Adam Mekhiche 
  
Antonio Maria Cipriano 
  
Charly Poulliat 
  
EXPECTATION PROPAGATION ON FACTOR GRAPHS BASED ON MATRIX DECOMPOSITION

In the context of the Gaussian linear model, recent works have studied factor graph modification using QR decomposition that enables the derivation of scalar Expectation Propagation (EP) based detectors. In this paper, we investigate on new factor graph representations induced by the use of the Golub-Kahan bi-diagonal Decomposition (GKD) and of the Singular Value Decomposition (SVD). New EP messages induced by the GKD or SVD underlying graphs are derived, that can be both scalar or vector messages. Complexity and performance of the resulting algorithms are studied for digital communications applications.
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INTRODUCTION

In this paper, we consider the Gaussian linear model defined as

y = Hx + w (1) 
where x ∈ C N t , y ∈ C Nr , H ∈ C Nr ×N t , and w ∈ C Nr is a vector of White Gaussian Noise (WGN) samples with E(w) = 0 and E(ww H ) = N0IN r . This model is widely and extensively used in numerous applications in signal processing. In particular, in digital communications, it has been used for equalization [START_REF] Sahin | A Framework for Iterative Frequency Domain EP-Based Receiver Design[END_REF], detection [START_REF] Senst | How the Framework of Expectation Propagation Yields an Iterative IC-LMMSE MIMO Receiver[END_REF][START_REF] Wu | Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message Passing[END_REF], channel estimation [START_REF] Chockalingam | Large MIMO systems[END_REF], just to mention a few. It can be represented using a Factor Graph (FG) on which vector or scalar message passing algorithms (MPAs) can be applied to estimate x. Several MPAs could be applied on the FG like Belief Propagation (BP) [START_REF] Chockalingam | Large MIMO systems[END_REF], Approximate Message Passing (AMP) [START_REF] Meng | Advanced NOMA Receivers from a Unified Variational Inference Perspective[END_REF], Vector Approximate Message Passing (VAMP) [START_REF] Schniter | Vector approximate message passing for the generalized linear model[END_REF] or Generalized Approximate Message Passing (GAMP) [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF]. In this work, we focus on MPAs on FG derived within the Expectation Propagation (EP) framework [START_REF] Thomas | A Family of Algorithms for Approximate Bayesian Inference[END_REF], which is another competitive approach to derive efficient MPAs. EP is an approximate Bayesian inference technique that can be interpreted as a generalization of Belief Propagation (BP) within the Message Passing (MP) framework.

By decomposing H, referred to as the channel matrix, and pre-processing the signal y accordingly, the corresponding FG can be opportunely preprocessed. Several matrix decompositions can be used, like the QR decomposition (QRD), the Golub-Kahan bidiagonal Decomposition (GKD) [START_REF] Golub | Matrix Computations 4 edition[END_REF], all the way to the Singular Value Decomposition (SVD) to alter/modify the underlying graph. Prior works [START_REF] Dong | Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems[END_REF][START_REF] Park | QR decomposition aided belief propagation detector for MIMO systems[END_REF] applied QRD and corresponding pre-processing using MPAs. The QRD produces a fairly similar FG compared to its initial form, except fewer messages need to be exchanged but the overall structure remains the same. Other works, e.g. [START_REF] Meng | Advanced NOMA Receivers from a Unified Variational Inference Perspective[END_REF][START_REF] Schniter | Vector approximate message passing for the generalized linear model[END_REF], use SVD inside the MPAs in order to efficiently compute matrix inverses. However, they do not apply SVD to pre-process the channel and observations before the use of MPA, therefore the underlying graph remains unchanged. Unitary AMP (UAMP) [START_REF] Luo | Unitary Approximate Message Passing for Sparse Bayesian Learning[END_REF] uses a SVD on the linear model but it does not profit from the diagonal matrix sparsity nor it treats the decomposed matrices independently, thus the underlying graph remains the same.

In this paper, we introduce new FG representations related to both GKD and SVD pre-processings, and for which new EP message derivations are obtained. Complexities for the different approaches are then evaluated and performance are illustrated in two main applications, ie. symbol detection in a multiple-input multiple output (MIMO) system [START_REF] Wu | Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message Passing[END_REF] and Single Carrier (SC) equalization [START_REF] Serdar S ¸ahin | Iterative Equalization Based on Expectation Propagation: A Frequency Domain Approach[END_REF][START_REF] Santos | Expectation Propagation as Turbo Equalizer in ISI Channels[END_REF].

The paper is organized as follows. In Section 2, FG representation of the linear model is discussed for different matrix decompositions. Section 3 presents the EP messages derivation induced by the matrix decomposition pre-processing. Computational complexities are discussed in Section 4. Some performance results are given in Section 5 and finally, conclusions and future research perspectives are drawn in Section 6.

FACTOR GRAPH REPRESENTATION WITH MATRIX DECOMPOSITION

Factor Graphs (FG) are graphical representations associated with the factorization of a given probability distribution, in our case the a posteriori probability (APP) distribution P (x|y, H). The different random variables of the system are associated with variable nodes (circles) in the graph, while "constraints" on these variables are represented through factor or function nodes (squares). The FG representation will depend on the factorization of the APP. Prior partial knowledge of x and perfect knowledge of H are assumed in this work as it is often the case with digital communication contexts. Since w is considered as white, the APP can be factorized for a coded communication system as:

P (x|y, H) ∝ Nr j=1 P (yj|x, H) f EQU j N t i=1 P (xi|ci) f DEM i P (ci) f PRI i (2)
where f EQU . are likelihood functions, f DEM . are the factors associated to the demodulation process and f PRI . are priors associated to coded binary vector labels ci that map to constellation symbols xi, ∀i ∈ 1, Nt . This factorization is used in [START_REF] Wu | Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message Passing[END_REF][START_REF] Dong | Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems[END_REF][START_REF] Park | QR decomposition aided belief propagation detector for MIMO systems[END_REF] and referred to as scalar factorization. The scalar FG drawn from (2) is shown in Fig. 1. One can notice that, ∀i, j ∈ 1, Nt , 1, Nr , the subgraph between function nodes f EQU j and variable nodes xi is fully Fig. 1. Factor Graph of P (x|y, H) factorized as in [START_REF] Senst | How the Framework of Expectation Propagation Yields an Iterative IC-LMMSE MIMO Receiver[END_REF]. Dotted edges are removed after QRD pre-processing and variable nodes in grey are known variables. connected as it expresses the dense nature of the channel matrix. To enable a sparser FG representation (ie. less connected), matrix decomposition techniques can be used, leading to MPAs that can combine both scalar and vector messages depending on the type of the matrix decomposition.

Assuming H known at the receiver, previous works [START_REF] Dong | Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems[END_REF][START_REF] Park | QR decomposition aided belief propagation detector for MIMO systems[END_REF] use QR Decomposition (QRD) [START_REF] Golub | Matrix Computations 4 edition[END_REF] to split the channel into two matrices, with H = QR, where Q is a unitary matrix and R is an upper triangular matrix. Then, the observation model can be updated as follows:

ỹ = Q H y = Rx + Q H w (3) 
Statistical properties of the additive noise remain unchanged due to the unitary property of Q. The new FG is shown in Fig. 1 with the dotted segments corresponding to removed edges thanks to the QRD. We now consider two other possible decompositions and analyze the resulting factor graphs. The Golub-Kahan bi-diagonal Decomposition (GKD) [START_REF] Golub | Matrix Computations 4 edition[END_REF] of H ∈ C Nr ×N t (Nr ≥ Nt) gives H = QBZ with Q ∈ C Nr ×Nr and Z ∈ C N t ×N t being unitary matrices while B ∈ C Nr ×N t is an upper bi-diagonal matrix. The corresponding modified observation model is given by

ỹ = Q H y = BZx + Q H w = Bx + Q H w. (4) 
where x = Zx. This leads to the following factorization:

P (x|y, H) ∝ Nr j=1 P (ỹj|x, B)P (x|x) N t i=1 P (xi|ci)P (ci). (5) 
Using ( 5), the new FG is presented in Fig. 2. The graph has a new function node f x|x which represents the link between x and x. The last decomposition studied in this work is the Singular Value Decomposition (SVD), which can be efficiently calculated starting from GKD. In this latter case, we have H = UΣV with U ∈ C Nr ×Nr and V ∈ C N t ×N t being unitary matrices, while Σ ∈ C Nr ×N t is a diagonal matrix. Based on the corresponding modified observation model, the factorization (5) remains valid with x = Vx, Q = U and B = Σ. It is worth noting that ∀j ∈ 1, Nr -1 , there is no edge between f EQU j and xj+1 but only "parallel" edges like on the demapping side of the graph.

Once the graph is appropriately represented, one can derive EP messages along these graphs to estimate the variable nodes xi. It is worth noting that a vector factorization of P (x|y, H) like in [START_REF] Senst | How the Framework of Expectation Propagation Yields an Iterative IC-LMMSE MIMO Receiver[END_REF] cannot benefit from those decompositions as the equivalent vector FG is not sensitive to matrix decomposition.

EXPECTATION PROPAGATION OVER GKD OR SVD FACTOR GRAPHS

Expectation Propagation (EP) [START_REF] Thomas | A Family of Algorithms for Approximate Bayesian Inference[END_REF] is an approximate Bayesian inference technique that can be interpreted as a generalization of Belief Propagation (BP) within the Message Passing (MP) framework. EP aims at tracking a distribution p by approximating it with a distribution q which lays in a specified set Q of "simple" distributions. q is the distribution in Q which is the closest to p according to the inclusive KullBack-Leibler divergence DKL. So the projection of p on Q = CN (µ, ν) problem can be written as:

proj Q [p(xi)] = q(xi) = arg min q∈Q DKL(p(xi)||q(xi)) (6) 
The projection is equivalent to moment matching, i.e., the mean and covariance of p and q are the same [START_REF] Thomas | A Family of Algorithms for Approximate Bayesian Inference[END_REF]. The message sent on an edge from a factor node fj to a variable node xi of the FG is:

m f j →x i (xi) = 1 m x i →f j (xi) × proj Q m x i →f j (xi) x fj(x) i ′ ∈N (f j ),i ′ ̸ =i m x i ′ →f j (x i ′ ) (7) 
with N (fj) the set of the neighbour variable nodes of fj. This projection constraint only affects few messages in practice because most of the pre-projection distributions of the graph already lie in the Gaussian family. We define the different messages of the graph as the complex Gaussians represented on Fig. 1. Authors from [START_REF] Wu | Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message Passing[END_REF] show the application of EP on scalar FG without decomposition and authors from [START_REF] Dong | Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems[END_REF] show the application of EP on scalar FG with QRD. There are several possible types of iteration in the graph, the first one between equalization nodes and variable nodes xi is called inner iteration, the second between equalization nodes and demapping nodes is called auto iteration, and the last between equalization nodes and prior probabilities nodes is called turbo iteration. The comparison between proposed scalar EP (SEP) algorithms in [START_REF] Wu | Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message Passing[END_REF] and [START_REF] Dong | Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems[END_REF] shows that the QRD pre-processing modifies the graph by reducing the number of edges (the dotted edges of Fig. 1). It also reduces the complexity, as there are fewer exchanged messages, and it can improve performance as the graph is less loopy. This QRD factorization does not require a new factor node as the proposed decompositions (ie. GKD and SVD) do.

The apparition of a new function node f x|x in Fig. 2 modifies the behaviour of the exchanged EP messages compared to Fig 1 . The inner-graph between equalization nodes and variable nodes is even sparser than with QRD.

The function node f x|x creates four new message types (Fig 2 .(b,c,f,g)) and the messages coming from this node to either xi or xi can be computationally demanding as they require a matrix inversion. Indeed, Fig. 2.(c,g) messages are vector messages, so the proposed EP algorithms combine scalar and vector messages, and are referred to as Hybrid EP (HEP) algorithms. The pre-projection pdf q(x) of the message Fig. 2.(c) is a multivariate complex Gaussian of covariance and mean : 

VZ = --→ VZ -1 + Z ← - V d Z H -1 -1 (8) 
μ µ µ Z = VZ --→ VZ -1 -→ μ µ µ Z + Z ← - V d -1 ← - µ µ µ d (9) (a) (b) (c) (d) (e) (f) (g) (h)
µ d i , ← - ν d i , (b): CN ← - µ z i , ← - ν z i , (c): CN ← - μz i , ← - νz i , (d): CN ← -- μe i,j , ← - νe i,j , (e): CN --→ μe i,j , -→ νe i,j , (f): CN -→ μz i , -→ νz i , (g): CN -→ µ z i , -→ ν z i , (h): CN -→ µ d i , -→ ν d i .
with

← - V d = diag( ← - ν d 1 , • • • , ←- ν d N t ), -→ VZ = diag( -→ νZ 1 , • • • , -→ νZ N t ), ← - µ µ µ d = [ ← - µ d 1 , • • • , ← -- µ d N t ] T and -→ μ µ µ Z = [ -→ μZ 1 , • • • , --→ μZ N t ] T .
Unlike the EP messages, the a posteriori pdf q(x) does not have a diagonal covariance matrix so the matrix inversion is computationally demanding. The same behavior occurs for Fig. 2.(g) posterior q(x), which has a covariance matrix and mean vector:

V Z = ← - V d -1 + Z --→ VZ Z H -1 -1 (10) µ µ µ Z = V Z Z H --→ VZ -1 -→ μ µ µ Z + ← - V d -1 ← - µ µ µ d (11) 
The computational complexity issue is tackled naturally is many scenarios. For instance the first auto-iteration has the particularity that -→ V z and ← -V z are scalar diagonal matrices which translates into,

∀i ∈ 1, Nt , m f x|x →x i (xi) = CN (xi; N t i ′ =1 z i,i ′ -→ μz i , -→ νz i ).
For the return message Fig. 2.(g), the posterior variance can be computed by inverting a diagonal matrix since ←-V Z is a scalar diagonal matrix. To auto-iterate while keeping the complexity low, the message Fig. 2.(f) variance can be set to a scalar diagonal matrix using the minimum of variances which makes the inversion a diagonal matrix inversion without losing any performance during the Fig. 2.(c) message update. The choice of using the minimum instead of the mean of variances is an heuristic from the studied cases of Section 5.

The study of Z (for GKD pre-processing) shows that its first row and first column are vectors with a one as first element and zeros for the rest which highlights the fact that the function node between x1 and x1 could be represented as an identity function. The matrix inversion is less complex as we can work with a smaller matrix of size (Nt -1) × (Nt -1). The Hybrid EP with Golub-Kahan decomposition (HEP GKD) algorithm is shown in Alg. 1. Note that, in Alg. 1, non informative Gaussians refer to as complex Gaussian distributions with a zero mean and infinite variance. Furthermore, Alg. 1 can take soft input so it could also be used in a BICM-ID (Bit Interleaved Coded Modulation with Iterative Decoding) scheme. The only differences in the messages of HEP SVD compared to HEP GKD is the computation of the messages Fig. 2.(d,f). In HEP

SVD, ∀i ∈ 1, Nt , m xi →f x|x (xi) = m f EQU i →x i (xi) and m xi →f EQU i (xi) = m f x|x →x i (xi)
which are simpler to compute.

COMPUTATIONAL COMPLEXITY

In this section, floating point operations (flops) are used to quantify the computational complexity of the algorithms. According to , the QRD complexity order is O(N 3 t /3) flops. The GKD can be efficiently computed starting with a QRD, and its overall complexity is O(2NrN 2 t + 2N 3 t ) flops. Finally, SVD is efficiently computed starting with GKD, and its total complexity is in the order of O(2NrN 2 t + 11N 3 t ) flops. Note that these pre-processings need to be executed only when the channel changes, e.g. in a block fading scenario only once per block. Those complexities are to be compared to the full-rank matrix inversion, required in LMMSE or Vector EP [START_REF] Senst | How the Framework of Expectation Propagation Yields an Iterative IC-LMMSE MIMO Receiver[END_REF], complexity which is O(N 3 t ). Thanks to the proposed simplification which removes the need of inverting a matrix to compute the message Fig. 2.(c), the amount of matrix inverses in HEP GKD and HEP SVD is lower than in VEP if there are auto or turbo iterations.

NUMERICAL RESULTS

To assess the performance of the proposed algorithms, we first consider a BICM MIMO-OFDM (orthogonal frequency division multiplexing) detection scheme. We use a 5G LDPC (low-density paritycheck) error correcting code without turbo-iteration, of length N = 2048 and coding rate r = 1/2 using the BP algorithm with 50 iterations. The resulting codewords are then mapped to QPSK symbols after random interleaving. The symbols are sent via Nt = 32 transmit antennas through an ergodic flat Rayleigh channel using a Nr = 32 receiving antennas receiver. The Bit Error Rate (BER) versus the energy-per-symbol to noise ratio Es/N0 is reported in Fig. 3, Algorithm 1 Hybrid EP with GKD Input: y, H, N 0 , λ a (prior Log Likelihood Ratio -LLR) 

Output: P (x|y, H) ∼ CN x; -→ µ µ µ d , -→ V d 1: H = QBZ, y ← Q H y, H ← B, x = Zx 2: Set
6: q(x i ) ∝ exp - |x i - -→ µ d i | 2 -→ ν d i -N n=1 c i,n λ a i,n 7: q(x i ) ∼ CN x i ; µ d i = E [q(x i )] , ν d i = Var [q(x i )] 8: ← - µ d i = ← - ν d i µ d i ν d i - -→ µ d i -→ ν d i and ← - ν d i = 1 ν d i -1 -→ ν d i -1 9: ← - µ z i = ← - µ d i and ← - ν z i = ← - ν d
← - νZ i = 1 νZ i -1 -→ νZ i -1
and ←-

← - μZ i = ← - νZ i μZ i νZ i - -→ μZ i -→ νZ
ν e i,j = 1 ← - νZ i -1 --→ ν e i,j ′ -1 , ← -- µ e i,j = ←- ν e i,j ← - μZ i ← - νZ i - ---→ µ e i,j ′ --→ ν e
i,j ′ with j ′ ̸ = j and j ′ ∈ N (x i ) 19: end for 20: Compute Fig. 2. (e).(f): 21: for j = 1 : Nr and i = 1 : Nt do 22:

σ 2 i,j = N 0 + i ′ ̸ =i |h j,i ′ | 2 ← -- νe i ′ ,j , z i,j = ỹj - i ′ ̸ =i h j,i ′ ← -- μe i ′ ,j 23: --→ μe i,j = z i,j h j,i and -→ νe i,j = σ 2 i,j |h j,i | 2 24: -→ νZ i = j ′ ∈N (x i ) |h j ′ ,i | 2 σ 2 i,j -1 , -→ μZ i = -→ νZ i j ′ ∈N (x i ) h * j ′ i z i,j σ 2 i,j
25: end for 26: Compute Fig. 2. (g).(h): 27: Pre-projection q(x) computed as in [START_REF] Park | QR decomposition aided belief propagation detector for MIMO systems[END_REF] 28: for i = 1 : Nt do 29:

-→ ν Z i = 1 ν Z i -1 ← - ν Z i -1 and -→ µ Z i = -→ ν Z i µ Z i ν Z i - ← - µ Z i ← - ν Z i 30: -→ µ d i = -→ µ z i , -→ ν d i = -→ ν z i 31: end for // end for
with Es the sum of the energies of the symbols of all antennas. The inner-iteration number of HEP GKD is set to one as the messages on the inner graph, the graph between equalization nodes and variable nodes, are smartly computed from bottom to top (only 2Nt -1 = 63 messages compared to the Nt(Nt + 1)/2 = 528 of SEP QRD and N 2 t = 1024 of SEP per inner-iteration) to achieve near optimal performance. HEP SVD does not perform inner-iteration because it already achieves optimal performance as the symbols xi are independent after SVD pre-processing. The two proposed algorithms, HEP GKD and HEP SVD, without any auto-iteration, have the same performance of the Linear Minimum Mean Square Error (LMMSE) detector [START_REF] Kay | Fundamentals of statistical signal processing: Estimation theory[END_REF]. For 1 auto-iteration, HEP SVD has the same performance as VEP [START_REF] Senst | How the Framework of Expectation Propagation Yields an Iterative IC-LMMSE MIMO Receiver[END_REF], while HEP GKD is 0.1 -0.2 dB behind for a target BER of 10 -3 . The classic SEP [START_REF] Wu | Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message Passing[END_REF] does not converge without auto-iterations and is still performing worse with more than 1 dB loss at a target BER of 10 -3 . SEP QRD [START_REF] Dong | Efficient EP Detectors Based on Channel Sparsification for Massive MIMO Systems[END_REF] requires at least one auto-iteration to achieve LMMSE performance while not being able to be close to LMMSE without any auto-iteration. These behaviours can be explained by the dense (fully connected) nature of the inner graph of SEP and the lack of sparsity of the inner graph for SEP QRD. Some results for a Single-Carrier (SC) BICM scheme with soft output equalization are also reported in Fig. 4, using a power normalized frequency selective deterministic channel with 3 equal taps at a delay of 0, 1 and 2 symbol times. In our example, H results in a Nt = 16 and Nr = 18 channel matrix with the same value on the diagonal and on the following two lower diagonals. A 5G LDPC error correcting code of length N = 2048 and r = 2/3, using the BP algorithm with 50 iterations, is used without turbo-iteration. HEP GKD and HEP SVD have the same number of inner-iterations as before. For this scenario, SEP and SEP QRD are not able to equalize the signal with or without auto-iteration, contrary to the MIMO-OFDM case. Similarly to the MIMO-OFDM context, coded HEP SVD can achieve the same performance as LMMSE without autoiteration and as VEP with one auto-iteration. Performance slightly degrades with increasing Es/N0. Uncoded HEP SVD performs as well as LMMSE without auto-iteration and as VEP with one autoiteration. Uncoded HEP GKD achieves LMMSE performance without auto-iteration and achieves almost the same performance as SEP. Coded HEP GKD can almost achieve LMMSE performance without auto-iteration and it performs slightly better with one.

CONCLUSION

In this work, we investigate on new factor graph representations for the Gaussian linear model, thanks to matrix decompositions. For these graph representations, we derived two new EP based algorithms. The proposed HEP GKD and HEP SVD benefit from the new graphical representations to enhance the inference accuracy over the SEP QRD algorithm at the cost of a higher complexity which can be reduced with the proposed heuristics. The proposed HEP SVD achieves same performance as VEP with similar complexity while HEP GKD can achieve almost the same performance with a slight reduction of complexity. Performance of the proposed algorithms has been assessed for two main applications in digital communications, i.e. SC equalization and MIMO-OFDM detection, to highlight the benefits of these new techniques compared to state-of-the art algorithms. The proposed FG can be the support on which many other MPAs could be developed, like AMP or BP.
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 3 Fig.3. Detection performances of 32 × 32 coded MIMO-OFDM[START_REF] Golub | Matrix Computations 4 edition[END_REF], the QRD complexity order is O(N 3 t /3) flops. The GKD can be efficiently computed starting with a QRD, and its overall complexity is O(2NrN 2 t + 2N 3 t ) flops. Finally, SVD is efficiently computed starting with GKD, and its total complexity is in the order of O(2NrN 2 t + 11N 3 t ) flops. Note that these pre-processings need to be executed only when the channel changes, e.g. in a block fading scenario only once per block. Those complexities are to be compared to the full-rank matrix inversion, required in LMMSE or Vector EP[START_REF] Senst | How the Framework of Expectation Propagation Yields an Iterative IC-LMMSE MIMO Receiver[END_REF], complexity which is O(N 3 t ). Thanks to the proposed simplification which removes the need of inverting a matrix to compute the message Fig.2.(c), the amount of matrix inverses in HEP GKD and HEP SVD is lower than in VEP if there are auto or turbo iterations.
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 4 Fig. 4. Performance of a SISO-SC transmission of block 16 × 18.
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