Given a finite extension K{F of degree r of a finite field F in characteristic p, we enumerate all selfdual skew cyclic codes in the Ore quotient ring E k :" KrX ˘1; θs{pX kr ´1q for any positive integer k coprime to the characteristic p. We use a new approach based on vector space duality, which establishes an order reversing and orthogonality preserving bijection between skew codes and vector subspaces. Finally we implement this enumeration in SageMath.

Introduction

Among linear codes, cyclic codes enjoy a rich algebraic structure as they are defined as ideals of quotient polynomial ring. It endows them with good properties (encoding, decoding, duality, dimension, distance, length). Coding theorists are searching for generalizations that preserve these good properties. In this paper, following the paper of D. Boucher, W. Geiselmann and F.

Ulmer from 2006 [START_REF] Boucher | Skew-cyclic codes[END_REF], we generalize cyclic codes by considering left ideals in Ore polynomial rings rather than in polynomial rings. We thus obtain a much larger class of linear codes called skew cyclic codes. In our study, we will focus on the selfdual property of these codes.

For a finite extension K{F of finite field of degree r, we define the Ore Laurent polynomial ring KrX ˘1; θs as the quotient of the free K-algebra K X by the noncommutative relation: @k P K, X.k " θpkq.X, where θ is the Frobenius automorphism of K{F. The center of this algebra being FrX ˘rs, in particular, the ideal generated by the polynomial X rk ´1 is two-sided.

So we can define skew cyclic pX rk ´1, K{Fq-codes in Hamming metric as ideals of the quotient: E k :" KrX ˘1; θs{pX rk ´1q. We notice that cyclic codes correspond to the special case of skew cyclic codes where r " 1.

The duality of skew cyclic codes has been studied by D. Boucher among others. In her paper [START_REF] Boucher | Construction and number of selfdual skew codes over F p 2[END_REF], an enumeration of selfdual cyclic skew codes for r " 2 and q prime is given. In her subsequent article [START_REF] Batoul | A construction of selfdual skew cyclic and negacyclic codes of length n over F p n[END_REF], an enumeration of selfdual cyclic skew codes for k " 1, r " n and q prime is provided. In both articles the duality considered is induced by the coordinatewise bilinear form on the vector space K rk : ppx i q 0ďiărk , py i q 0ďiărk q Þ Ñ ř 0ďiărk x i y i . In their conclusions, the papers suggest to further enumerate all selfdual skew cyclic codes for any values of the order r, the degree k and the finite base field F. In our paper, we give a complete answer to this question in the separable case, where k is coprime to the characteristic of F.

For the purpose of stating our main results, we note ś 1ďlďn F l the decomposition of FrY s{pY k ´1q as a product of field extensions of F in an algebraic closure. We note y l , a primitive element of F l such that: Fpy l q " F l . We note K l :" K b F F l . We also note τ , the involution on the index l induced by the aforementioned duality on K rk . We get the following main result.

Theorem 2 (Cf. theorem 43) There exists an explicit bijection between the set of selfdual skew cyclic codes of E k and the cartesian product of sets W palindromic ˆWnonpalindromic , where:

W palindromic is the cartesian product over all indexes l invariant by τ of the sets of maximal isotropic F l -vector subspaces of K l .

W nonpalindromic is the cartesian product over all remaining unordered pairs of indexes pl, τ plqq (verifying l ‰ τ plq) of the sets of F l -vector subspaces of K l .

As a byproduct, we get the following counting of selfdual skew cyclic codes of E k .

Theorem 3 (Cf. theorem 58) The number of selfdual skew cyclic codes of E k is given by: $ ' ' ' & ' ' ' % If p " 2, ś

tl|l"τ plq,y l "˘1u

s ś i"1 `qi l `1˘ś
tl|l"τ plq,y l ‰˘1u where q l denotes the cardinal of F l

s ś i"1 ´qi`1{2

Organization of the paper

In section 2, we give an insight for future work on the inseparable case.

In section 3, we give general definitions and notations used in this paper.

In section 4, we define selfdual skew codes.

In section 5, we introduce the evaluation isomorphism J l . For each x l in K l satisfying Norm K l {F l px l q " y l , The isomorphism J l is the evaluation at x l θ from the central simple F lalgebra E plq k :" K l rX ˘1; θs{pX r ´yl q to the simple matrix algebra: End F l pK l q. In section 6, the duality between the left ideals of the endomorphism ring and the kernels of their generators being order reversing and orthogonality preserving, we deduce from it that selfdual skew cyclic codes correspond to maximal isotropic subspaces.

In section 7, we provide enumeration algorithms for separable selfdual skew cyclic codes of the Ore quotient ring: KrX ˘1; θs{pX rk ´1q.

In section 8, computation results are provided for skew cyclic pX rk ´1, K{Fq-codes and skew negacyclic pX rk `1, K{Fq-codes for |F| ď 9, k ď 9 and r P t4, 6, 8u. The source code of the SageMath implementation is available at this location: https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

In appendix A, we provided enumeration algorithms for inseparable selfdual skew cyclic codes of the Ore quotient ring: KrX ˘1; θs{pX rkp m ´1q.

Insight for future work on the inseparable case

We intend, in a future paper, to address the inseparable case using analogue methods. However, several crucial elements of the theory have to be adapted in the inseparable case:

Isotropic spaces have to be enumerated on free modules over power series rings with coefficients in a finite field, and not on finite vector spaces anymore.

The echelon matrix representation of vector spaces has to be replaced by the Iwasawa decomposition of free sub-modules over a power series ring.

Fortunately, we can easily enumerate all selfdual skew cyclic codes by multiplying properly twisted separable selfdual skew cyclic codes with each other as described and illustrated by hand of SageMath computations in the appendix A.

3 General definitions and notations

Definitions in finite geometry

Let F be a finite field and let σ be an involutive automorphism of F , we recall that a F -vector space V can be equipped with a σ-sesquilinear form B satisfying: Bpxu, yvq " xσpyqBpu, vq @u, v P V, @x, y P F We will consider the four following main types of finite geometries.

V equipped with B is said to be an Euclidean space if we have:

σ " Id and Bpu, vq " Bpv, uq @u, v P V V equipped with B is said to be a skew-Euclidean space if we have:

σ " Id and Bpu, vq " ´Bpv, uq @u, v P V V equipped with B is said to be a Hermitian space if we have: σ 2 " Id , σ ‰ Id and Bpu, vq " ρpBpv, uqq @u, v P V V equipped with B is said to be a skew-Hermitian space if we have: σ 2 " Id , σ ‰ Id and Bpu, vq " ´ρpBpv, uqq @u, v P V Moreover, the endomorphism ring of F -linear endomorphisms End F pV q is equipped with an involutive anti-automorphism f Þ Ñ f ˚characterised by: @f P End F pV q, @u, v P V, Bpu, f ˚pvqq " Bpf puq, vq

We call this involutive anti-automorphism the adjunction relative to the bilinear form B.

We recall also that a totally isotropic subspace W of V is characterised by W Ă W K and that such a subspace of (maximal) dimension, half the dimension of the ambiant space, is characterised by W " W K .

Finally a hyperbolic pair in V equipped with B is a pair of vectors tu, vu of V satisfying Bpu, uq " 0, Bpv, vq " 0 and Bpu, vq " 1.

The 2-dimensional subspace ă u, v ą of V spanned by a hyperbolic pair tu, vu is called a hyperbolic plane.

Notations

In this paper, we will use the following notations:

• F q will denote a finite field of cardinal q

• F l will denote the finite field extension of F such that, ś 1ďlďn F l " FrY s{pY k ´1q

• y l will denote a primitive element of the finite field extension F l {F, so that we have:

Fpy l q :" F l
• q l will denote the cardinal of F l .

• K l will denote the finite etale F l -algebra K b F F l .

• E k,l will denote the central simple F l -algebra K b F F l rX; θs{pX r ´1q.

• End R pV q will denote, for any ring R and R-module V , the endomorphism ring of all Rlinear endomorphisms of V .

• Mat R,rˆr will denote, for any ring R, the matrix ring of all r ˆr square matrices with entries in R.

• M tr will denote the transpose of the matrix M .

• Id will denote the identity morphism.

• J l will denote the evaluation isomorphism

J l : $ ' & ' % K l rX ˘1; θs " Ý Ñ End F l pK l q X Þ Ñ x l θ (3.1)
where Norm K l {F l px l q " y l

• f ˚will denote the adjunction in E k or E plq k .

• f ' will denote the adjunction in E k,l or End F l pK l q.

• GL n pF q will denote the general linear group of the vector space F n over the finite field F .

• L σ will denote the subfield of the field L fixed by the automorphism σ.

• V K will denote the orthogonal of a vector subspace V .

Skew cyclic codes

Let F be a finite field of cardinal q and characteristic p. Let K{F be a finite extension of F of degree r. Let θ be the Frobenius automorphism of K{F: x Þ Ñ x q . Let KrX ˘1; θs be the corresponding Ore Laurent polynomial ring defined as the quotient of the free K-algebra K X by the noncommutative relation: @k P K, X.k " θpkq.X, localized by the powers of X. As shown in Theorem 1.1.22 in [START_REF] Jacobson | Finite dimensional division algebras over fields[END_REF], the center of the Ore Laurent polynomial ring KrX ˘1; θs is FrXs Ş KrX ˘rs " FrX ˘rs.

Definition 4 A skew quotient algebra is a quotient algebra KrX ˘1; θs{pf pXqq, where f is taken in the center FrX ˘rs.

Remark 5 As quotient ring of the left and right Euclidean domain of skew Laurent polynomials, KrX ˘1; θs, it is a left and right principal ideal ring.

We now turn to the definition of selfdual skew cyclic codes.

Definition 6

The Hamming distance on left ideals of any skew quotient algebra KrX ˘1; θs{pP pXqq is defined as the Hamming distance of the underlying K-vector spaces.

Definition 7

The skew codes of a skew quotient algebra KrX ˘1; θs{pP pXqq are its left ideals seen as vector subspaces over K and equipped with the Hamming metric.

The skew cyclic codes are skew codes of a skew quotient algebra of the form KrX ˘1; θs{pX kr ´1q.

The skew negacyclic codes are skew codes of a skew quotient algebra of the form KrX ˘1; θs{pX kr `1q.

The skew constacyclic codes are skew codes of a skew quotient algebra of the form KrX ˘1; θs{pX kr `αq with α P F ˚.

Definition 8 Choosing for any element of E k the unique lift in KrX; θs Ă KrX ˘1; θs of degree strictly less than kr defines an isomorphism of K-vector spaces.

λ :

E k Ñ K rk f Þ Ñ λpf q (4.1)
We are interested in the skew code duality for the following coordinatewise bilinear form.

Definition 9 In the canonical base of K rk , we define the coordinatewise bilinear form on K rk by: ppx i q 0ďiărk , py i q 0ďiărk q Þ Ñ ř 0ďiărk x i y i .

We note that this bilinear form is nondegenerate.

Definition 10

The self-orthogonal skew codes are the skew codes I such that: λpIq Ă λpIq K .

The selfdual skew codes are the skew codes I such that: λpIq " λpIq K .

As we have dimpλpIqq `dimpλpIq K q " r, a necessary condition for selfdual skew codes to exist is that r is even.

Hypothesis 11 We restrict the study in this paper to even orders 2s :" r.

5 On the semisimple algebra E k

Semi-simplicity of the algebra E k

For any nonnegative integer k, X rk ´1 is in the center. We can thus quotient the Ore Laurent polynomial ring by the two-sided ideal pX rk ´1q to build the skew cyclic quotient algebra E k :" KrX ˘1; θs{pX rk ´1q.

Proposition 12

The algebra E k is semisimple in the separable case where k is coprime to p.

Proof. The detail of the following proof can be found in Proposition 20.7 in [START_REF] Wisbauer | Foundations of Module and Ring Theory: A Handbook for Study and Research[END_REF]. The quotient E k is Artinian so its Jacobson radical must be nilpotent. As k is coprime to p, E k is separable and its Jacobson radical must thus be trivial. It follows that E k is a semisimple algebra over F.

As it is finite-dimensional, it is a cartesian product of simple algebras over F which reduces by the Wedderburn theorem to a product of matrix algebras over finite, hence commutative, fields extensions of F.

Remark 13 In the inseparable case where k is not coprime to the characteristic p, the Jacobson radical is equal to the nilradical generated by pX rk ´1q, so E k is not semisimple anymore. It is still a product of matrix algebras though, but over an Artinian F-algebra, and not over a field F anymore.

Hypothesis 14 We place ourselves in the separable case where k is coprime to p, except in the appendix A where we treat the inseparable case

The evaluation isomorphism J l

We will show that the family of evaluation isomorphisms pJ l q l where J l is defined by:

$ ' & ' % E k Ñ End F l pK l q X Þ Ñ x l θ
with Norm K l {F l px l q " y l , when applied to the chinese remainder decomposition of the central semi-simple F -algebra E k , realizes an explicit isomorphism between E k and a product of matrix algebras.

Indeed, expressing E k as an FrY s{pY k ´1q-algebra and decomposing Y k ´1 in a product of irreducible polynomials P l pY q over F, we obtain from the chinese remainder theorem:

E k » KrY, X; θs{ppY k ´1q, X r ´Y q » pKrY, X; θs{pY k ´1qq{pX r ´Y q E k » ˆKrY, X; θs{p ś 1ďlďn P l pY qq ˙{pX r ´Y q (5.1)
Noting F l :" FrY s{pP l pY qq, K l :" K b F F l E plq k :" K l rX ˘1; θs{pX r ´yl q, we get the following lemma:

Lemma 15 The map:

E k " Ý Ñ ś 1ďlďn E plq k P Þ Ñ P mod pX r ´yl q (5.2)
is an isomorphism of rings.

We will now study each E plq k . K l is a finite etale extension of the finite field F l , i.e. a finite product of finite extensions of F l . As it has finite cardinality, its norm is surjective and there exists an element x l in K l satisfying: Norm K l {F l px l q " y l , so that the evaluation isomorphism at x l X from E plq k :" K l rX ˘1; θs{pX r ´Norm K l {F l px l qq to E k,l :" K l rX ˘1; θs{pX r ´1q is well defined:

E plq k Ğ Evalx l X Ñ E k,l P pXq Þ Ñ P px l Xq (5.3) Now we have the obvious evaluation isomorphism X Þ Ñ θ, from E k,l to End F l pK l q E k,l Eval θ Ñ End F l pK l q P pXq Þ Ñ P pθq
(5.4)

Composing both evaluation isomorphisms and using lemma 15, we get:

Proposition 16 (see theorem 1.3.12 in [START_REF] Jacobson | Finite dimensional division algebras over fields[END_REF]) The evaluation map:

pJ l q l : E k pEval x l θ q 1ďlďn ÝÑ ś 1ďlďn End F l pK l q P pXq ÞÝÑ pP px l θqq 1ďlďn (5.5)
is an isomorphism of central simple algebra over F l .

Proof. The family pb i X j q 0ďiăr,0ďjăr for an F l base pb i q 0ďiăr of K l is a free family of E plq k seen as F l vector space. It has cardinality r 2 . Now the evaluation morphism Eval x l θ is obviously injective on E plq k . So its image has dimension at least r 2 . But the global dimension of End F l pK l q over F l is exactly r 2 . So the evaluation morphism Eval x l θ is surjective as well.

Moreover we get:

Corollary 17 There is an isomorphism

E k » ś 1ďlďn Mat F l ,rˆr .
Remark 18 To realize the evaluation isomorphism J l , a fast computation of preimages of the norm is needed. One possible method consists in finding an irreducible factor of the skew polynomial X r ´yl in K l rX; θs. It is described in [START_REF] Caruso | A new faster algorithm for factoring skew polynomials over finite fields[END_REF].

Remark 19

The evaluation isomorphism J l is unique up to conjugation by an element of norm 1, i.e. up to another choice of x l as preimage for y l .

Adjunction on E k

We will now equip E k with a nondegenerate bilinear form for which orthogonal left-ideals are mapped via λ to orthogonal vector spaces. We begin by defining the corresponding adjunction on E k . We start from the following F-linear automorphism on KrX ˘1; θs

KrX ˘1; θs Ñ KrX ˘1; θs ř i f i X i Þ Ñ ř i X ´if i (5.6)
By linearity one checks on monomials that it is an anti-automorphism:

pf i X i g j X j q ˚" pf i θ i pg j qX i`j q ˚" X ´pi`jq f i θ i pg j q " X ´j g j X ´if i " pg j X j q ˚pf i X i q Definition 20 We define the adjunction on E k as the automorphism of E k induced by the composition of the adjunction on KrX ˘1; θs with the projection on E k .

E k Ñ E k Ğ ř i f i X i Þ Ñ Ğ ř i X ´if i (5.7)
This definition is licit because the adjunction maps the two-sided ideal pX rk ´1q on itself.

Indeed pX rk ´1q ˚is equal to the two-sided ideal pX rk ˚´1q i.e. ´X´rk pX rk ´1q i.e. pX rk ´1q.

We also notice that the adjunction of E k , as quotient map of an anti-automorphism, is an antiautomorphism. So it maps the left ideals of E k to its right ideals.

We now define a nondegenerate bilinear form corresponding to this adjunction.

Definition 21

The reduced trace bilinear form on E k is the bilinear map sending f and g in E k

to Trace K{F ppf g ˚qp1qq in F.

The licitness of this definition is readily seen. It does not depend on the choice of representatives in KrX ˘1; θs. It is readily seen that the adjunction f Þ Ñ f ˚satisfies the adjunction characterisation relative to the reduced trace bilinear form. Indeed for any f,g,h in E k , we have:

Trace K{F ppf phgq ˚qp1qq " Trace K{F ppf g ˚h˚q p1qq " Trace K{F ppph ˚f qg ˚qp1qq
Proposition 22 For a left ideal I of E k , we have λpI K q " λpIq K .

Proof. Let I be a left ideal of E k . An element g of E k is orthogonal to I if and only if we have: Trace K{F ppf g ˚qp1qq " 0 for all elements f P I. By K-linearity, this holds if and only if we have Trace K{F ppκf g ˚qp1qq " 0 for all elements κ P K and all elements f P I. By nondegeneration of Trace K{F , the condition becomes pf g ˚qp1q " 0 for all elements f P I. This in turn is true if and only if: p ř 0ďiăkr λpf q i X i X kr´i λpgq pkr´pkr´iqq qp1q " 0 for all elements f P I since g ˚" ř 0ďiăkr X i g kr´i . Finally we obtain the orthogonality condition for the coordinatewise bilinear form on K rk : ř 0ďiăkr λpf q i λpgq i " 0 for all elements f P I.

We work with the reduced trace bilinear form rather than the coordinatewise bilinear form, so that we can induce corresponding reduced trace bilinear forms on the F l -algebras E plq k . We now describe them.

Definition 23 We say that a polynomial is palindromic if the set of its roots in an algebraic closure does not contain zero and is stable under the inversion map x Þ Ñ 1

x .

Definition 24 Fixing y l , a primitive element in F l » FrY s{pP l pY qq, we define the involution τ on the index set t1, . . . , nu of the chinese remainder decomposition,

F rY s{pY k ´1q " Ý Ñ ś 1ďlďn
F rY s{pP l pY qq, by the relation P τ plq p 1 y l q " 0.

As the polynomial Y k ´1 is palindromic, the index τ plq exists, and τ is obviously involutive. On the other hand, we can define an involutive F-linear automorphism σ on the ring FrY s{pY k ´1q by:

σ : FrY s{pY k ´1q " Ý Ñ FrY s{pY k ´1q Y Þ Ñ 1 Y
(5.8)

Definition 25 We induce from σ an automorphism σ l from F l to F τ plq by σ l : y l Þ Ñ 1 y τ plq . We define also Id b σ l as the involutive isomorphism from K l to K τ plq that acts trivially on K and whose restriction to F l is σ l .

The licitness of this definition is readily seen from the chinese remainder decomposition 15.

Definition 26 We define the adjoint of f "

ř i f i X i in E plq k by f ˚" ř i X ´ipId b σ l qpf i q in E pτ plqq k .
Taking the adjoint mod P l pY q is well defined as P l pY q is central:

pE plq k P l pY qq ˚" P l pY q ˚Eplqk " E plqk P l pY q ˚" E pτ plqq k P τ plq pY q
The definition is thus licit.

Proposition 27

The following diagram commutes:

E k E k ś 1ďlďn E plq k ś 1ďlďn E pτ plqq k " " ˚f f pf pP l pX r qqq l pf ˚pP τ plq pX r qqq l " " ˚(5.9)
Proof. We check the commutativity of the diagram on an arbitrary element

ř i f i X i of the F l - algebra E plq k : ř 0ďiăr ř 0ďjiădeg P l f i X i`rji ř 0ďiăr ř 0ďjiădeg P l X rpk´jiq´i f i p ř 0ďiăr ř 0ďjiădeg P l X rpk´jiq´i f i b F 1pP τ plq pX r qqq l p ř 0ďiăr ř 0ďjiădeg P l f i b F 1X i`rji pP l pX r qqq l p ř 0ďiăr ř 0ďjiădeg P l X ´if i b F y τ plq ´ji pP τ plq pX r qqq l p ř 0ďiăr ř 0ďjiădeg P l f i b F y l ji X i pP l pX r qqq l p ř 0ďiăr ř 0ďjiădeg P l X ´ipId b σ l qpf i b F y l ji qpP τ plq pX r qqq l " " ˚(5.10)
Having defined the adjunction on E plq k , we now determine its transformation under the evaluation isomorphism J l . We define the automorphism Z l by:

Z l : E k,l " Ý Ñ E k,l X Þ Ñ x l .pId b σ τ plq qpx τ plq q.X (5.11) 
In order to make the diagram 5.13 commutative, we have to twist the adjunction ˚on the target side into an adjunction x Þ Ñ x ' :" Z l px ˚q using the additional automorphism Z l , so that we have:

TracepJ l pE plq k f qJ τ plq ppE pτ plqq k gq ˚qp1qq " 0 ðñ TracepE k,l J l pf qpE k,τ plq J τ plq pgqq ' p1qq " 0
where E k,l denotes the central semi-simple algebra: K l rX ˘1; θs{pX r ´1q

Lemma 28 The automorphism of E k,l , Z l : X Þ Ñ x l .pId b σ τ plq qpx τ plq q.X, is the conjugation with respect to an explicit element ζ l of K l

Proof. The norm of x l pId b σ τ plq qpx τ plq q is equal to

Norm K l {F l px l qpId b σ τ plq qpNorm K τ plq {F τ plq px τ plq qq " y l pId b σ τ plq qpy τ plq q " 1
Hence the automorphism of KrX ˘1; θs: X Þ Ñ x l .pId b σ τ plq qpx τ plq q.X is well defined in E k,l . The Hilbert 90 theorem guarantees the existence of an element ζ l of K l such that: θpζ l q " x l pId b σ τ plq qpx τ plq qζ l . We have x l .pId b σ τ plq qpx τ plq q.X " ζ ´1 l Xζ l .

Lemma 29 The element ζ l can be chosen invariant by pId bσ l q in the palindromic case (τ plq " l).

Proof. As pId b σ l qpζ l q satisfies θppId b σ l qpζ l qq " x l pId b σ l qpx l qpId b σ l qpζ l q, we can take, ζ l `pId b σ l qpζ l q. In the special case where ζ l `pId b σ l qpζ l q is equal to zero, obviously Id b σ l is not trivial and we are in the Hermitian case where y l ‰ ˘1. As ζ l y l satisfies also θp ζ l y l q " x l pId b σ τ plq qpx τ plq q ζ l y l , we can thus take ζ l y l `pId b σ l qp ζ l y l q " ζ l p 1 y l ´yl q, which is nonzero in this case.

Remark 30 The element ζ l can be efficiently computed using the cohomological formula in the proof of the Hilbert 90 theorem. It is the inverse of any nonzero element in the image of the endomorphism: ř 0ďiăr ś 0ďjăi θ j px l pId b σ τ plq qpx τ plq qqθ i , as one can readily check.

Definition 31 We define the involutive anti-isomorphism

' from each E k,l into E k,τ plq by com- posing ˚with Z l . Z l ˝˚: E k,l ' Ñ E k,τ plq f " ř i f i X i Þ Ñ f ' " ζ ´1 τ plq ř i X ´ipId b σ l qpf i qζ τ plq
(5.12)

Proposition 32 The following diagram commutes:

ś 1ďlďn E plq k » E k ś 1ďlďn E pτ plqq k » E k ś 1ďlďn E k,l ś 1ďlďn E k,τ plq " pXÞ Ñx l .Xq l " pXÞ Ñx l .Xq l ' (5.13)
Proof. By additivity, it suffices to check the commutativity on monomials κX i . On one hand, we have: pκX i q ˚" X ´ipId b σ τ plq qpκq. The evaluation isomorphism J l maps the right hand side to

X ´ipId b σ τ plq qpκqp ź 0ďtăi θ t px l qq ´1 (5.14)
On the other hand, it maps the left hand side to κ ś 0ďtăi θ t px l qX i , whose adjoint is:

px l pId b σ τ plq qpx τ plq qXq ´ipId b σ τ plq qpκ ź 0ďtăi θ t px τ plq qq (5.15)
Both terms 5.15 and 5.14 coincide.

Definition 33 We define the involutive isomorphism ' from End F l pK l q into End F τ plq pK τ plq q by: ' :

End F l pK l q ' Ñ End F τ plq pK τ plq q f " ř 0ďiăr f i θ i Þ Ñ f ' " ζ ´1 l ř 0ďiăr θ ´ippId b σ τ plq qpf i qqθ ´iζ l
(5.16)

Definition 34 We define the corresponding trace form over the product of the F l -linear vector space K l with the F τ plq -linear vector space K τ plq , by:

pκ, ρq F l :" Trace KbFF l {F l pζ l .κ.pId b σ τ plq qpρqq
Remark 35 We notice that this trace form is bilinear in the nonpalindromic and in the Euclidean (for y l " ˘1) palindromic case and sesquilinear in the Hermitian (for y l ‰ ˘1) palindromic case.

Proposition 36

The involutive isomorphism ' is the adjunction relative to the trace bilinear form defined in 34.

Proof. We have to check the adjunction characterisation. For any element f :" ř 0ďiďr´1 f i θ i P End F l pK l q, we must have pκ, f pρqq F l " pf ' pκq, ρq F l . By r-periodicity of pθ i q 0ďiďr´1 and re-indexation k Þ Ñ k ´i, we get:

pκ, f pρqq F l " ř 0ďkďr´1 θ k pζ l κpId b σ τ plq qp ř 0ďiďr´1 f i θ i pρqqq pκ, f pρqq F l " ř 0ďkďr´1 θ k p ř 0ďiďr´1 ζ l θ ´ippId b σ τ plq qpf i qq θ ´ipζ l q ζ l θ ´ipκqρq pκ, f pρqq F l " Trace KbFF l {F l pζ l .f ' pκqρq
(5.17)

Composing both isomorphisms: X Þ Ñ x l X and X Þ Ñ θ, we obtain the following commutative diagram:

E plq k E y l :" K l rX ˘1; θs{pX r ´1q K l rθs » End F l pK l q E pτ plqq k E k,τ plq :" K τ plq rX; θs{pX r ´1q K τ plq rθs » End F τ plq pK τ plq q f Þ Ñf Ğ Evalx l X f Þ Ñf ' Eval θ f Þ Ñf ' Ğ Evalx l X Eval θ (5.18)
Finally, we state and prove the following product criterion, that will be used first in the proof of the orthogonality preservation of vector space duality and secondly for checking the validity of our symbolic computation of selfdual skew codes in SageMath.

Proposition 37 Let E be either the algebra

E k ˆEk , E plq k ˆEpτplqq k , E k,l ˆEk,τplq or
End F l pK l q ˆEnd F τ plq pK τ plq q. Let r_, _s be the corresponding trace bilinear form, and f Þ Ñ f ‹ the corresponding adjunction. The skew codes generated by f and g in E are orthogonal if and only if we have f g ‹ " 0 in E.

Proof. By nondegeneration of r_, _s, f g ‹ " 0 is equivalent to: rE, f g ‹ s " 0 By adjunction relation, the condition becomes: rgE, f s " 0 Since the adjunction is an isomorphism, we have: rgEE ‹ , f s " 0 And since r_, _s is a trace form: rgE, f Es " 0

Corollary 38 With the same notations as in Proposition 37, a skew code of E generated by an element f P E, is selfdual if and only if we have f f ‹ " 0 and degpf q " s Remark 39 The product criterion f ‹ g " 0 is equivalent to g ‹ f " 0 by adjunction. It is also equivalent to gf ‹ " 0 and f g ‹ " 0. Indeed if we have g ‹ f " 0, f g ‹ f is also equal to zero in E and by left and right divisibility, taking lifts of f and g, we obtain: f g‹ f " pX rk ´1q f h f , for some h. So by right Euclidean division by f , we get f g‹ " pX rk ´1q f h, which implies f g ‹ " 0 in E.

Vector space duality

In the preceding section we reduced the problem of finding selfdual skew cyclic codes in E k to that of finding selfdual skew cyclic codes in End F l pK l q for each index l. We will now further reduce the problem to the enumeration of maximal isotropic spaces of K l for each index l. To this end we apply the classical duality between F l -vector subspaces of K l and left ideals of End F l pK l q

[Ber] (Cf. definition of τ 24):

• In the palindromic case where τ plq " l • In the nonpalindromic case where τ plq ‰ l Definition 40 Given a field L and any L-vector spaces W , the vector space duality associates to every L-vector subspace V of W , the left ideal I V of End L pW q constituted by the endomorphisms vanishing on V . It associates dually to every left ideal I of End L pW q, the L-vector subspace intersection of the kernels of the morphisms in I. This correspondence can be expressed as:

$ ' & ' % V I " Ş f PI kerpf q I V " tf P End F l pK l q|V Ă kerpf qu (6.1)
This duality map is obviously order reversing. Moreover it is a bijective and involutive correspondence between the set of left ideals of End L pW q and the set of L-vector subspaces of W .

Lemma 41 For a Hermitian bilinear form, the orthogonal vector space of the image of f P End L pV q is equal to the kernel of its adjoint.

Proposition 42 For any L-vector space V , and any nondegenerate bilinear form, along with its corresponding adjunction ‹, and defined on V ˆV ‹ , we have:

I K V " I V K
Proof. For g P End L pV ‹ q, C K g is a left-submodule of End L pV q. We thus have C f " C K g for some f P End L pV q. By the product criterion 37, this corresponds to the condition: f g ‹ " 0. But tf P End L pV q|f ˝g‹ " 0u " tf P End L pV q|f pg ‹ pLqq " 0u is the left ideal vanishing on Impg ‹ q, i.e. on kerpgq K by lemma 41. We conclude:

C K g " C f " I kerpgq K .
We can now prove the main Proposition 2.

Theorem 43 There exists an explicit bijection between the set of selfdual skew cyclic codes of E k and the cartesian product of sets W palindromic ˆWnonpalindromic , where:

• W palindromic is the cartesian product over all indexes l invariant by τ of the sets of maximal isotropic F l -vector subspaces of K l .

• W nonpalindromic is the cartesian product over all remaining unordered pairs of indexes pl, τ plqq (verifying l ‰ τ plq) of the sets of F l -vector subspaces of K l .

Proof. As we assumed dim K ": r to be even, selfdual skew cyclic codes correspond to isotropic spaces of maximal dimension s :" r{2. We apply the duality to the F l -vector spaces K l with the corresponding adjunction: E k,l Ñ E k,τ plq and nondegenerate bilinear form on K l ˆKτplq . The duality being bijective, order reversing and preserving the orthogonality relation between skew codes in E k,l and F l -vector subspaces, the diagrams 5.18 and 5.9 being commutative and thus preserving the product criterion 38 for selfdual codes, selfdual skew cyclic codes of E k correspond to the product of the sets constituted by the cartesian product of the sets of maximal isotropic palindromic F l -vector subspaces of K l , and by the cartesian product of the sets of maximal isotropic nonpalindromic F l -vector subspaces of K l ˆKτplq . As in the nonpalindromic case, isotropic vector subspace of K l ˆKτplq equal to their orthogonal are of the form W ' W K for some F l -vector subspace W of K l , they correspond exactly to the F l -vector subspaces of K l .

Enumeration of selfdual skew cyclic codes

In the preceding sections we showed that enumerating selfdual skew cyclic codes boils down to enumerating maximal isotropic F l -vector subspaces of K l in the palindromic case, and to enumerating F l -vector subspaces of K l in the nonpalindromic case. We will now describe algorithms that fulfill this requirement.

Counting selfdual skew cyclic codes

In order to count selfdual skew cyclic codes, we introduce the q-binomial coefficients defined by: ˆn k ˙q " p1 ´qn qp1 ´qn´1 q . . . p1 ´qn´k`1 q p1 ´qqp1 ´q2 q . . . p1 ´qk q

where n and k are nonnegative integers. If k ą n, this evaluates to 0. For r " 0, the value is 1 since both the numerator and denominator are empty products.

All of the factors in numerator and denominator are divisible by 1 ´q, and the quotient is the q-number (q-analog of an integer k):

rks q " ÿ 0ďiăk q i " 1 `q `q2 `. . . `qk´1 " $ ' & ' % 1´q k 1´q for q ‰ 1 k for q " 1 (7.1)
Dividing out these factors gives the equivalent formula: ˆm r ˙q " rms q rm ´1s q . . . rm ´r `1s q r1s q r2s q . . . rrs q pr ď mq

In terms of the q-factorial rns q ! " r1s q r2s q . . . rns q , the formula can be stated as ˆm r ˙q " rms q ! rrs q ! rm ´rs q ! pr ď mq

We will use following lemmas on q-binomials.

Lemma 44 The q-binomial coefficient `n k ˘q counts the number of F q -vector subspaces of rank k in the ambiant F q -vector space F n q .

Proof. The q-binomial coefficient is equal to the number of free families of rank k on the numerator. As the denumerator is equal to the number of bases for a given F q -vector subspace of dimension k, the quotient is the q-binomial number expected.

Lemma 45 There is an analog of the binomial theorem for q-binomial coefficients, known as the q-binomial theorem:

n´1 ź k"0 p1 `qk tq " n ÿ k"0 q kpk´1q{2 ˆn k ˙qt k
Proof. See the article of Pólya [START_REF] Pólya | Gaussian binomial coefficients[END_REF].

We also need the following classical theorem due to Witt.

Proposition 46 (Witt decomposition) Let F be a finite field, V a 2s dimensional F -vector space. Let B be a nondegenerate σ-sesquilinear form on V , resp. bilinear form on V . Then there exist H i hyperbolic planes (Cf. the definition in 3), and an invariant, d, of V called the Witt index and equal to s or s ´1, such that one has the orthogonal decomposition:

V »K 1ďiďd H i K W
where dimpW q " s ´2d and W does not contain any nonzero isotropic vector. The dimension of any maximal isotropic space is given by the Witt index d.

Proof. See the proof in Theorem 3.11 [START_REF] Artin | Algebra[END_REF].

Remark 47 From the Witt decomposition theorem, we see that maximal isotropic spaces of dimension s exist in K l if and only if the Witt index of K l is s.

Counting selfdual skew codes in the nonpalindromic case

Proposition 48 Noting q l :" |F l | " q deg P l , the number of maximal isotropic spaces in the nonpalindromic case is:

k"r ÿ k"0 ¨r k 'q l " k"r ÿ k"0 pq r l ´1q . . . `qr´k`1 l ´1q k l ´1˘. . . pq l ´1q
Proof. Enumerating maximal selfdual ideals over E k,l ˆEk,τplq boils down to enumerating all F l -vector subspaces of K l by 43. The number of selfdual codes in such pairs E k,l ˆEk,τplq is thus equal to the sum over all possible dimensions k from 0 to r of the numbers of vector subspaces of dimension k, which, by lemma 44, are given by the q-binomial coefficients.

Explicit existence criterion for selfdual skew codes in the palindromic case

As stated by the Witt decomposition theorem 46, computing the Witt index of K l provides an explicit existence condition for selfdual skew codes. For this computation, we need to introduce the notion of discriminant of a finite etale algebra over its base field.

Definition 49 We recall that the discriminant δ K l {F l of the finite etale F l -algebra K l is given by det pTrace K l {F l pe i e j qq i,j modulo squares in F l , where pe i q is a base of the F l -vector space K l .

We also define the discriminant δ ζ l of the finite etale F l -algebra K l for the trace bilinear form that we defined on K l as det pTrace K l {F l pζ l e i e j qq i,j modulo squares in F l .

This definition does not depend on the choice of the base pe i q. Indeed, given any base change matrix M , we get:

pTrace KbFFpy l q{Fpy l q pζ l M pe i qM pe j qqq i,j " p ÿ l,m M tr i,l Trace KbFFpy l q{Fpy l q pζ l e l e m q ÿ m,j M m,j q i,j

And on the other hand we have det pM q det pM tr q " 1 in Fpy l q ˚{pFpy l q ˚q2 .

We have the following classical existence criterion on (maximal) isotropic subspace of dimension s:

Proposition 50 We assume σ l py l q " y l and p ‰ 2. Then there exists an isotropic subspace of

dimension s in K l if and only if p´1q s δ ζ l is a square in pF l q ˚.
Proof. For sake of completeness, we recall the proof. By Witt decomposition theorem 46 applied to our quadratic form, the maximal isotropic spaces of dimension s exist if and only if the Witt index is s. If this is the case, then obviously δ ζ l is congruent to p´1q s , as one can check by computing the discriminant of the matrix representing the bilinear form in a base constituted by hyperbolic pairs (Cf. 3):

¨0 1 0 0 ¨¨¨0 0 1 0 0 0 ¨¨¨0 0 0 0 0 1 ¨¨¨0 0 0 0 1 0 ¨¨¨0 0 ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨0 0 0 0 ¨¨¨0 1 0 0 0 0 ¨¨¨1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
If this is not the case, then δ ζ l cannot be congruent to p´1q s . Indeed restricted to the last nonhyperbolic hyperplane of the Witt decomposition, the matrix representing the symmetric bilinear form in a suitable base has the form:

¨1 0 0 ´1' if δ ζ l -p´1q s .
But it is readily seen that this defines a subspace having nontrivial isotropic vectors, which contradicts the assumption on the Witt index.

We can make this criterion explicit by effectively computing ´1 and

δ ζ l in F l {pF l q 2 .
Lemma 51 ´1 is a square in F l if and only if p " 1p4q or rF l : F p s is even.

Proof. If p " 1p4q or rF l : F p s is even, F l has an element of order 4, so there is an element different from 1 and ´1 such that x 4 " 1, i.e, px 2 ´1qpx 2 `1q " 0, hence x 2 `1 " 0. One checks the reciprocal assertion.

Lemma 52 The discriminant δ ζ l is equal to Norm K l {F l pζ l qδ K l {F l .
Proof. Noting Matpζ l q the matrix representing the multiplication by ζ l in the base pe i q and Matpζ l q tr its transpose, we get:

det p ÿ l Matpζ l q tr i,l Trace K l {F l pe l e j qq i,j " detpMatpζ l q tr qδ K l {F l " Norm K l {F l pζ l qδ K l {F l
Lemma 53 The discriminant δ K l {F l is a square in F l if and only if the Galois group of F l {F is a subgroup of the alternating group, i.e. if and only if the degree of the extension rF l : F p s is odd.

Proof. The proof can be found in Corollary 4.2 from [START_REF] Milne | Fields and Galois theory[END_REF].

In addition Norm K l {F l pζ l q can also be computed.

Lemma 54 The norm Norm K l {F l pζ l q is a square in F l if and only if y l " 1.

Proof. We have:

Norm K l {F l pζ l q q´1 2 " pζ ř 0ďiă2s q i l l q q´1 2
Moreover, as 2s is even we have:

pζ ř 0ďiă2s q i l l q q´1 2 " pζ q´1 l q ř 0ďiă2s q i l 2 " px l pId b σ l qpx l qq ř 0ďiă2s q i l 2
Using the chinese remainder isomorphism between K l {F l and a product of F l -field extensions:

K l " Ý Ñ ś i L l,i x l Þ Ñ px l,i q i (7.2)
The Frobenius automorphism generates the cyclic Galois group of each L l,i . Thus for a palindromic index i (satisfying τ piq " i), Id b σ l induces the following involutive mapping:

Id b σ l,i : x l,i Þ Ñ x q n i l
l,i for some positive integers n i . For nonpalindromic indexes i (satisfying τ piq ‰ i), Id b σ l induces the following involutive mapping: Id b σ l,i : x l,i Þ Ñ x l,τ piq for some element x l,τ piq P L l,τ piq . As these nonpalindromic terms can be grouped by products of identical pairs in L l,i ˆLl,τpiq , we get

px l pId bσ l qpx l qq ř 0ďiă2s q i l 2 Þ Ñ ppx ř 0ďiă2s q i l `ř0ďiă2s q n i l q i l 2 l,i q palindromic i , px 2 ř 0ďiă2s q i l 2 l,τ piq , x 2 ř 0ďiă2s q i l 2 l,i q nonpalindromic ti,τ piqu q
On the other hand, for palindromic indexes, by 2s-periodicity of θ, we have

x ř 0ďiă2s q i l l,i " x ř n i ďiă2s`n i q i l l,i
. So we get x ř 0ďiă2s q i l `ř0ďiă2s q n i l q i l 2 l,i

" x ř 0ďiă2s q i l l,i
. Since the chinese remainder isomorphism maps y l i.e. Norm K l {F l px l q to px ř 0ďiă2s q i l l,i q i , we get in the end

Norm K l {F l pζ l q q´1 2 " y l .
We deduce from this equality and Euler's criterion that the norm Norm K l {F l pζ l q is a square in F l , if and only if y l " 1.

Corollary 55 When k is even, there are no selfdual skew cyclic codes in E k .

Proof. If k is even, E k factors as follows:

E k » ź l,P l p˘1q!"0
pKrY s{pP l pY qqrX; θsq{pX r ´Y q ˆKrX ˘1; θs{pX r `1q ˆKrX ˘1; θs{pX r ´1q So there are no selfdual skew codes in KrX ˘1; θs{pX r `1q ˆKrX ˘1; θs{pX r ´1q.

Indeed, noting l ´1 the index corresponding to the root ´1 of Y k ´1, we have:

δ l´1 " Norm K l ´1 {F l ´1 pζ l´1 qδ K l ´1 {F l ´1
where ζ l´1 satisfies: θpζ l´1 q " x l´1 pId b σ l qpx l´1 qζ l´1 ,

x l´1 satisifies Norm K l ´1 {F l ´1 px l´1 q " ´1. As shown in the lemma 54: In the Hermitian case:

Norm K l ´1 {F l ´1 pζ l´1 q is not a square in F l´1 . So δ K l ´1 {F l
rF l : F p s always even s even or odd True

Counting selfdual skew codes in the palindromic case

When maximal isotropic spaces exist in an ambiant F q -vector space, their number is given by Segre's formulas

[Seg59] [Ple65] [Ann09].
Proposition 56 Number Iso d of maximal isotropic spaces of dimension d:

In the Euclidean case, i.e. for y l " ˘1:

$ ' ' & ' ' %
In even characteristic: Iso d "

d ś i"1 `qi `1Ȋ n odd characteristic: Iso d " d´1 ś i"0 `qi `1˘( 7.3)
In the Hermitian case, i.e. for y l ‰ ˘1:

$ ' ' & ' ' %
In even characteristic: Iso d "

d ś i"1 `qi`1{2 `1Ȋ n odd characteristic: Iso d " d´1 ś i"0 `qi`1{2 `1˘( 7.4)
For sake of completeness, we recall the proof in odd characteristic. We need the following lemma.

Lemma 57 Number IsoV ect d of isotropic vectors in an ambiant F q -vector space in odd characteristic:

In the Euclidean case: IsoV ect d " pq d ´1qpq d´1 `1q

In the Hermitian case: IsoV ect d " pq d ´1qpq d´1`1{2 `1q

Proof. In odd characteristic, given an isotropic base ppu i q 0ďiăd , pv i q 0ďiăd q corresponding to the Witt decomposition 46 of the ambiant space of dimension 2d, in d hyperplanes H i :"ă u i , v i ą such that F 2s l » ' 0ďiăd H i , an isotropic vector ppa i q 0ďiăd , pb i q 0ďiăd q verifies: In the Euclidean case: ř a i b j " 0.

In the Hermitian case: ř σ l pa i qb i `ř a i σ l pb i q " 0. This corresponds to independant equations ř a i σ l pb i q " α, for any anti-invariant α, i.e. satisfying σ l pαq " ´α.

Hence we have the following counting.

In the Euclidean case, given a nonzero vector y, x lies in a hyperplane of the vector space F d l . We thus have pq d l ´1qq d´1 l solutions for y nonzero and pq d l ´1q additional non trivial solutions for y equal to zero. Finally we get IsoV ect d " pq d l ´1qpq d´1 l `1q nonzero isotropic vectors in the ambiant space.

In the Hermitian case, a hyperplane over F l , has cardinal q d´1 l , and the number of antiinvariant scalars in F l is q 1{2 l (q l is indeed a square because P l is palindromic and thus its roots can be counted pairwise in the Hermitian case). Hence given a nonzero vector y, we have

pq d l ´1qq
d´1`1{2 l solutions for y nonzero and pq d l ´1q additional non trivial solutions for y equal to zero as in the Euclidean case. Finally we get IsoV ect d " pq d l ´1qpq

d´1`1{2 l `1q nonzero isotropic vectors.

Proof. (Segre's formulas) We start with an empty family u of isotropic vectors of the ambiant space. At each step d from 0 to s ´1 we pick an arbitrary isotropic vector among IsoV ect s´d possibilities (as defined in 57) in the orthogonal complement of the isotropic space spanned by the family u and append it to the family. It is readily seen that the family u is free and totally isotropic. Once we have obtained a maximal isotropic family, Witt's decomposition theorem ensures that its rank, the Witt index, is an invariant equal to s. The number of maximal isotropic bases is thus equal to the product P : ś 1ďdďs IsoV ect d (as defined in 57). The general linear group of GL s pF q q acting freely and transitively on these maximal isotropic bases, the maximal iostropic spaces correspond exactly to its orbits. Dividing P by the cardinal of GL s pF q q, s ś i"1 pq i l ´1q we thus obtain Segre's formula stated above.

Corollary 58 We apply Proposition 56 to our situation. The global number N of selfdual skew cyclic codes in E k is equal to the product of the numbers of maximal isotropic spaces V l of dimension s " r{2 in palindromic K l , N V l , times the product of the numbers of arbitrary subspaces W l over pairs of nonpalindromic spaces, N W l .

N " |t ź

tl|l"τ plqu

N V l ˆź ttl,τ plqu|l‰τ plqu N W l |W l arbitrary, V l maximal isotropicu|
In a condensed form, we obtain the following number of selfdual skew cyclic codes in E k :

ź tl|l"τ plq,y l "˘1u s´1 ź i"0 `qi l `1˘ź
tl|l"τ plq,y l ‰˘1u

s´1 ź i"0 ´qi`1{2 l `1¯ź ttl,τ plqu|l‰τ plqu k"r ÿ k"0 pq r l ´1q . . . `qr´k`1 l ´1q k l ´1˘. . . pq l ´1q
Example 59 For K " F 3 2s , θ : x Þ Ñ x 3 and K θ " F 3 , the number of selfdual skew cyclic codes grows as Opq sps´1q{2 q as s grows larger, whereas the number of skew cyclic codes (number of s dimensional F 3 -vector subspaces of F 3 2s ) grows as Opq s 2 q as s grows larger.

For K " F 3 6 , θ : x Þ Ñ x 3 and K θ " F 3 , the number of selfdual skew cyclic codes in E 1 " KrX; θs{pX 6 ´1q is: 80 among 33880 skew codes, whereas for K " F 3 18 , θ : x Þ Ñ x 3 and K θ " F 3 , the number of selfdual skew cyclic codes in E 1 " KrX; θs{pX 18 ´1q is:

469740602936729600 among 791614563787525746761491781638123230424 skew codes.
Remark 60 We recover also the number of selfdual cyclic codes from the case r " 1 in Segre's formula. We observe that, as we are in the separable case, pX ´1q is always a palindromic factor of pX k ´1q of multiplicity 1. Thus there exist no selfdual cyclic codes at all in the separable case in F p rXs{pX k ´1q. With regard to this fact, skew cyclic codes enjoy much more dual symmetries than cyclic codes. Nethertheless, the ratio of the number of skew cyclic codes over selfdual skew cyclic codes increases as fast as Opq s 2 `s 2 q as s grows larger. The best ratio is obtained for s " 1, and q " 3, in odd characteristic. In this case, half of the skew cyclic codes are selfdual skew cyclic codes.

Enumerating selfdual skew cyclic codes

As we have to enumerate very large numbers of selfdual skew cyclic codes, we shall first ensure that our enumeration algorithms return uniformly distributed codes among all possible selfdual skew cyclic codes. Secondly we shall provide an iterative algorithm, that returns a new code at each iteration, with a low and constant complexity at each iteration. We use the keyword next to denote the operation which returns the next result on an iterator and yield, the operation that returns a generator object, to be iterated.

Enumeration in the nonpalindromic case

Let W 0 ˆW K 0 be the ambiant Hermitian vector space. We want to enumerate all totally isotropic vector subspaces of W 0 ˆW K 0 of maximal dimension 2s.

Algorithm 61 Enumeration of selfdual skew codes in the nonpalindromic case Input: Iterator I on all reduced echelon matrix A of size ps, 2sq, Nonpalindromic polynomial P l generating the two-sided ideal in the skew cyclic algebra E k,l , the skew cyclic algebra E k Output: h is the next selfdual skew codes

1: A Ð next I 2: V Ð kerpAq 3: pe i q i Ð base of V 4: f Ð leftlcmppe i q i q in K l rX; θs{pP l q 5: g Ð P l .right_quo_rempf q 6: g star Ð g ' 7: f Ð lift of f in E k 8:
gstar Ð lift of g star in E k 9: h Ð leftlcmpf, g star q in E k 10: yield h Proof. For any element f in E k,l , the elements h in E k,l satisfying f.h " 0 constitute a right ideal generated by an element g ' . It is clear from proposition 42 that selfdual skew codes are the codes pI f , I g q for any f in E k,l . So the enumeration reduces to that of F l -vector subspaces of K l . We proceed to the latter enumeration using the bijection between F l -vector subspaces of K l , and reduced echelon matrices of dimension s over 2s with entries in F l .

Enumeration in the palindromic case in odd characteristic

Let W 0 be the ambiant Hermitian vector space whose Witt decomposition 46 is given by: W 0 » ' 1ďiďs H i , where H i are hyperbolic planes (Cf. the definition in 3). We want to enumerate all totally isotropic vector subspaces of W 0 of maximal dimension s.

Algorithm 62 Direct sum decomposition of hyperbolic planes in the Hermitian case

Input: W 0 : The ambiant Hermitian vector space

Output: U ,V build a uniformly random direct sum decomposition of hyperbolic planes

1: U, V, W Ð rs, rs, W 0 2: while W ‰ 0 do 3:
Pick two random vectors u and v in W 4:

if ă u, v ą‰ 0 and pu, vq is free then 5:

Solve the equation pEq ă u `λv, u `λv ą" 0 for λ (Hermitian quadratic equation )

6: u Ð u `λv 7: u Ð u ´λv 8:
Solve ă u, νv ą" 1 for ν (linear)

9:

v Ð νv, now pu, vq is a hyperbolic pair 10:

U Ð U `rus, V Ð V `rvs 11: W Ðă U, V ą K Ă W 0 12:
end if 13: end while Proposition 63 The algorithm terminates with probability 1 and if it terminates, it is correct

We need the following lemmas to determine the probability for the quadratic equation at line 5 of the algorithm 62 to be solvable and to solve it when it is possible.

Lemma 64 Picking then two random vectors u and v that are not collinear in W of dimension 2d

and such that ă u, v ą‰ 0 is an event of probability

pq l 2d ´1qpq 2d l ´q2d´1 l q q l 4d
. Moreover this probability is always greater than 3 8 Proof. This is the number of pairs of vectors with a first nonzero vector and another vector not contained in the hyperplane defined by the equation ă u, v ą" 0, divided by the number of pairs of vectors in F 2d l . Moreover, the probability increases with q l and d, and its value at q l " 2 and d " 1 is 3 8 .

Lemma 65 (Cf. 5) The equation pEq ă u `λv, u `λv ą" 0 has a solution in λ for any vector u and v in the ambiant Hermitian vector space. Denoting Norm ´1 F l {F σ l l pxq a preimage by the norm map of the element x, a solution is given by the formula: N pµq " pα ´Npău,vąq ăv,vą qpσ l pαq ´Npău,vąq ăv,vą q N pµq " N pαq ´Npău,vąq ăv,vą T rpαq `p N pău,vąq ăv,vą q 2 T rpµq " T rpαq ´2 N pău,vąq ăv,vą

λ " Norm ´1 F l {F σ l l ´Npău,vąq
Injecting the trace and norm of µ in pEq, we obtain: pEq ðñ ă u, u ą `T rpαq ´2 N pău,vąq ăv,vą `pN pαq ´Npău,vąq ăv,vą T rpαq `p N pău,vąq ăv,vą q 2 q ăv,vą N pău,vąq " 0 pEq ðñ N pαq " N pău,vąq ăv,vą p N pău,vąq ăv,vą ´ă u, u ąq One can solve this last equation for α per surjectivity of the norm.

Proof. (of Proposition 63) We initialize W to W 0 :" K l . We pick two random vectors u and v that are not collinear in W of dimension 2d and such that ă u, v ą‰ 0.

Either u and v are both isotropic and they can be renormalized into a hyperbolic pair (Cf. 3).

Indeed by surjectivity of the norm, there exist an element α P F l such that ă u, v ą" ασ l pαq, so that p u α , v α q is a hyperbolic pair. Or one of them is not isotropic, say v (wlog), so that ă v, v ą‰ 0. In this latter case we solve the equation pEq for λ and replace u by u `λv and v by u ´λv, building as previously a hyperbolic pair.

We then append the hyperbolic plane ă u, v ą to the growing direct sum of hyperbolic planes ă U, V ą and take its orthogonal W 1 in W 0 . Using Witt decomposition 46, we get W 1 » ' 1ďiďd´1 H i , so we can reset W to W 1 and repeat the process until W is equal to zero.

Witt decomposition theorem 46, guarantees that this process ends properly and that we end up with a direct sum of hyperbolic planes. Finally at each step the hyperbolic plane picked is uniformly distributed among all available hyperbolic planes, the set of available hyperbolic planes has a constant cardinal and it is itself uniformly distributed relatively to the last picked hyperbolic plane (by Witt decomposition 46), so the final direct sum of hyperbolic planes obtained is uniformly distributed as well.

Mean complexity 66 The mean complexity C in s of the algorithm is less than a constant times the complexity of taking the orthogonal at each step, as the random event at each step is uniformly distributed and has a nonzero minimal probability (greater than 3 8 ). Thus C " Op ř 1ďiďs s 3 q " Ops 4 q Algorithm 67 Direct sum decomposition of hyperbolic planes in the Euclidean case

Input: W 0 : The ambiant Euclidean vector space

Output: U ,V build a uniformly random direct sum decomposition of hyperbolic planes

1: U, V, W Ð rs, rs, W 0 2: while W ‰ 0 do 3:
Pick two random vectors u and v 4:

if ă u, v ą‰ 0 and pu, vq is free then 5:

Solve ă u `λv, u `λv ą" 0 for λ (Euclidean quadratic equation)

6:
if The discriminant is a square in F l then 7:

u Ð u `λv 8: u Ð u ´λv 9:
Solve ă u, νv ą" 1 for ν (linear) 10:

v Ð νv, now pu, vq is a hyperbolic pair 11:

U Ð U `rus, V Ð V `rvs 12: W Ðă u, v ą K 13: end if 14:
end if 15: end while Proposition 68 The algorithm terminates with probability 1 and if it terminates, it is correct

We need the following lemmas to determine the probability for the quadratic equation at line 5 of the algorithm 67 to be solvable and to solve it when it is possible.

Lemma 69 If ´1 is a square in F l , The probability P q l ,s for the discriminant of the equation to be square at each step i P t1, . . . , su is equal to P q l ,i "

pq i´1 l `1qpq 2i´1 l `qi l ´qi´1 l ´ql qpq l `1q 2pq i l `1qpq 2i´1 l ´1q
. Moreover this probabililty decreases with i and q l and we have lim sÑ8,q l Ñ8 P q l ,s " 1 2 restricted to the remaining direct sum of hyperbolic planes does not depend on the hyperbolic plane chosen, the algorithm's returned value remains uniformly distributed.

Mean complexity 72

The mean complexity C in s of the algorithm is a less than a constant times the complexity of taking the orthogonal at each step, as the random event at each step is uniformly distributed and has a nonzero minimal probability (greater than 3 16 ). Thus C " Op ř 1ďiďs s 3 q " Ops 4 q

The random direct sum of hyperbolic planes obtained, can now be used to enumerate all maximal isotropic spaces.

Algorithm 73 Enumeration of maximal isotropic spaces in the Euclidean case Input: Iterator I on all reduced echelon matrix A of growing size pi, sq, U, V , bases of supplementary maximal isotropic building pairwise hyperbolic pairs Output: W is the next maximal isotropic space

1: A Ð next I 2:
B Ð next solution of the orthogonality system given by A among q ipi´1q{2 l solutions.

3: p0, Cq Ð single reduced echelon matrix, whose image is the totally isotropic orthogonal to pA, Bq in the vector space spanned by the pv i q 0ďiďs 4: W Ð ImppA, Bqq À Impp0, Cqq

5: yield W Proposition 74
The algorithm is correct

Proof. We enumerate all maximal isotropic spaces in an analogue fashion as for the enumeration of subspaces of dimension s in an ambiant space of dimension 2s using the formula:

`2s s ˘ql " ř s i"0 q i 2 l `s i ˘2 q l .
The algorithm for subspaces enumeration in general is the following. Given a base of the ambiant vector space, we use the bijection between its vector subspaces and the reduced echelon matrices in this base, whose image correspond to the vector subspaces, to reduce the problem to the enumeration of all ps, 2sq-sized reduced echelon matrices.

We enumerate these `2s s ˘ql different reduced echelon matrices M of size ps, 2sq by decomposing the matrix M in s types of reduced echelon matrices of the form ¨A B 0 C

'for block matrices A of the size pi, sq for each index i between 0 and s. There are thus for each index i, `s i ˘ql possibilities for choosing A, `s s´i ˘ql " `s i ˘ql possibilities for choosing C and q i 2 l possibilities for choosing the matrix B as its entries can be choosen arbitrarily once the pivots of C have been deleted. Summing over all indices, and for each index, multiplying all independent possibilities for A, B and C, we obtain the expected formula `2s s ˘ql " ř s i"0 q i 2 l `s i ˘2 q l . ˆ2s

s ˙ql " |M echelon | " ˇˇˇˇˇ» - A echelon pi, sq B pivot deletion pi, sq 0 C echelon ps ´i, sq fi fl |0 ď i ď s ˇˇˇˇˇ" s ÿ i"0 q i 2 l ˆs i ˙2 q l
Now we adapt this strategy to the case of isotropic spaces. Starting with a base pu i q 0ďiďs

and pv i q 0ďiďs of supplementary maximal isotropic spaces such that (Witt decomposition 46) the bilinear form is represented in this base by the matrix:

¨0 Id Id 0
', as it is obtained by the algorithm previously described, we express the global ps, 2sq sized matrix as a generator matrix M for a maximal isotropic space expressed in this base. For each reduced echelon matrix A in the upper left corner of M generating a subspace of ă U ą of dimension i, we get as in the previous enumeration corresponding matrices B and C. But now the additional orthogonality relations on the rows expressed in the base of the pu i q 0ďiďs and pv i q 0ďiďs leads to ipi `1q{2 (number of unordered pairs of orthogonal rows of pA, Bq) independent additional equations for B. Noting

A " pa i,j q 1ďiďd,1ďjďs B " pb i,j q 1ďiďd,1ďjďs , this set of equations is explicitly the following: Let us note α, β and γ the endomorphisms induced by the matrices A, B, and C in the base ppu i q 0ďiďs , pv i q 0ďiďs q. From the system of equations we get: α ˝β' `β ˝α' " 0 and we have also α˝γ ' " 0, which implies kerpαq Ą Impγ ' q. By checking both dimensions equal to s´i, we deduce kerpαq " Impγ ' q. Moreover, as we made the pivot with C in B, we have: Impβ ' q X Impγ ' q " 0.

We get Impβ ' q X kerpαq " 0. This means that α restricted to Impβ ' q is injective. Noting µ " α ˝β' , the system of equations reduces to assert that µ is antisymmetric. We thus have to solve: β ' " α| ´1 Impβ ' q µ for any antisymmetric endomorphism µ represented by an antisymmetric matrix M of dimension d ˆd in the chosen base. This gives q ipi´1q{2 l solutions for B.

On the other hand, for p0, Cq, there is no choice but to take the reduced echelon matrix corresponding to the right kernel of A: the single totally isotropic space spanned by the pv i q 0ďiďs

and orthogonal to pA, Bq.

Mean complexity 75

The mean complexity C in s of one iteration of the algorithm is a less than a constant times the complexity of taking the orthogonal at each step. Thus

C " Op ř 1ďiďs s 3 q " Ops 4 q Remark 76 As a byproduct of Proposition 74, we obtain a bijective proof of the q-binomial formula stated in 45 for the evaluation at 1:

s´1 ź i"0 p1 `xq i l q| x"1 " s ÿ i"0 x i q p i 2 q l ˆs i ˙ql | x"1 s´1 ź i"0 p1 `qi l q " s ÿ i"0 q p i 2 q l ˆs i ˙ql
Algorithm 77 Enumeration of maximal isotropic spaces in the Hermitian case Input: Iterator I on all reduced echelon matrix A of growing size pi, sq, U, V , bases of supplementary maximal isotropic building pairwise hyperbolic pairs Output: W is the next maximal isotropic space 1: A Ð next I 2: B Ð next solution of the orthogonality system given by A among q i 2 {2 l solutions.

3: p0, Cq Ð single reduced echelon matrix, whose image is the totally isotropic orthogonal of pA, Bq in the vector space spanned by the pv i q 0ďiďs 4: W Ð ImppA, Bqq À Impp0, Cqq

5: yield W Proposition 78
The algorithm is correct Proof. We use the same algorithm as in the Euclidean case but the orthogonality equations are now put in the Hermitian setting. This set of equations is explicitly the following: ř 1ďjďs a 1,j σ l pb 1,j q `b1,j σ l pa 1,j q " 0 . . . . . . ř 1ďjďjs a 1,j σ l pb d,j q `b1,j σ l pa d,j q " . . . . . . ř 1ďjďs a k,j σ l pb k,j q `bk,j σ l pa k,j q " 0 . . . ř 1ďjďjs a k,j σ l pb d,j q `bk,j σ l pa d,j q " . . . . . . ř 1ďjďjs a d,j σ l pb d,j q `bd,j σ l pa d,j q " (7.6)

or matricially:

Aσ l pB tr q `Bσ l pA tr q " 0

We follow the proof of 74, we now have that M " α ˝β' is Hermitian antisymmetric. And we have thus for fixed entries in the upper triangular part of B, ? q l i additional solutions on the diagonal of B. This gives q ipi´1q{2`i{2 l " q i 2 2 l possibilities for B.

Mean complexity 79

The mean complexity C in s of one iteration of the algorithm is a less than a constant times the complexity of taking the orthogonal at each step. C " Op ř 1ďiďs s 3 q " Ops 4 q Remark 80 As a byproduct of Proposition 74, we obtain a bijective proof of the q-binomial formula stated in 45 for the evaluation at x " ? q l : s´1 ź i"0 p1 `xq i l q| x" ? q l " s ÿ i"0

x i q p i 2 q l ˆs i ˙ql

| x" ? q l s´1 ź i"0 p1 `qi`1 2 l q " s ÿ i"0 q i 2 2
l ˆs i ˙ql 8 SageMath enumeration of selfdual skew codes

We implemented the algorithms of section 7 in SageMath. Our package is available at https://plmlab.math.cnrs.fr/caruso/selfdual-skew-cyclic-codes

It consists in a main class instantiated with the extension K{F of order r and a palindromic polynomial of the center P pX r q in FpX ˘rq of KrX ˘1; θs as parameters. It provides an iterator on all selfdual codes for the Ore algebra KrX ˘1; θs{P pX r q. Hereunder, a simple use case of the library to compute the first iteration of E 1 for p " 3 and s " 3:

sage:loadp"selforthogonal_codes.sage"q sage:p, s, P " 3, 3, r1, ´1s sage:A " SelfDualCodespGFppq r"y"s pPq, GFppq r"z"s .irreducible_elementp2 ˚sqq sage:iter " A.enumerate_selfdual_codespTrueq sage:nextpiterq

x 3 `pz 5 `z4 `2z 3 `z2 `z `1qx 2 `pz 4 `z3 `2z 2 `z `1qx `2z 4 `z3 `2z 2 `2z `1

SageMath computation of cyclic or negacyclic codes

Hereunder, we provide computations for the palindromic Euclidean, Hermitian, skew-Euclidean and skew-Hermitian cases and nonpalindromic case. (see the four types of geometries 3) Skew-Euclidean and skew-Hermitian cases are described in appendix A.

Case 81 Palindromic Euclidean:

q " 3,s " 3 and P pY q " Y ´1 Case 82 Palindromic Hermitian case:

q " 3,s " 3 and P pY q " Y 2 `1 sage:A " SelfDualCodespPolynomialRingpGFp3q, yqpr1, 0, 1sq, 3q 

A Enumeration of inseparable selfdual skew cyclic codes

Factorizations over inseparable E k have been studied in [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]. But we will use another approach using twisted skew separable codes E pξX t q k,l

. These are defined as skew separable codes of E k,l corresponding to the usual adjunction on E k,l composed with the conjugation by ξX t .

We aim at obtaining all inseparable codes as products of twisted skew separable codes.

A.1 Counting selfdual skew separable twisted codes

We can count all possible selfdual skew codes from one single skew code by using the transitive right action of the orthogonal group in the Euclidean case, the unitary group in the Hermitian case, the symplectic group in the skew-Euclidean case or the skew-unitary group in the skew-Hermitian case, on those codes. The action is well defined as the following computation shows in the Euclidean or Hermitian case:

@o P torthogonal groupu @f P tmaximal orthogonal codesu f opf oq ˚" f oo ˚f ˚" f f ˚" 0.

In the skew-Euclidean or skew-Hermitian case:

@o P tsymplectic groupu @f P tmaximal orthogonal codesu f spf sq ˚" f ss ˚f ˚" ´f f ˚" 0.

Choosing a base, these classical groups corresponding to the coordinatewise bilinear form are conjugated to those related to our trace bilinear form. So in order to get the number of maximal orthogonal codes, we can take the cardinal of the quotient of the classical group by its stabilizer.

In the Euclidean case, choosing a base ă U, V ą constituted pairwise by hyperbolic pairs ă u, v ą as described in the algorithm 67, this cardinal is that of the general linear subgroup acting on the maximal isotropic spaces times the number of matrices in the upper right block:

i.e. q s 2 l divided by the number of equations for the rows to be isotropic: q sps`1q{2 l

. So in the end we find the orthogonal Segre's formula again for the number of maximal isotropic subspaces: ś 0ďiăs p1 `qi q In the skew-Euclidean case, the cardinal of the stabilizer, is q s 2 l divided by the number of equations for the rows to be isotropic, which is now less than in the Euclidean case: q sps´1q{2 l . So in the end we find the symplectic Segre's formula again for the number of maximal isotropic subspaces: ś 0ăiďs p1 `qi q, using the symplectic action [START_REF] Hanlon | Counting points in sp(2n, fq) maximal parabolic subgroup[END_REF]. 

A.2 Enumeration of inseparable selfdual skew cyclic codes

Definition 90 We fix parameters t P t0, su and ξ P K b F F l with σ l pξq " ξ, and θ t pξq " ´ξ if t " s. We define E pξX t q k,l , the quadratic space E k,l along with its ξX t -twisted bilinear form pκ, ρq " Trace K l {F l pζ.ξκθ t pσ l pρqqq corresponding to the twisted adjunction: f ' ξX t " X t ξ ´1ζ ´1 ř i X ´iσ l pf i qζξX ´t. The ξX t -twisted bilinear form is Euclidean if y l " ˘1 and t " 0 It is Hermitian if y l ‰ ˘1 and t " 0 It is skew-Euclidean if y l " ˘1 and t " s It is skew-Hermitian if y l ‰ ˘1 and t " s Lemma 91 The two expressions pκ, f pρqq pξX t q F l and pf ' ξX t pκq, ρq pξX t q F l coincide.

Lemma 92 The set of ξ-twisted selfdual skew codes is in bijection with the set of non-twisted selfdual skew codes and their intersection is empty for any twisting verifying θ s pξq " ´ξ.

Proof. We have trivially for any monic skew polynomial f of degree s generating a selfdual code

C f of E k,l : f ξf ' ξ ξ ´1 " f f ' X s pX r ´1q
X s pX r ´1q " f p0qX s pX r ´1q

We assume ξ to be σ l -invariant. So, by Hilbert-90, we can solve the equation γσ l pγq " ξ for γ in K l θ s . Noting then g " σ l pγqf γ ´1, we get a bijection f Þ Ñ g between nontwisted and ξ-twisted selfdual skew codes:

gg ' ξ " σ l pγqf ξf ' ξ γ " σ l pγqf f ' 1 σ l pγq " f p0qX s pX r ´1q
. Moreover if we assume θ s pξq " ´ξ and f f ' " f f ' ξ " f ξ ´1f ' ξ " 0 in E k,l then by evaluating lifts at 0, we get: f p0q " θ s pξq ξ " ´1. But this is not possible because X s pX r ´1q ‰ f f ' . Indeed f f ' r`s " f f ' s " ´1 whereas X s pX r ´1q r`s " 1 ‰ ´1 " X s pX r ´1q s . Proof. (sketch of a proof) If we are in the Hermitian case or if the existence criterion is fullfilled in the Euclidean case, there exists at least one inseparable case of the form:

ś l f i with f i f ' κ i X spi%2q
i " 0 The theorem 1.3 in [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF] due to Ore (1933) guarantees that the degree of each f i in any other factorization in irreducible factors is equal to s. We thus search all solutions ś 1ďiďn f i with degpf i q " s satisfying ś 1ďiďn f i p ś 1ďiďn f i q ˚9X sn pX r ´1q n . Per induction, it suffices to show that f n is twisted selfdual. If f n divides X r ´1, f ' n too, and so by left and right Euclidean division, we get: f n κf ' n " 9X s pX r ´1q for a scalar κ P K l . If f n does not divide X r ´1, as it is irreducible, it is coprime to X r ´1. Thus having fixed such a skew polynomial f n invertible in E k , we can make an explicit bijection between the solutions of S n´1 " t ś 1ďiďn´1 f i | ś 1ďiďn´1 f i p ś 1ďiďn´1 f i q ˚P pX sm pX r ´1q m q m maximalu and S n | fn " t ś 1ďiďn f i | ś 1ďiďn f i p ś 1ďiďn f i q ˚P pX sm pX r ´1q m q m maximalu, by conjugating S n´1 with f n . To be explicit, this conjugation formula leads to the twisted nondegenerate sesquilinear form: pκ, ρq " Trace K l {F l pζ.κpf n f n ˚qpθqpσ l pρqqq; the nondegeneration coming from the fact that f n is coprime to X r ´1 and thus f n ˆ˚and f n f n ˆ˚too. As the order m corresponding to S n´1 is less than n ´1, the order of S n | fn too. We deduce from this fact that there are no selfdual codes ś 1ďiďn f i for f n coprime to X r ´1.

Proposition 95 The algorithm is correct Proof. In order to enumerate all inseparable selfdual skew cyclic codes, at the price of some redundancy, we can assume without loss of generality (see 94) that the general solution is a product of twisted selfdual skew codes f 1 . . . f n , taking the f i left monic, and we start by solving the equation f n f ' n " 0pX r ´1q. This has been done in the preceding section. Now we obtain a scalar κ n " fnf ' n X s pX r ´1q which is equal to f n p0q. We then define another twisted adjunction to solve f n´1 κ n X s f ' n´1 " 0pX r ´1q. Let ' κn be defined by: f 'κ n i " σ l pκ n qf ' i κ n ´1. The equation becomes f n´1 X s f 'κ n n´1 κ n " 0pX r ´1q. Solving it, we now obtain a scalar κ n´1 κ n " fn´1X s f 'κ n n´1 X r pX r ´1q . At the next step, the monomials X s cancel and we are back in the Hermitian case. And so on so forth, getting alternatively a skew Hermitian (resp. skew Euclidean) and a Hermitian (resp. Euclidean) bilinear form. We have to check that the κ i satisfy the required symmetry for the selfdual skew codes to exist: A monic polynomial f satisfying the product criterion: f f ' κX t " 0 in E pl,κX t q k has a constant term f 0 " f p0q satisfying: pX s `. . . `f0 qκX t pX r f 0 `. . . `Xs q " θ s pκqθ s`t pf 0 qX s X t X r `f0 κX t X s 9X r`s`t ´Xs`t

  ăv,vą p N pău,vąq ăv,vą ´ă u, u ąq ¯´Npău,vąq ăv,vą ă v, u ą Proof. pEq can be rewritten as ă u, u ą `Trace F l {F σ l l pλ ă v, u ąq `Norm F l {F σ l l pλq ă v, v ą" 0 Noting µ :" λ ă v, u ą, N pxq :" Norm F l {F σ l l pxq, T rpxq :" Trace F l {F σ l l pxq and α :" µ`N pău,vąq ăv,vą , it follows:

ř

  1ďjďs a 1,j b 1,j `b1,j a 1,j " 0 . . . . . . ř 1ďjďjs a 1,j b d,j `b1,j a d,j " 0 ,j b k,j `bk,j a k,j " 0 . . . ř 1ďjďjs a k,j b d,j `bk,j a d,j " 0 . . . . . . ř 1ďjďjs a d,j b d,j `bd,j a d,j " 0 (7.5) or matricially: AB tr `BA tr " 0

  sage: G=GO(14,GF(9),1) ....: H=GL(7,GF(9)) ....: segre=prod(1+9^i for i in range(7)) ....: G.cardinality()/H.cardinality()/9**(21)==segre True sage: G=Sp(14,GF(9),1) ....: H=GL(7,GF(9)) ....: segre=prod(1+9^i for i in range(1,8)) ....: G.cardinality()/H.cardinality()/9**(28)==segre True

Algorithm 93 4: while i ą 0 do 5 :

 935 Enumeration of inseparable selfdual skew cyclic codes Input: pX k ´1q n : The cyclic polynomial to factorize as f f ˚, C κ : The family of all κ-twisted code indexed by κ Output: f : The next selfdual skew code 1: i Ð n 2: κ Ð 1 3: f Ð 1 Find the next solution f i from the family C κ Proposition 94 The enumeration algorithm 93 is exhaustive

  ´1 and δ l´1 cannot be squares in F l´1 simultaneously and we can conclude by proposition 50.

	The following tables summarize the results we can deduce from Proposition 50 and Lem-
	mas 51, 52, 53, 54		
	In the Euclidean case, i.e. for y l " ˘1:		
	s even	True	False
	s odd	True	p " 1p4q

rF : F p s even rF : F p s odd s even False True s odd False p " 3p4q In the Hermitian case, i.e. for y l ‰ ˘1: rF : F p s even rF : F p s odd

Proof. The equation is solvable exactly when the plane spanned by u and v is a hyperbolic plane.

For any step i P t1, . . . , su the application mapping the pairs of noncollinear isotropic vectors in W » F 2i l to their span is surjective on the set of hyperbolic planes. The cardinal of its preimage for any hyperbolic plane is the number of pairs of noncollinear vectors in the hyperbolic plane.

Hence it is:

pq i l ´1qpq i´1 l `1qppq i l ´1qpq i´1 l `1q ´pq l ´1qq 2pq l ´1q 2

The number of arbitrary planes is on the other side: pq 2s l ´1qpq 2s l ´ql q pq 2 l ´1qpq 2 l ´ql q . Finally we get the probability:

We observe

Remark 70 For i " 1, we check:

Lemma 71 Solving ă u `λv, u `λv ą" 0 for λ is equivalent to solving ă u, u ą `2λ ă u, v ą `λ2 ă v, v ą" 0 for λ. Noting ∆ the discriminant:

If ∆ is a square in F l , we find two solutions, λ " ´ău,vą˘?∆ ăv,vą , else there are no solutions.

Proof. (of Proposition 68) As in the Hermitian case, we start by taking two non-collinear random elements u and v in K l . If u is isotropic, the equation: ă u `λv, u `λv ą" 0 is linear in λ and has always a solution λ 0 . We can thus make the base change u Ð u, v Ð u ´λ0 v. If u isn't isotropic we have to solve the quadratic equation: ă u `λv, u `λv ą" 0 for λ using lemma 71. If there are solutions, we make the base change u Ð u `λv, v Ð u ´λv. If there are no solutions, we pick two random vectors again. Asymptotically in s and q l , this operation thus increase the mean complexity of a factor 2, as the lemma 69 shows. As in the Hermitian case, Witt decomposition theorem 46 produces a direct sum of hyperbolic plane, provided the existence criterion on the discriminant is fulfilled. Finally as the discriminant of the bilinear form s e l f d u a l code i n E :

T o t a l time (ms ) : 3 7 . 6 4

Case 83 Palindromic Skew-Euclidean case:

q " 3,s " 3,ι " ´θs piotaq P GF p3 6 q and P pY q " Y ´1 Case 84 Palindromic Skew-Hermitian case:

q " 3,s " 3,ι " ´θs piotaq P GF p3 6 q and P pY q " Y 2 `1 

SageMath iteration time for the enumeration of selfdual skew codes

We provide computation results for skew cyclic pX rk ´1, K{Fq-codes and skew negacyclic pX rk `1, K{Fq-codes for |F| ď 9, k ď 9 and r P t4, 6, 8u on a computer with following characteristics:

Thus we have: $ ' ' ' ' & ' ' ' ' % θ s pf 0 q " ´f0 for θ s pκq " κ , t " 0 p1q θ s pκq " ´κ for t " s symplectic case p2q ´f0 κ " θ s pκf 0 q for t " 0 p3q

If we start with κ " 1, we get the symplectic case from (1) and (2) with κ satisfying θ s pκq " ´κ, at the next step then an orthogonal case, then again alternatively a symplectic case with κ satisfying θ s pκq " ´κ from (3) etc . . . Remark 96 Noting f pjq i " X j f i X ´j , we have r redundant factorizations of the form ś i f pjq i " ś i f i modulo pX r ´1q n except for θ j invariant f i 's.

A.3 SageMath enumeration of inseparable selfdual skew cyclic codes

For F " GF p3q and K " GF p3 6 q, k " 1 and m " 1, the upper bound on the number of generated inseparable selfdual skew codes is numerically equal to: 80 ˚1120 ˚80, where 80 is the number of orthogonal isotropic spaces and 1120 the number of symplectic isotropic spaces. A sage enumeration based on this algorithm provides a number n of maximal isotropic codes equal to n " 2360960. We have not much redundancies since 80 ˚1120 ˚80 « 3 ˚2360960.

Remark 97 In addition to those codes, there are Euclidean cases where the global code ś i f i contains at least one sequence f i f i`1 with f i`1 " f i . In these cases (whose count is given by the catalan numbers) we can cancel this product in our algorithm taking the resulting constant term into account. Their number for F " GF p3q and K " GF p3 6 q, k " 1 and m " 1 is 14224. Remark 98 In our example, the θ s invariance (for s " 3) does not occur since it would imply the existence of selfdual skew cyclic codes in K θ s rX; θs{pX s ´1q and K θ s rX; θs{pX s `1q. But as s is odd this can not happen. The θ 2 invariance does obviously not occur either on the f i 's.