by τ of the sets of maximal

isotropic Fl-vector subspaces of Kl.

• Wnonpalindromic is the cartesian product over all remaining unordered pairs of indexes pl, τplqq
(verifying l ‰ τplq) of the sets of Fl-vector subspaces of Kl.
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Proof. As we assumed dimK “: r to be even, selfdual skew cyclic codes correspond to isotropic

spaces of maximal dimension s :“ r{2. We apply the duality to the Fl-vector spaces Kl with the

corresponding adjunction: Ek,l
˚Ñ Ek,τplq and nondegenerate bilinear form on Kl ˆ Kτplq. The

duality being bijective, order reversing and preserving the orthogonality relation between skew

codes in Ek,l and Fl-vector subspaces, the diagrams 5.18 and 5.9 being commutative and thus

preserving the product criterion 38 for selfdual codes, selfdual skew cyclic codes of Ek correspond

to the product of the sets constituted by the cartesian product of the sets of maximal isotropic

palindromic Fl-vector subspaces of Kl, and by the cartesian product of the sets of maximal

isotropic nonpalindromic Fl-vector subspaces of Kl ˆ Kτplq. As in the nonpalindromic case,

isotropic vector subspace of Kl ˆ Kτplq equal to their orthogonal are of the form W ‘ WK for

some Fl-vector subspace W of Kl, they correspond exactly to the Fl-vector subspaces of Kl.

7 Enumeration of selfdual skew cyclic codes

In the preceding sections we showed that enumerating selfdual skew cyclic codes boils down

to enumerating maximal isotropic Fl-vector subspaces of Kl in the palindromic case, and to enu-

merating Fl-vector subspaces of Kl in the nonpalindromic case. We will now describe algorithms

that fulfill this requirement.

7.1 Counting selfdual skew cyclic codes

In order to count selfdual skew cyclic codes, we introduce the q-binomial coefficients defined

by: ˆ
n

k

˙

q

“ p1 ´ qnqp1 ´ qn´1q . . . p1 ´ qn´k`1q
p1 ´ qqp1 ´ q2q . . . p1 ´ qkq

where n and k are nonnegative integers. If k ą n, this evaluates to 0. For r “ 0, the value is 1

since both the numerator and denominator are empty products.

All of the factors in numerator and denominator are divisible by 1 ´ q, and the quotient is

the q-number (q-analog of an integer k):

rksq “
ÿ

0ďiăk

qi “ 1 ` q ` q2 ` . . . ` qk´1 “

$
’&

’%

1´qk

1´q
for q ‰ 1

k for q “ 1

(7.1)
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Dividing out these factors gives the equivalent formula:

ˆ
m

r

˙

q

“ rmsqrm ´ 1sq . . . rm ´ r ` 1sq
r1sqr2sq . . . rrsq

pr ď mq

In terms of the q-factorial rnsq! “ r1sqr2sq . . . rnsq, the formula can be stated as

ˆ
m

r

˙

q

“ rmsq!
rrsq! rm ´ rsq!

pr ď mq

We will use following lemmas on q-binomials.

Lemma 44 The q-binomial coefficient
`
n
k

˘
q

counts the number of Fq-vector subspaces of rank k

in the ambiant Fq-vector space F
n
q .

Proof. The q-binomial coefficient is equal to the number of free families of rank k on the nu-

merator. As the denumerator is equal to the number of bases for a given Fq-vector subspace of

dimension k, the quotient is the q-binomial number expected.

Lemma 45 There is an analog of the binomial theorem for q-binomial coefficients, known as

the q-binomial theorem:
n´1ź

k“0

p1 ` qktq “
nÿ

k“0

qkpk´1q{2
ˆ
n

k

˙

q

tk

Proof. See the article of Pólya [PA71].

We also need the following classical theorem due to Witt.

Proposition 46 (Witt decomposition) Let F be a finite field, V a 2s dimensional F -vector

space. Let B be a nondegenerate σ-sesquilinear form on V , resp. bilinear form on V . Then there

exist Hi hyperbolic planes (Cf. the definition in 3), and an invariant, d, of V called the Witt

index and equal to s or s ´ 1, such that one has the orthogonal decomposition:

V »K1ďiďd Hi K W

where dimpW q “ s ´ 2d and W does not contain any nonzero isotropic vector. The dimension

of any maximal isotropic space is given by the Witt index d.

Proof. See the proof in Theorem 3.11 [Art11].

Remark 47 From the Witt decomposition theorem, we see that maximal isotropic spaces of

dimension s exist in Kl if and only if the Witt index of Kl is s.
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7.1.1 Counting selfdual skew codes in the nonpalindromic case

Proposition 48 Noting ql :“ |Fl| “ qdegPl , the number of maximal isotropic spaces in the

nonpalindromic case is:

k“rÿ

k“0

¨

˝ r

k

˛

‚

ql

“
k“rÿ

k“0

pqrl ´ 1q . . .
`
qr´k`1
l ´ 1

˘
`
qkl ´ 1

˘
. . . pql ´ 1q

Proof. Enumerating maximal selfdual ideals over Ek,l ˆ Ek,τplq boils down to enumerating all

Fl-vector subspaces of Kl by 43. The number of selfdual codes in such pairs Ek,l ˆEk,τplq is thus

equal to the sum over all possible dimensions k from 0 to r of the numbers of vector subspaces

of dimension k, which, by lemma 44, are given by the q-binomial coefficients.

7.1.2 Explicit existence criterion for selfdual skew codes in the palindromic case

As stated by the Witt decomposition theorem 46, computing the Witt index of Kl provides an

explicit existence condition for selfdual skew codes. For this computation, we need to introduce

the notion of discriminant of a finite etale algebra over its base field.

Definition 49 We recall that the discriminant δKl{Fl
of the finite etale Fl-algebra Kl is given

by det pTraceKl{Fl
peiejqqi,j modulo squares in F

˚
l , where peiq is a base of the Fl-vector space Kl.

We also define the discriminant δζl of the finite etale Fl-algebra Kl for the trace bilinear form

that we defined on Kl as det pTraceKl{Fl
pζleiejqqi,j modulo squares in F

˚
l .

This definition does not depend on the choice of the base peiq. Indeed, given any base change

matrix M , we get:

pTraceKbFFpylq{FpylqpζlMpeiqMpejqqqi,j “ p
ÿ

l,m

M tr

i,lTraceKbFFpylq{Fpylqpζlelemq
ÿ

m,j

Mm,jqi,j

And on the other hand we have det pMqdet pM trq “ 1 in Fpylq˚{pFpylq˚q2.
We have the following classical existence criterion on (maximal) isotropic subspace of dimen-

sion s:

Proposition 50 We assume σlpylq “ yl and p ‰ 2. Then there exists an isotropic subspace of

dimension s in Kl if and only if p´1qsδζl is a square in pFlq˚.

Proof. For sake of completeness, we recall the proof. By Witt decomposition theorem 46 applied

to our quadratic form, the maximal isotropic spaces of dimension s exist if and only if the Witt
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index is s. If this is the case, then obviously δζl is congruent to p´1qs, as one can check by

computing the discriminant of the matrix representing the bilinear form in a base constituted by

hyperbolic pairs (Cf. 3): ¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚
˝

0 1 0 0 ¨ ¨ ¨ 0 0

1 0 0 0 ¨ ¨ ¨ 0 0

0 0 0 1 ¨ ¨ ¨ 0 0

0 0 1 0 ¨ ¨ ¨ 0 0

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 0 0 0 ¨ ¨ ¨ 0 1

0 0 0 0 ¨ ¨ ¨ 1 0

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹
‚

If this is not the case, then δζl cannot be congruent to p´1qs. Indeed restricted to the last

nonhyperbolic hyperplane of the Witt decomposition, the matrix representing the symmetric

bilinear form in a suitable base has the form:

¨

˝1 0

0 ´1

˛

‚ if δζl – p´1qs. But it is readily seen that

this defines a subspace having nontrivial isotropic vectors, which contradicts the assumption on

the Witt index.

We can make this criterion explicit by effectively computing ´1 and δζl in F
˚
l {pF˚

l q2.

Lemma 51 ´1 is a square in F
˚
l if and only if p ” 1p4q or rFl : Fps is even.

Proof. If p ” 1p4q or rFl : Fps is even, F
˚
l has an element of order 4, so there is an element

different from 1 and ´1 such that x4 “ 1, i.e, px2 ´ 1qpx2 ` 1q “ 0, hence x2 ` 1 “ 0. One checks

the reciprocal assertion.

Lemma 52 The discriminant δζl is equal to NormKl{Fl
pζlqδKl{Fl

.

Proof. Noting Matpζlq the matrix representing the multiplication by ζl in the base peiq and

Matpζlqtr its transpose, we get:

det p
ÿ

l

Matpζlqtri,lTraceKl{Fl
pelejqqi,j “ detpMatpζlqtrqδKl{Fl

“ NormKl{Fl
pζlqδKl{Fl

Lemma 53 The discriminant δKl{Fl
is a square in F

˚
l if and only if the Galois group of Fl{F

is a subgroup of the alternating group, i.e. if and only if the degree of the extension rFl : Fps is

odd.

Page 21



Selfdual skew cyclic codes

Proof. The proof can be found in Corollary 4.2 from [Mil20].

In addition NormKl{Fl
pζlq can also be computed.

Lemma 54 The norm NormKl{Fl
pζlq is a square in F

˚
l if and only if yl “ 1.

Proof. We have:

NormKl{Fl
pζlq

q´1

2 “ pζ
ř

0ďiă2s qil
l q q´1

2

Moreover, as 2s is even we have:

pζ
ř

0ďiă2s qil
l q q´1

2 “ pζq´1
l q

ř
0ďiă2s qi

l
2 “ pxlpId b σlqpxlqq

ř
0ďiă2s qi

l
2

Using the chinese remainder isomorphism between Kl{Fl and a product of Fl-field extensions:

Kl
„ÝÑ

ś
i Ll,i

xl ÞÑ pxl,iqi

(7.2)

The Frobenius automorphism generates the cyclic Galois group of each Ll,i. Thus for a

palindromic index i (satisfying τpiq “ i), Id b σl induces the following involutive mapping:

Id b σl,i : xl,i ÞÑ x
q
ni
l

l,i for some positive integers ni. For nonpalindromic indexes i (satisfying

τpiq ‰ i), Id b σl induces the following involutive mapping: Id b σl,i : xl,i ÞÑ xl,τpiq for some

element xl,τpiq P Ll,τpiq. As these nonpalindromic terms can be grouped by products of identical

pairs in Ll,i ˆ Ll,τpiq, we get

pxlpIdbσlqpxlqq
ř
0ďiă2s qi

l
2 ÞÑ ppx

ř
0ďiă2s qi

l
`

ř
0ďiă2s q

ni
l

qi
l

2

l,i qpalindromic i, px2

ř
0ďiă2s qi

l
2

l,τpiq , x
2

ř
0ďiă2s qi

l
2

l,i qnonpalindromic ti,τpiquq

On the other hand, for palindromic indexes, by 2s-periodicity of θ, we have

x
ř

0ďiă2s
qil

l,i “ x

ř
niďiă2s`ni

qil

l,i . So we get x

ř
0ďiă2s qi

l
`

ř
0ďiă2s q

ni
l

qi
l

2

l,i “ x
ř

0ďiă2s
qil

l,i . Since the chi-

nese remainder isomorphism maps yl i.e. NormKl{Fl
pxlq to px

ř
0ďiă2s

qil
l,i qi, we get in the end

NormKl{Fl
pζlq

q´1

2 “ yl.

We deduce from this equality and Euler’s criterion that the norm NormKl{Fl
pζlq is a square

in F
˚
l , if and only if yl “ 1.

Corollary 55 When k is even, there are no selfdual skew cyclic codes in Ek.
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Proof. If k is even, Ek factors as follows:

Ek »
ź

l,Plp˘1q!“0

pKrY s{pPlpY qqrX ; θsq{pXr ´ Y q ˆ KrX˘1; θs{pXr ` 1q ˆ KrX˘1; θs{pXr ´ 1q

So there are no selfdual skew codes in KrX˘1; θs{pXr ` 1q ˆ KrX˘1; θs{pXr ´ 1q.
Indeed, noting l´1 the index corresponding to the root ´1 of Y k ´ 1, we have:

δl´1
“ NormKl´1

{Fl´1
pζl´1

qδKl´1
{Fl´1

where ζl´1
satisfies: θpζl´1

q “ xl´1
pId b σlqpxl´1

qζl´1
,

xl´1
satisifies NormKl´1

{Fl´1
pxl´1

q “ ´1. As shown in the lemma 54: NormKl´1
{Fl´1

pζl´1
q is

not a square in F
˚
l´1

. So δKl´1
{Fl´1

and δl´1
cannot be squares in F

˚
l´1

simultaneously and we

can conclude by proposition 50.

The following tables summarize the results we can deduce from Proposition 50 and Lem-

mas 51, 52, 53, 54

In the Euclidean case, i.e. for yl “ ˘1:

rF : Fps even rF : Fps odd

s even False True

s odd False p ” 3p4q
In the Hermitian case, i.e. for yl ‰ ˘1:

rF : Fps even rF : Fps odd

s even True False

s odd True p ” 1p4q
In the Hermitian case:

rFl : Fps always even

s even or odd True

7.1.3 Counting selfdual skew codes in the palindromic case

When maximal isotropic spaces exist in an ambiant Fq-vector space, their number is given

by Segre’s formulas [Seg59] [Ple65] [Ann09].

Proposition 56 Number Isod of maximal isotropic spaces of dimension d:

In the Euclidean case, i.e. for yl “ ˘1:

$
’’&

’’%

In even characteristic: Isod “
dś

i“1

`
qi ` 1

˘

In odd characteristic: Isod “
d´1ś

i“0

`
qi ` 1

˘ (7.3)
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In the Hermitian case, i.e. for yl ‰ ˘1:

$
’’&

’’%

In even characteristic: Isod “
dś

i“1

`
qi`1{2 ` 1

˘

In odd characteristic: Isod “
d´1ś

i“0

`
qi`1{2 ` 1

˘ (7.4)

For sake of completeness, we recall the proof in odd characteristic. We need the following

lemma.

Lemma 57 Number IsoV ectd of isotropic vectors in an ambiant Fq-vector space in odd char-

acteristic:

In the Euclidean case: IsoV ectd “ pqd ´ 1qpqd´1 ` 1q
In the Hermitian case: IsoV ectd “ pqd ´ 1qpqd´1`1{2 ` 1q

Proof. In odd characteristic, given an isotropic base ppuiq0ďiăd, pviq0ďiădq corresponding to the

Witt decomposition 46 of the ambiant space of dimension 2d, in d hyperplanes Hi :“ă ui, vi ą
such that F

2s
l » ‘0ďiădHi, an isotropic vector ppaiq0ďiăd, pbiq0ďiădq verifies:

In the Euclidean case:
ř

aibj “ 0.

In the Hermitian case:
ř

σlpaiqbi`
ř

aiσlpbiq “ 0. This corresponds to independant equations
ř

aiσlpbiq “ α, for any anti-invariant α, i.e. satisfying σlpαq “ ´α.

Hence we have the following counting.

In the Euclidean case, given a nonzero vector y, x lies in a hyperplane of the vector space F
d
l .

We thus have pqdl ´ 1qqd´1
l solutions for y nonzero and pqdl ´ 1q additional non trivial solutions

for y equal to zero. Finally we get IsoV ectd “ pqdl ´ 1qpqd´1
l ` 1q nonzero isotropic vectors in

the ambiant space.

In the Hermitian case, a hyperplane over Fl, has cardinal qd´1
l , and the number of anti-

invariant scalars in Fl is q
1{2
l (ql is indeed a square because Pl is palindromic and thus its

roots can be counted pairwise in the Hermitian case). Hence given a nonzero vector y, we have

pqdl ´ 1qqd´1`1{2
l solutions for y nonzero and pqdl ´ 1q additional non trivial solutions for y equal

to zero as in the Euclidean case. Finally we get IsoV ectd “ pqdl ´ 1qpqd´1`1{2
l ` 1q nonzero

isotropic vectors.

Proof. (Segre’s formulas) We start with an empty family u of isotropic vectors of the ambiant

space. At each step d from 0 to s ´ 1 we pick an arbitrary isotropic vector among IsoV ects´d

possibilities (as defined in 57) in the orthogonal complement of the isotropic space spanned by

the family u and append it to the family. It is readily seen that the family u is free and totally
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isotropic. Once we have obtained a maximal isotropic family, Witt’s decomposition theorem

ensures that its rank, the Witt index, is an invariant equal to s. The number of maximal

isotropic bases is thus equal to the product P :
ś

1ďdďs IsoV ectd (as defined in 57). The

general linear group of GLspFqq acting freely and transitively on these maximal isotropic bases,

the maximal iostropic spaces correspond exactly to its orbits. Dividing P by the cardinal of

GLspFqq,
sś

i“1

pqil ´ 1q we thus obtain Segre’s formula stated above.

Corollary 58 We apply Proposition 56 to our situation. The global number N of selfdual

skew cyclic codes in Ek is equal to the product of the numbers of maximal isotropic spaces Vl

of dimension s “ r{2 in palindromic Kl, NVl
, times the product of the numbers of arbitrary

subspaces Wl over pairs of nonpalindromic spaces, NWl
.

N “ |t
ź

tl|l“τplqu
NVl

ˆ
ź

ttl,τplqu|l‰τplqu
NWl

|Wl arbitrary, Vl maximal isotropicu|

In a condensed form, we obtain the following number of selfdual skew cyclic codes in Ek:

ź

tl|l“τplq,yl“˘1u

s´1ź

i“0

`
qil ` 1

˘ ź

tl|l“τplq,yl‰˘1u

s´1ź

i“0

´
q
i`1{2
l ` 1

¯ ź

ttl,τplqu|l‰τplqu

k“rÿ

k“0

pqrl ´ 1q . . .
`
qr´k`1
l ´ 1

˘
`
qkl ´ 1

˘
. . . pql ´ 1q

Example 59 For K “ F32s , θ : x ÞÑ x3 and K
θ “ F3, the number of selfdual skew cyclic codes

grows as Opqsps´1q{2q as s grows larger, whereas the number of skew cyclic codes (number of s

dimensional F3-vector subspaces of F32s) grows as Opqs2q as s grows larger.

For K “ F36 , θ : x ÞÑ x3 and K
θ “ F3, the number of selfdual skew cyclic codes in

E1 “ KrX ; θs{pX6 ´ 1q is: 80 among 33880 skew codes, whereas for K “ F318 , θ : x ÞÑ x3

and K
θ “ F3, the number of selfdual skew cyclic codes in E1 “ KrX ; θs{pX18 ´ 1q is:

469740602936729600 among 791614563787525746761491781638123230424 skew codes.

Remark 60 We recover also the number of selfdual cyclic codes from the case r “ 1 in Segre’s

formula. We observe that, as we are in the separable case, pX ´1q is always a palindromic factor

of pXk ´1q of multiplicity 1. Thus there exist no selfdual cyclic codes at all in the separable case

in FprXs{pXk ´1q. With regard to this fact, skew cyclic codes enjoy much more dual symmetries

than cyclic codes. Nethertheless, the ratio of the number of skew cyclic codes over selfdual skew

cyclic codes increases as fast as Opq s2`s
2 q as s grows larger. The best ratio is obtained for s “ 1,

and q “ 3, in odd characteristic. In this case, half of the skew cyclic codes are selfdual skew

cyclic codes.
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7.2 Enumerating selfdual skew cyclic codes

As we have to enumerate very large numbers of selfdual skew cyclic codes, we shall first ensure

that our enumeration algorithms return uniformly distributed codes among all possible selfdual

skew cyclic codes. Secondly we shall provide an iterative algorithm, that returns a new code at

each iteration, with a low and constant complexity at each iteration. We use the keyword next

to denote the operation which returns the next result on an iterator and yield, the operation that

returns a generator object, to be iterated.

7.2.1 Enumeration in the nonpalindromic case

Let W0 ˆ WK
0 be the ambiant Hermitian vector space. We want to enumerate all totally

isotropic vector subspaces of W0 ˆ WK
0 of maximal dimension 2s.

Algorithm 61 Enumeration of selfdual skew codes in the nonpalindromic case

Input: Iterator I on all reduced echelon matrix A of size ps, 2sq, Nonpalindromic polynomial Pl

generating the two-sided ideal in the skew cyclic algebra Ek,l, the skew cyclic algebra Ek

Output: h is the next selfdual skew codes

1: A Ð next I

2: V Ð kerpAq
3: peiqi Ð base of V

4: f Ð leftlcmppeiqiq in KlrX ; θs{pPlq
5: g Ð Pl.right_quo_rempfq
6: gstar Ð g‚

7: f̃ Ð lift of f in Ek

8: ˜gstar Ð lift of gstar in Ek

9: h Ð leftlcmpf, gstarq in Ek

10: yield h

Proof. For any element f in Ek,l, the elements h in Ek,l satisfying f.h “ 0 constitute a right

ideal generated by an element g‚. It is clear from proposition 42 that selfdual skew codes are

the codes pIf , Igq for any f in Ek,l. So the enumeration reduces to that of Fl-vector subspaces

of Kl. We proceed to the latter enumeration using the bijection between Fl-vector subspaces of

Kl, and reduced echelon matrices of dimension s over 2s with entries in Fl.
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7.2.2 Enumeration in the palindromic case in odd characteristic

Let W0 be the ambiant Hermitian vector space whose Witt decomposition 46 is given by:

W0 » ‘1ďiďsHi, where Hi are hyperbolic planes (Cf. the definition in 3). We want to enumerate

all totally isotropic vector subspaces of W0 of maximal dimension s.

Algorithm 62 Direct sum decomposition of hyperbolic planes in the Hermitian case

Input: W0: The ambiant Hermitian vector space

Output: U ,V build a uniformly random direct sum decomposition of hyperbolic planes

1: U, V,W Ð rs, rs,W0

2: while W ‰ 0 do

3: Pick two random vectors u and v in W

4: if ă u, v ą‰ 0 and pu, vq is free then

5: Solve the equation pEq ă u ` λv, u ` λv ą“ 0 for λ (Hermitian quadratic equation )

6: u Ð u ` λv

7: u Ð u ´ λv

8: Solve ă u, νv ą“ 1 for ν (linear)

9: v Ð νv, now pu, vq is a hyperbolic pair

10: U Ð U ` rus, V Ð V ` rvs
11: W Ðă U, V ąKĂ W0

12: end if

13: end while

Proposition 63 The algorithm terminates with probability 1 and if it terminates, it is correct

We need the following lemmas to determine the probability for the quadratic equation at line

5 of the algorithm 62 to be solvable and to solve it when it is possible.

Lemma 64 Picking then two random vectors u and v that are not collinear in W of dimension 2d

and such that ă u, v ą‰ 0 is an event of probability
pql2d´1qpq2dl ´q

2d´1

l
q

ql4d
. Moreover this probability

is always greater than 3
8

Proof. This is the number of pairs of vectors with a first nonzero vector and another vector not

contained in the hyperplane defined by the equation ă u, v ą“ 0, divided by the number of pairs

of vectors in F
2d
l . Moreover, the probability increases with ql and d, and its value at ql “ 2 and

d “ 1 is 3
8
.
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Lemma 65 (Cf. 5) The equation pEq ă u`λv, u`λv ą“ 0 has a solution in λ for any vector u

and v in the ambiant Hermitian vector space. Denoting Norm
´1

Fl{Fσl
l

pxq a preimage by the norm

map of the element x, a solution is given by the formula:

λ “
Norm

´1

Fl{Fσl
l

´
Npău,vąq

ăv,vą pNpău,vąq
ăv,vą ´ ă u, u ąq

¯
´ Npău,vąq

ăv,vą

ă v, u ą

Proof. pEq can be rewritten as ă u, u ą `TraceFl{Fσl
l

pλ ă v, u ąq ` NormFl{Fσl
l

pλq ă v, v ą“ 0

Noting µ :“ λ ă v, u ą, Npxq :“ NormFl{Fσl
l

pxq, Trpxq :“ TraceFl{Fσl
l

pxq and α :“ µ`Npău,vąq
ăv,vą ,

it follows:

Npµq “ pα ´ Npău,vąq
ăv,vą qpσlpαq ´ Npău,vąq

ăv,vą q
Npµq “ Npαq ´ Npău,vąq

ăv,vą Trpαq ` pNpău,vąq
ăv,vą q2

Trpµq “ Trpαq ´ 2
Npău,vąq

ăv,vą

Injecting the trace and norm of µ in pEq, we obtain:

pEq ðñ ă u, u ą `Trpαq ´ 2
Npău,vąq

ăv,vą ` pNpαq ´ Npău,vąq
ăv,vą Trpαq ` pNpău,vąq

ăv,vą q2q ăv,vą
Npău,vąq “ 0

pEq ðñ Npαq “ Npău,vąq
ăv,vą pNpău,vąq

ăv,vą ´ ă u, u ąq
One can solve this last equation for α per surjectivity of the norm.

Proof. (of Proposition 63) We initialize W to W0 :“ Kl. We pick two random vectors u and v

that are not collinear in W of dimension 2d and such that ă u, v ą‰ 0.

Either u and v are both isotropic and they can be renormalized into a hyperbolic pair (Cf. 3).

Indeed by surjectivity of the norm, there exist an element α P Fl such that ă u, v ą“ ασlpαq,
so that pu

α
, v
α

q is a hyperbolic pair.

Or one of them is not isotropic, say v (wlog), so that ă v, v ą‰ 0. In this latter case we

solve the equation pEq for λ and replace u by u ` λv and v by u ´ λv, building as previously a

hyperbolic pair.

We then append the hyperbolic plane ă u, v ą to the growing direct sum of hyperbolic

planes ă U, V ą and take its orthogonal W 1 in W0. Using Witt decomposition 46, we get

W 1 » ‘1ďiďd´1Hi, so we can reset W to W 1 and repeat the process until W is equal to zero.

Witt decomposition theorem 46, guarantees that this process ends properly and that we end

up with a direct sum of hyperbolic planes. Finally at each step the hyperbolic plane picked

is uniformly distributed among all available hyperbolic planes, the set of available hyperbolic

planes has a constant cardinal and it is itself uniformly distributed relatively to the last picked
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hyperbolic plane (by Witt decomposition 46), so the final direct sum of hyperbolic planes obtained

is uniformly distributed as well.

Mean complexity 66 The mean complexity C in s of the algorithm is less than a constant

times the complexity of taking the orthogonal at each step, as the random event at each

step is uniformly distributed and has a nonzero minimal probability (greater than 3
8
). Thus

C “ Op
ř

1ďiďs s
3q “ Ops4q

Algorithm 67 Direct sum decomposition of hyperbolic planes in the Euclidean case

Input: W0: The ambiant Euclidean vector space

Output: U ,V build a uniformly random direct sum decomposition of hyperbolic planes

1: U, V,W Ð rs, rs,W0

2: while W ‰ 0 do

3: Pick two random vectors u and v

4: if ă u, v ą‰ 0 and pu, vq is free then

5: Solve ă u ` λv, u ` λv ą“ 0 for λ (Euclidean quadratic equation)

6: if The discriminant is a square in F
˚
l then

7: u Ð u ` λv

8: u Ð u ´ λv

9: Solve ă u, νv ą“ 1 for ν (linear)

10: v Ð νv, now pu, vq is a hyperbolic pair

11: U Ð U ` rus, V Ð V ` rvs
12: W Ðă u, v ąK

13: end if

14: end if

15: end while

Proposition 68 The algorithm terminates with probability 1 and if it terminates, it is correct

We need the following lemmas to determine the probability for the quadratic equation at line

5 of the algorithm 67 to be solvable and to solve it when it is possible.

Lemma 69 If ´1 is a square in F
˚
l , The probability Pql,s for the discriminant of the equation to

be square at each step i P t1, . . . , su is equal to Pql,i “ pqi´1

l
`1qpq2i´1

l
`qil ´q

i´1

l
´qlqpql`1q

2pqi
l
`1qpq2i´1

l
´1q . Moreover

this probabililty decreases with i and ql and we have limsÑ8,qlÑ8 Pql,s “ 1
2
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Proof. The equation is solvable exactly when the plane spanned by u and v is a hyperbolic plane.

For any step i P t1, . . . , su the application mapping the pairs of noncollinear isotropic vectors in

W » F
2i
l to their span is surjective on the set of hyperbolic planes. The cardinal of its preimage

for any hyperbolic plane is the number of pairs of noncollinear vectors in the hyperbolic plane.

Hence it is:
pqil ´ 1qpqi´1

l ` 1qppqil ´ 1qpqi´1
l ` 1q ´ pql ´ 1qq

2pql ´ 1q2

The number of arbitrary planes is on the other side:
pq2sl ´1qpq2sl ´qlq
pq2

l
´1qpq2

l
´qlq . Finally we get the probability:

Pql,i “ pqil ´ 1qpqi´1
l ` 1qppqil ´ 1qpqi´1

l ` 1q ´ pql ´ 1qqpq2l ´ 1qpq2l ´ qlq
2pq2sl ´ 1qpq2sl ´ qlqpql ´ 1q2

Pql,i “ pqi´1
l ` 1qpq2s´1

l ` qil ´ qi´1
l ´ qlqpql ` 1q

2pqil ` 1qpq2s´1
l ´ 1q

We observe

pqi´1
l ` 1qpq2s´1

l ` qil ´ qi´1
l ´ qlqpql ` 1q

2pqil ` 1qpq2s´1
l ´ 1q

„
iÑ8

qi´1
l q2s´1

l pql ` 1q
2qiq2s´1

l

„
iÑ8

ql ` 1

2q
„

qlÑ8
1

2

Remark 70 For i “ 1, we check:
pqi´1

l
`1qpq2s´1

l
`qil´q

i´1

l
´qlqpql`1q

2pqi
l
`1qpq2s´1

l
´1q “ 1

Lemma 71 Solving ă u ` λv, u ` λv ą“ 0 for λ is equivalent to solving

ă u, u ą `2λ ă u, v ą `λ2 ă v, v ą“ 0 for λ. Noting ∆ the discriminant:

∆ :“ ă u, v ą2´ ă u, u ąă v, v ą. If ∆ is a square in F
˚
l , we find two solutions, λ “ ´ău,vą˘

?
∆

ăv,vą ,

else there are no solutions.

Proof. (of Proposition 68) As in the Hermitian case, we start by taking two non-collinear random

elements u and v in Kl. If u is isotropic, the equation: ă u ` λv, u ` λv ą“ 0 is linear in λ

and has always a solution λ0. We can thus make the base change u Ð u, v Ð u ´ λ0v. If

u isn’t isotropic we have to solve the quadratic equation: ă u ` λv, u ` λv ą“ 0 for λ using

lemma 71. If there are solutions, we make the base change u Ð u ` λv, v Ð u ´ λv. If there

are no solutions, we pick two random vectors again. Asymptotically in s and ql, this operation

thus increase the mean complexity of a factor 2, as the lemma 69 shows. As in the Hermitian

case, Witt decomposition theorem 46 produces a direct sum of hyperbolic plane, provided the

existence criterion on the discriminant is fulfilled. Finally as the discriminant of the bilinear form
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restricted to the remaining direct sum of hyperbolic planes does not depend on the hyperbolic

plane chosen, the algorithm’s returned value remains uniformly distributed.

Mean complexity 72 The mean complexity C in s of the algorithm is a less than a con-

stant times the complexity of taking the orthogonal at each step, as the random event at each

step is uniformly distributed and has a nonzero minimal probability (greater than 3
16

). Thus

C “ Op
ř

1ďiďs s
3q “ Ops4q

The random direct sum of hyperbolic planes obtained, can now be used to enumerate all

maximal isotropic spaces.

Algorithm 73 Enumeration of maximal isotropic spaces in the Euclidean case

Input: Iterator I on all reduced echelon matrix A of growing size pi, sq, U, V , bases of supple-

mentary maximal isotropic building pairwise hyperbolic pairs

Output: W is the next maximal isotropic space

1: A Ð next I

2: B Ð next solution of the orthogonality system given by A among q
ipi´1q{2
l solutions.

3: p0, Cq Ð single reduced echelon matrix, whose image is the totally isotropic orthogonal to

pA,Bq in the vector space spanned by the pviq0ďiďs

4: W Ð ImppA,Bqq À
Impp0, Cqq

5: yield W

Proposition 74 The algorithm is correct

Proof. We enumerate all maximal isotropic spaces in an analogue fashion as for the enumer-

ation of subspaces of dimension s in an ambiant space of dimension 2s using the formula:
`
2s
s

˘
ql

“ řs

i“0 q
i2

l

`
s
i

˘2
ql

.

The algorithm for subspaces enumeration in general is the following. Given a base of the

ambiant vector space, we use the bijection between its vector subspaces and the reduced echelon

matrices in this base, whose image correspond to the vector subspaces, to reduce the problem to

the enumeration of all ps, 2sq-sized reduced echelon matrices.

We enumerate these
`
2s
s

˘
ql

different reduced echelon matrices M of size ps, 2sq by decomposing

the matrix M in s types of reduced echelon matrices of the form

¨

˝A B

0 C

˛

‚for block matrices A of

the size pi, sq for each index i between 0 and s. There are thus for each index i,
`
s
i

˘
ql

possibilities
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for choosing A,
`

s
s´i

˘
ql

“
`
s
i

˘
ql

possibilities for choosing C and qi
2

l possibilities for choosing the

matrix B as its entries can be choosen arbitrarily once the pivots of C have been deleted.

Summing over all indices, and for each index, multiplying all independent possibilities for A,

B and C, we obtain the expected formula
`
2s
s

˘
ql

“ řs

i“0 q
i2

l

`
s
i

˘2
ql

.

ˆ
2s

s

˙

ql

“ |Mechelon| “

ˇ̌
ˇ̌
ˇ̌

»

– Aechelonpi, sq Bpivot deletionpi, sq
0 Cechelonps ´ i, sq

fi

fl |0 ď i ď s

ˇ̌
ˇ̌
ˇ̌ “

sÿ

i“0

qi
2

l

ˆ
s

i

˙2

ql

Now we adapt this strategy to the case of isotropic spaces. Starting with a base puiq0ďiďs

and pviq0ďiďs of supplementary maximal isotropic spaces such that (Witt decomposition 46)

the bilinear form is represented in this base by the matrix:

¨

˝ 0 Id

Id 0

˛

‚, as it is obtained by the

algorithm previously described, we express the global ps, 2sq sized matrix as a generator matrix

M for a maximal isotropic space expressed in this base. For each reduced echelon matrix A in the

upper left corner of M generating a subspace of ă U ą of dimension i, we get as in the previous

enumeration corresponding matrices B and C. But now the additional orthogonality relations

on the rows expressed in the base of the puiq0ďiďs and pviq0ďiďs leads to ipi ` 1q{2 (number of

unordered pairs of orthogonal rows of pA,Bq) independent additional equations for B. Noting

A “ pai,jq1ďiďd,1ďjďs B “ pbi,jq1ďiďd,1ďjďs, this set of equations is explicitly the following:

ř
1ďjďs a1,j b1,j ` b1,ja1,j “ 0 . . . . . .

ř
1ďjďjs a1,j bd,j ` b1,jad,j “ 0

.
.
.

.

.

.

ř
1ďjďs ak,jbk,j ` bk,jak,j “ 0 . . .

ř
1ďjďjs ak,jbd,j ` bk,jad,j “ 0

.
.
.

.

.

.

ř
1ďjďjs ad,jbd,j ` bd,jad,j “ 0

(7.5)

or matricially:

ABtr ` BAtr “ 0

Let us note α, β and γ the endomorphisms induced by the matrices A, B, and C in the base

ppuiq0ďiďs, pviq0ďiďsq. From the system of equations we get: α˝β‚ `β ˝α‚ “ 0 and we have also

α˝γ‚ “ 0, which implies kerpαq Ą Impγ‚q. By checking both dimensions equal to s´i, we deduce

kerpαq “ Impγ‚q. Moreover, as we made the pivot with C in B, we have: Impβ‚q X Impγ‚q “ 0.

Page 32



Selfdual skew cyclic codes

We get Impβ‚q X kerpαq “ 0. This means that α restricted to Impβ‚q is injective. Noting

µ “ α ˝ β‚, the system of equations reduces to assert that µ is antisymmetric. We thus have to

solve: β‚ “ α|´1
Impβ‚qµ for any antisymmetric endomorphism µ represented by an antisymmetric

matrix M of dimension d ˆ d in the chosen base. This gives q
ipi´1q{2
l solutions for B.

On the other hand, for p0, Cq, there is no choice but to take the reduced echelon matrix

corresponding to the right kernel of A: the single totally isotropic space spanned by the pviq0ďiďs

and orthogonal to pA,Bq.

Mean complexity 75 The mean complexity C in s of one iteration of the algorithm is

a less than a constant times the complexity of taking the orthogonal at each step. Thus

C “ Opř
1ďiďs s

3q “ Ops4q

Remark 76 As a byproduct of Proposition 74, we obtain a bijective proof of the q-binomial

formula stated in 45 for the evaluation at 1:

s´1ź

i“0

p1 ` xqil q|x“1 “
sÿ

i“0

xiq
pi
2q

l

ˆ
s

i

˙

ql

|x“1

s´1ź

i“0

p1 ` qil q “
sÿ

i“0

q
pi
2q

l

ˆ
s

i

˙

ql

Algorithm 77 Enumeration of maximal isotropic spaces in the Hermitian case

Input: Iterator I on all reduced echelon matrix A of growing size pi, sq, U, V , bases of supple-

mentary maximal isotropic building pairwise hyperbolic pairs

Output: W is the next maximal isotropic space

1: A Ð next I

2: B Ð next solution of the orthogonality system given by A among q
i2{2
l solutions.

3: p0, Cq Ð single reduced echelon matrix, whose image is the totally isotropic orthogonal of

pA,Bq in the vector space spanned by the pviq0ďiďs

4: W Ð ImppA,Bqq À
Impp0, Cqq

5: yield W

Proposition 78 The algorithm is correct

Proof. We use the same algorithm as in the Euclidean case but the orthogonality equations are
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now put in the Hermitian setting. This set of equations is explicitly the following:

ř
1ďjďs a1,jσlpb1,j q ` b1,jσlpa1,j q “ 0 . . . . . .

ř
1ďjďjs a1,jσlpbd,j q ` b1,jσlpad,jq “ 0

.
.
.

.

.

.

ř
1ďjďs ak,jσlpbk,j q ` bk,jσlpak,j q “ 0 . . .

ř
1ďjďjs ak,jσlpbd,j q ` bk,jσlpad,j q “ 0

.
.
.

.

.

.

ř
1ďjďjs ad,jσlpbd,jq ` bd,jσlpad,jq “ 0

(7.6)

or matricially:

AσlpBtrq ` BσlpAtrq “ 0

We follow the proof of 74, we now have that M “ α ˝ β‚ is Hermitian antisymmetric. And we

have thus for fixed entries in the upper triangular part of B,
?
ql

i additional solutions on the

diagonal of B. This gives q
ipi´1q{2`i{2
l “ q

i2

2

l possibilities for B.

Mean complexity 79 The mean complexity C in s of one iteration of the algorithm is a less than

a constant times the complexity of taking the orthogonal at each step. C “ Opř
1ďiďs s

3q “ Ops4q

Remark 80 As a byproduct of Proposition 74, we obtain a bijective proof of the q-binomial

formula stated in 45 for the evaluation at x “ ?
ql:

s´1ź

i“0

p1 ` xqil q|x“?
ql “

sÿ

i“0

xiq
pi
2q

l

ˆ
s

i

˙

ql

|x“?
ql

s´1ź

i“0

p1 ` q
i` 1

2

l q “
sÿ

i“0

q
i2

2

l

ˆ
s

i

˙

ql

8 SageMath enumeration of selfdual skew codes

We implemented the algorithms of section 7 in SageMath. Our package is available at

https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

It consists in a main class instantiated with the extension K{F of order r and a palindromic

polynomial of the center P pXrq in FpX˘rq of KrX˘1; θs as parameters. It provides an iterator

on all selfdual codes for the Ore algebra KrX˘1; θs{P pXrq. Hereunder, a simple use case of the

library to compute the first iteration of E1 for p “ 3 and s “ 3:

Page 34

https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes


Selfdual skew cyclic codes

sage:loadp”selforthogonal_codes.sage”q

sage:p, s, P “ 3, 3, r1,´1s

sage:A “ SelfDualCodespGFppq r”y”s pPq, GFppq r”z”s .irreducible_elementp2 ˚ sqq

sage:iter “ A.enumerate_selfdual_codespTrueq

sage:nextpiterq

x
3 ` pz5 ` z

4 ` 2z3 ` z
2 ` z ` 1qx2 ` pz4 ` z

3 ` 2z2 ` z ` 1qx ` 2z4 ` z
3 ` 2z2 ` 2z ` 1

8.1 SageMath computation of cyclic or negacyclic codes

Hereunder, we provide computations for the palindromic Euclidean, Hermitian, skew-

Euclidean and skew-Hermitian cases and nonpalindromic case. (see the four types of geome-

tries 3) Skew-Euclidean and skew-Hermitian cases are described in appendix A.

Case 81 Palindromic Euclidean:

q “ 3,s “ 3 and P pY q “ Y ´ 1

sage:A “ SelfDualCodespPolynomialRingpGFp3q, yqpr1, 2sq, 3q

sage:iter “ A.enumerate_selfdual_codespTrueq

H90 preimage o f xx̄ with normpxq “ y : zeta = 1

Enumerating the 80 s e l f d u a l codes . . .

s e l f d u a l code in E: x
3 ` p2z6

3 ` z6 ` 1qx2 ` pz6
5 ` z6

3 ` 2qx ` 2z6
4 ` z6

3 ` 2z6
2 ` 2z6 ` 1

Total time (ms) : 35 .42

sage:nextpiterq

s e l f d u a l code in E: x
3 ` p2z6

5 ` z6
4 ` 2z6

3 ` z6
2 ` 2qx2 ` p2z6

5 ` z6
4 ` 2z6

3 ` 2z6 ` 1qx ` z6
5 `

2z6
4 ` z6

2 ` 2z6

Total time (ms) : 31 .98

Case 82 Palindromic Hermitian case:

q “ 3,s “ 3 and P pY q “ Y 2 ` 1

sage:A “ SelfDualCodespPolynomialRingpGFp3q, yqpr1, 0, 1sq, 3q

sage:iter “ A.enumerate_selfdual_codespTrueq; nextpiterq

H90 preimage o f xx̄ with normpxq “ y : zeta “ z6
4 ` z6

3 ` 2z6
2 ` 2z6 ` 1

Enumerating the 1640 s e l f d u a l codes . . .

s e l f d u a l code in E: x
6 ` pz6

4 ` 2z6 ` 2qx5 ` p2z6
5 ` 2z6

4 ` z6 ` 1qx4 ` p2z6
5 ` z6

4 ` z6
3 `

z6
2qx3 ` pz6

5 ` z6
4 ` 2z6

2qx2 ` p2z6
4 ` z6

3 ` z6
2 ` z6qx ` z6

5 ` 2z6
4 ` 2z6

3 ` z6
2 ` 1

Total time (ms) : 36 .35

sage:nextpiterq
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s e l f d u a l code in E: x
6 ` p2z6

4 ` 2z6
3 ` 2z6qx5 ` p2z6

5 ` 2z6
4 ` 2z6

3 ` 2z6
2 ` z6 ` 2qx4 `

p2z6
5 ` 2z6

2 ` z6qx3 ` pz6
5 ` 2z6

4 ` z6
2 ` 1qx2 ` pz6

3 ` 2z6
2qx ` z6

4 ` 2z6
3 ` z6

2 ` z6 ` 2

Total time (ms) : 37 .64

Case 83 Palindromic Skew-Euclidean case:

q “ 3,s “ 3,ι “ ´θspiotaq P GF p36q and P pY q “ Y ´ 1

sage:A “ SelfDualCodespPolynomialRingpGFp3q, yqpr1, 2sq, 3, iota, Trueq

sage:iter “ A.enumerate_selfdual_codespTrueq; nextpiterq

H90 preimage o f xx̄ with normpxq “ y : zeta “ 2z6
5 ` z6

4 ` z6
3 ` 2z6

2 ` 2

Enumerating the 1120 s e l f d u a l codes . . .

s e l f d u a l code in E: x
3 ` pz6

5 ` z6
4 ` z6 ` 2qx2 ` pz6

4 ` z6
3 ` 2z6

2 ` z6 ` 1qx ` 2z6
4 ` 2z6

3 ` 1

Total time (ms) : 41 .50

sage:nextpiterq

s e l f d u a l code in E: x
3 ` pz6

5 ` z6
4 ` 2z6

3 ` z6
2 ` 2z6 ` 1qx2 ` pz6

5 ` z6
3 ` z6 ` 2qx ` 2z6

5 `

2z6
3 ` z6 ` 2

Total time (ms) : 42 .02

Case 84 Palindromic Skew-Hermitian case:

q “ 3,s “ 3,ι “ ´θspiotaq P GF p36q and P pY q “ Y 2 ` 1

sage:A “ SelfDualCodespPolynomialRingpGFp3q, yqpr1, 0, 1sq, 3, iota, Trueq

sage:iter “ A.enumerate_selfdual_codespTrueq; nextpiterq

H90 preimage o f xx̄ with normpxq “ y : zeta “ p2z6
5 ` 2z6

3 ` 1qy ` 2z6
4 ` z6

3 ` 2z6
2 ` 2z6 ` 1

Enumerating the 14948416 s e l f d u a l codes . . .

s e l f d u a l code in E: x
6 ` pz6

5 ` z6qx5 ` pz6
3 ` z6

2 ` 2z6qx4 ` pz6
5 ` z6

3 ` z6
2 ` 1qx3 ` pz6

5 `

2z6
4 ` z6

3 ` z6
2 ` 2qx2 ` pz6

4 ` z6
2 ` 2z6 ` 2qx ` z6

5 ` z6
4

Total time (ms) : 44 .15

sage:nextpiterq

s e l f d u a l code in E: x6 ` p2z6
5 ` 2z6

4 ` z6 ` 1qx5 ` p2z6
5 ` z6

2qx4 ` p2z6
4 ` 2z6

2qx3 ` pz6
5 `

z6
3 ` 2z6

2 ` z6 ` 2qx2 ` pz6
5 ` z6

3 ` 2z6
2 ` z6qx ` 1

Total time (ms) : 45 .33

8.2 SageMath iteration time for the enumeration of selfdual skew codes

We provide computation results for skew cyclic pXrk ´ 1,K{Fq-codes and skew negacyclic

pXrk ` 1,K{Fq-codes for |F| ď 9, k ď 9 and r P t4, 6, 8u on a computer with following charac-

teristics:
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• processeur x64: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz

• mémoire RAM: 16,0 Go

Case 85 s “ 2:

PpY q p “ 3 p “ 5 p “ 7 p “ 32

Y ´ 1 no codes. no codes. no codes. no codes.

Y 3 ´ 1 inseparable no codes. no codes. inseparable

Y 5 ´ 1 no codes. inseparable no codes. no codes.

Y 7 ´ 1 no codes. no codes. inseparable no codes.

Y 9 ´ 1 inseparable no codes. no codes. inseparable

Y ` 1

9 ms

8 codes.

9 ms

12 codes.

16 ms

16 codes.

21 ms

20 codes.

Y 2 ` 1

16 ms

112 codes.

6 ms

1120 codes.

15 ms

2752 codes.

15 ms

9104 codes.

Y 3 ` 1 inseparable

26 ms

9072 codes.

22 ms

58432 codes.

inseparable

Y 4 ` 1

18 ms

9104 codes.

21 ms

440080 codes.

35 ms

7573504 codes.

48 ms

82882816 codes.

Y 5 ` 1

62 ms

58400 codes.

inseparable

111 ms

94120000 codes.

128 ms

1065800000 codes.

Y 6 ` 1 inseparable

47 ms

492889600 codes.

59 ms

16862891008 codes.

inseparable

Y 7 ` 1

80 ms

4409216 codes.

300 ms

2953126512 codes.

inseparable

250 ms

5671878518080 codes.

Y 8 ` 1

463 ms

155747211899539264 codes.

87 ms

44667536 codes.

113 ms

153321876880 codes.

108 ms

37546305270016 codes.

Y 9 ` 1 inseparable

218 ms

2232563643072 codes.

125 ms

815875477905664 codes.

inseparable

(8.1)
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Case 86 s “ 3:

P pY q p “ 3 p “ 5

Y ´ 1

21 ms

80 codes.

no codes.

Y 3 ´ 1 inseparable no codes.

Y 5 ´ 1

101 ms

34485200000 codes.

inseparable

Y 7 ´ 1

195 ms

632674347361280 codes.

no codes.

Y 9 ´ 1 inseparable no codes.

Y ` 1 no codes.

21 ms

312 codes.

Y 2 ` 1

152 ms

27328 codes.

12 ms

3583232 codes.

Y 3 ` 1 inseparable

57 ms

737335872 codes.

Y 4 ` 1

38 ms

540023488 codes.

47 ms

4298676317632 codes.

Y 5 ` 1 no codes. inseparable

Y 6 ` 1 inseparable

101 ms

15403154538981146624 codes.

Y 7 ` 1 no codes.

398 ms

2343178995193968789312 codes.

Y 8 ` 1

209 ms

155747211899539264 codes.

270 ms

14621913851167452151565632 codes.

Y 9 ` 1 inseparable

450 ms

5537531819466117905154319872 codes.

(8.2)
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PpY q p “ 7 p “ 32

Y ´ 1

207 ms

800 codes.

no codes.

Y 3 ´ 1

42 ms

49557536000 codes.

inseparable

Y 5 ´ 1

129 ms

1329328526500000000 codes.

no codes.

Y 7 ´ 1 inseparable no codes.

Y 9 ´ 1

342 ms

3285136932442382207872260115712000 codes.

inseparable

Y ` 1 no codes.

56 ms

1640 codes.

Y 2 ` 1

36 ms

46255616 codes.

32 ms

540023488 codes.

Y 3 ` 1 no codes. inseparable

Y 4 ` 1

74 ms

2139582011539456 codes.

141 ms

291625367591686144 codes.

Y 5 ` 1 no codes.

317 ms

304739936129000000000 codes.

Y 6 ` 1

139 ms

80064991841686623715328 codes.

inseparable

Y 7 ` 1 inseparable

601 ms

95758739099623080435253982720 codes.

Y 8 ` 1

270 ms

14621913851167452151565632 codes.

280 ms

2996100586019126506799315390464 codes.

Y 9 ` 1 no codes. inseparable

(8.3)
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Case 87 s “ 4:

PpY q p “ 3 p “ 5

Y ´ 1 no codes. no codes.

Y 3 ´ 1 inseparable no codes.

Y 5 ´ 1 no codes. inseparable

Y 7 ´ 1 no codes. no codes.

Y 9 ´ 1 inseparable no codes.

Y ` 1

59 ms

2240 codes.

49 ms

39312 codes.

Y 2 ` 1

78 ms

59793664 codes.

29 ms

281268665344 codes.

Y 3 ` 1 inseparable

128 ms

7258242894319872 codes.

Y 4 ` 1

88 ms

2584219514040576 codes.

108 ms

26237287231770008445184 codes.

Y 5 ` 1

220 ms

4618366957232000000 codes.

inseparable

Y 6 ` 1 inseparable

200 ms

7379726761927122670144512264503296 codes.

Y 7 ` 1

286 ms

185303919822256877419151360 codes.

387 ms

140781666466923087414564624908817453312 codes.

Y 8 ` 1

406 ms

3562996965217630611881373225216 codes.

551 ms

544708738161233632462123485150149692387504384 codes.

Y 9 ` 1 inseparable

691 ms

25992763794364435757209303588361601906385684303872 codes.

(8.4)

Page 40



Selfdual skew cyclic codes

Case 88 s “ 4 (remaining cases):

P pY q p “ 7

Y ´ 1 no codes.

Y 3 ´ 1 no codes.

Y 5 ´ 1 no codes.

Y 7 ´ 1 inseparable

Y 9 ´ 1 no codes.

Y ` 1

58 ms

275200 codes.

Y 2 ` 1

89 ms

38093535023104 codes.

Y 3 ` 1

90 ms

14058141548980940800 codes.

Y 4 ` 1

174 ms

1451117410556451065813794816 codes.

Y 5 ` 1

336 ms

310143959656077473500600000000000 codes.

Y 6 ` 1

388 ms

44720054178174175715919090093196510756864 codes.

Y 7 ` 1 inseparable

Y 8 ` 1

586 ms

1378167769989025647558183098742522084711929172008697856 codes.

Y 9 ` 1

784 ms

520511733411611481332101989569876054129043946067087397683200 codes.

(8.5)
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Case 89 s “ 4 (remaining cases):

PpY q p “ 3
2

Y ´ 1 no codes.

Y 3 ´ 1 inseparable

Y 5 ´ 1 no codes.

Y 7 ´ 1 no codes.

Y 9 ´ 1 inseparable

Y ` 1

177 ms

1197200 codes.

Y 2 ` 1

69 ms

2584219514040576 codes.

Y 3 ` 1 inseparable

Y 4 ` 1

412 ms

6678190496748110778001774411776 codes.

Y 5 ` 1

723 ms

5089176886279936209860153000000000000 codes.

Y 6 ` 1 inseparable

Y 7 ` 1

1367 ms

7648811836043991967219161153740387628370395393331200 codes.

Y 8 ` 1

2159 ms

12694947374150045644296214566181599847702416136079653858246656 codes.

Y 9 ` 1 inseparable

(8.6)

A Enumeration of inseparable selfdual skew cyclic codes

Factorizations over inseparable Ek have been studied in [BU14]. But we will use another

approach using twisted skew separable codes E
pξXtq
k,l . These are defined as skew separable codes

of Ek,l corresponding to the usual adjunction on Ek,l composed with the conjugation by ξXt.

We aim at obtaining all inseparable codes as products of twisted skew separable codes.

A.1 Counting selfdual skew separable twisted codes

We can count all possible selfdual skew codes from one single skew code by using the transitive

right action of the orthogonal group in the Euclidean case, the unitary group in the Hermitian

case, the symplectic group in the skew-Euclidean case or the skew-unitary group in the skew-

Hermitian case, on those codes. The action is well defined as the following computation shows

in the Euclidean or Hermitian case:

@o P torthogonal groupu @f P tmaximal orthogonal codesu fopfoq˚ “ foo˚f˚ “ ff˚ “ 0.
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In the skew-Euclidean or skew-Hermitian case:

@o P tsymplectic groupu @f P tmaximal orthogonal codesu fspfsq˚ “ fss˚f˚ “ ´ff˚ “ 0.

Choosing a base, these classical groups corresponding to the coordinatewise bilinear form are

conjugated to those related to our trace bilinear form. So in order to get the number of maximal

orthogonal codes, we can take the cardinal of the quotient of the classical group by its stabilizer.

In the Euclidean case, choosing a base ă U, V ą constituted pairwise by hyperbolic pairs

ă u, v ą as described in the algorithm 67, this cardinal is that of the general linear subgroup

acting on the maximal isotropic spaces times the number of matrices in the upper right block:

i.e. qs
2

l divided by the number of equations for the rows to be isotropic: q
sps`1q{2
l . So in the

end we find the orthogonal Segre’s formula again for the number of maximal isotropic subspaces:
ś

0ďiăsp1 ` qiq
In the skew-Euclidean case, the cardinal of the stabilizer, is qs

2

l divided by the number of

equations for the rows to be isotropic, which is now less than in the Euclidean case: q
sps´1q{2
l .

So in the end we find the symplectic Segre’s formula again for the number of maximal isotropic

subspaces:
ś

0ăiďsp1 ` qiq, using the symplectic action [Han05].

sage: G=GO(14,GF(9),1)

....: H=GL(7,GF(9))

....: segre=prod(1+9^i for i in range(7))

....: G.cardinality()/H.cardinality()/9**(21)==segre

True

sage: G=Sp(14,GF(9),1)

....: H=GL(7,GF(9))

....: segre=prod(1+9^i for i in range(1,8))

....: G.cardinality()/H.cardinality()/9**(28)==segre

True

A.2 Enumeration of inseparable selfdual skew cyclic codes

Definition 90 We fix parameters t P t0, su and ξ P K bF Fl with σlpξq “ ξ, and θtpξq “
´ξ if t “ s. We define E

pξXtq
k,l , the quadratic space Ek,l along with its ξXt-twisted bilin-

ear form pκ, ρq “ TraceKl{Fl
pζ.ξκθtpσlpρqqq corresponding to the twisted adjunction: f‚ξXt “

Xtξ´1ζ´1
ř

i X
´iσlpfiqζξX´t.

The ξXt-twisted bilinear form is Euclidean if yl “ ˘1 and t “ 0

It is Hermitian if yl ‰ ˘1 and t “ 0

It is skew-Euclidean if yl “ ˘1 and t “ s

It is skew-Hermitian if yl ‰ ˘1 and t “ s
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Lemma 91 The two expressions pκ, fpρqqpξXtq
Fl

and pf‚ξXt pκq, ρqpξXtq
Fl

coincide.

Lemma 92 The set of ξ-twisted selfdual skew codes is in bijection with the set of non-twisted

selfdual skew codes and their intersection is empty for any twisting verifying θspξq “ ´ξ.

Proof. We have trivially for any monic skew polynomial f of degree s generating a selfdual code

Cf of Ek,l:

fξf‚ξξ´1 “ ff‚

XspXr ´ 1qX
spXr ´ 1q “ fp0qXspXr ´ 1q

We assume ξ to be σl-invariant. So, by Hilbert-90, we can solve the equation γσlpγq “ ξ for γ in

Kl
θs

. Noting then g “ σlpγqfγ´1, we get a bijection f ÞÑ g between nontwisted and ξ-twisted

selfdual skew codes:

gg‚ξ “ σlpγqfξf‚ξγ “ σlpγqff‚ 1

σlpγq “ fp0qXspXr ´ 1q

. Moreover if we assume θspξq “ ´ξ and ff‚ “ ff‚ξ “ fξ´1f‚ξ “ 0 in Ek,l then by evaluating

lifts at 0, we get: fp0q “ θspξq
ξ

“ ´1. But this is not possible because XspXr ´1q ‰ ff‚. Indeed

ff‚
r`s “ ff‚

s “ ´1 whereas XspXr ´ 1qr`s “ 1 ‰ ´1 “ XspXr ´ 1qs .

Algorithm 93 Enumeration of inseparable selfdual skew cyclic codes

Input: pXk ´ 1qn: The cyclic polynomial to factorize as ff˚, Cκ: The family of all κ-twisted

code indexed by κ

Output: f : The next selfdual skew code

1: i Ð n

2: κ Ð 1

3: f Ð 1

4: while i ą 0 do

5: Find the next solution fi from the family Cκ

6: f Ð fif

7: κ Ð κfip0qXspi%2q

8: i Ð i ´ 1

9: end while

10: yield f

Proposition 94 The enumeration algorithm 93 is exhaustive
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Proof. (sketch of a proof) If we are in the Hermitian case or if the existence criterion is full-

filled in the Euclidean case, there exists at least one inseparable case of the form:
ś

l fi with

fif
‚
κiX

spi%2q

i “ 0 The theorem 1.3 in [Gie98] due to Ore (1933) guarantees that the degree

of each fi in any other factorization in irreducible factors is equal to s. We thus search all

solutions
ś

1ďiďn fi with degpfiq “ s satisfying
ś

1ďiďn fip
ś

1ďiďn fiq˚9XsnpXr ´ 1qn. Per

induction, it suffices to show that fn is twisted selfdual. If fn divides Xr ´ 1, f‚
n too, and so

by left and right Euclidean division, we get: fnκf
‚
n “ 9XspXr ´ 1q for a scalar κ P Kl. If fn

does not divide Xr ´ 1, as it is irreducible, it is coprime to Xr ´ 1. Thus having fixed such a

skew polynomial fn invertible in Ek, we can make an explicit bijection between the solutions of

Sn´1 “ tś
1ďiďn´1 fi|

ś
1ďiďn´1 fip

ś
1ďiďn´1 fiq˚ P pXsmpXr ´ 1qmqmmaximalu and Sn|fn “

tś
1ďiďn fi|

ś
1ďiďn fip

ś
1ďiďn fiq˚ P pXsmpXr ´ 1qmq mmaximalu, by conjugating Sn´1 with

fn. To be explicit, this conjugation formula leads to the twisted nondegenerate sesquilinear form:

pκ, ρq “ TraceKl{Fl
pζ.κpfnfn˚qpθqpσlpρqqq; the nondegeneration coming from the fact that fn is

coprime to Xr ´ 1 and thus fnˆ˚ and fnfnˆ˚ too. As the order m corresponding to Sn´1 is less

than n ´ 1, the order of Sn|fn too. We deduce from this fact that there are no selfdual codes
ś

1ďiďn fi for fn coprime to Xr ´ 1.

Proposition 95 The algorithm is correct

Proof. In order to enumerate all inseparable selfdual skew cyclic codes, at the price of some

redundancy, we can assume without loss of generality (see 94) that the general solution is a

product of twisted selfdual skew codes f1 . . . fn, taking the fi left monic, and we start by solving

the equation fnf
‚
n “ 0pXr ´ 1q. This has been done in the preceding section. Now we obtain

a scalar κn “ fnf
‚
n

XspXr´1q which is equal to fnp0q. We then define another twisted adjunction to

solve fn´1κnX
sf‚

n´1 “ 0pXr ´ 1q. Let ‚κn
be defined by: f

‚κn

i “ σlpκnqf‚
i κn

´1. The equation

becomes fn´1X
sf

‚κn

n´1κn “ 0pXr ´ 1q. Solving it, we now obtain a scalar κn´1κn “ fn´1X
sf

‚κn
n´1

XrpXr´1q .

At the next step, the monomials Xs cancel and we are back in the Hermitian case. And so on

so forth, getting alternatively a skew Hermitian (resp. skew Euclidean) and a Hermitian (resp.

Euclidean) bilinear form. We have to check that the κi satisfy the required symmetry for the

selfdual skew codes to exist: A monic polynomial f satisfying the product criterion: ff‚κXt “ 0

in E
pl,κXtq
k has a constant term f0 “ fp0q satisfying:

pXs ` . . . ` f0qκXtpXrf0 ` . . . ` Xsq “ θspκqθs`tpf0qXsXtXr ` f0κX
tXs9Xr`s`t ´ Xs`t
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Thus we have: $
’’’’&

’’’’%

θspf0q “ ´f0 for θspκq “ κ , t “ 0 p1q

θspκq “ ´κ for t “ s symplectic case p2q

´f0κ “ θspκf0q for t “ 0 p3q

(A.1)

If we start with κ “ 1, we get the symplectic case from (1) and (2) with κ satisfying θspκq “
´κ, at the next step then an orthogonal case, then again alternatively a symplectic case with κ

satisfying θspκq “ ´κ from (3) etc . . .

Remark 96 Noting f
pjq
i “ XjfiX

´j, we have r redundant factorizations of the form
ś

i f
pjq
i “

ś
i fi modulo pXr ´ 1qn except for θj invariant fi’s.

A.3 SageMath enumeration of inseparable selfdual skew cyclic codes

For F “ GF p3q and K “ GF p36q, k “ 1 and m “ 1, the upper bound on the number of

generated inseparable selfdual skew codes is numerically equal to: 80 ˚ 1120 ˚ 80, where 80 is the

number of orthogonal isotropic spaces and 1120 the number of symplectic isotropic spaces. A

sage enumeration based on this algorithm provides a number n of maximal isotropic codes equal

to n “ 2360960. We have not much redundancies since 80 ˚ 1120 ˚ 80 « 3 ˚ 2360960.

Remark 97 In addition to those codes, there are Euclidean cases where the global code
ś

i fi

contains at least one sequence fifi`1 with fi`1 “ f˚
i . In these cases (whose count is given by

the catalan numbers) we can cancel this product in our algorithm taking the resulting constant

term into account. Their number for F “ GF p3q and K “ GF p36q, k “ 1 and m “ 1 is 14224.

Remark 98 In our example, the θs invariance (for s “ 3) does not occur since it would imply

the existence of selfdual skew cyclic codes in KθsrX ; θs{pXs ´ 1q and KθsrX ; θs{pXs ` 1q. But

as s is odd this can not happen. The θ2 invariance does obviously not occur either on the fi’s.
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