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ABSTRACT

In the context of the Gaussian linear model, recent works have stud-
ied factor graph modification using QR decomposition that enables
the derivation of scalar Expectation Propagation (EP) based detec-
tors. In this paper, we investigate on new factor graph representa-
tions induced by the use of the Golub-Kahan bi-diagonal Decom-
position (GKD) and of the Singular Value Decomposition (SVD).
New EP messages induced by the GKD or SVD underlying graphs
are derived, that can be both scalar or vector messages. Complexity
and performance of the resulting algorithms are studied for digital
communications applications.

Index Terms— Factor Graph, Message Passing, Expectation
Propagation, Matrix Decomposition, Linear Model

1. INTRODUCTION

In this paper, we consider the Gaussian linear model defined as

y = Hx+w (1)

where x ∈ CNt , y ∈ CNr , H ∈ CNr×Nt , and w ∈ CNr is
a vector of White Gaussian Noise (WGN) samples with E(w) = 0
and E(wwH) = N0INr . This model is widely and extensively used
in numerous applications in signal processing. In particular, in digi-
tal communications, it has been used for equalization [1], detection
[2, 3], channel estimation [4], just to mention a few. It can be rep-
resented using a Factor Graph (FG) on which vector or scalar mes-
sage passing algorithms (MPAs) can be applied to estimate x. Sev-
eral MPAs could be applied on the FG like Belief Propagation (BP)
[4], Approximate Message Passing (AMP) [5], Vector Approximate
Message Passing (VAMP) [6] or Generalized Approximate Message
Passing (GAMP) [7]. In this work, we focus on MPAs on FG de-
rived within the Expectation Propagation (EP) framework [8], which
is another competitive approach to derive efficient MPAs. EP is an
approximate Bayesian inference technique that can be interpreted
as a generalization of Belief Propagation (BP) within the Message
Passing (MP) framework.

By decomposing H, referred to as the channel matrix, and
pre-processing the signal y accordingly, the corresponding FG can
be opportunely preprocessed. Several matrix decompositions can
be used, like the QR decomposition (QRD), the Golub-Kahan bi-
diagonal Decomposition (GKD) [9], all the way to the Singular
Value Decomposition (SVD) to alter/modify the underlying graph.
Prior works [10, 11] applied QRD and corresponding pre-processing
using MPAs. The QRD produces a fairly similar FG compared to
its initial form, except fewer messages need to be exchanged but
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the overall structure remains the same. Other works, e.g. [5, 6],
use SVD inside the MPAs in order to efficiently compute matrix in-
verses. However, they do not apply SVD to pre-process the channel
and observations before the use of MPA, therefore the underlying
graph remains unchanged. Unitary AMP (UAMP) [12] uses a SVD
on the linear model but it does not profit from the diagonal matrix
sparsity nor it treats the decomposed matrices independently, thus
the underlying graph remains the same.

In this paper, we introduce new FG representations related to
both GKD and SVD pre-processings, and for which new EP message
derivations are obtained. Complexities for the different approaches
are then evaluated and performance are illustrated in two main ap-
plications, ie. symbol detection in a multiple-input multiple output
(MIMO) system [3] and Single Carrier (SC) equalization [13, 14].

The paper is organized as follows. In Section 2, FG representa-
tion of the linear model is discussed for different matrix decomposi-
tions. Section 3 presents the EP messages derivation induced by the
matrix decomposition pre-processing. Computational complexities
are discussed in Section 4. Some performance results are given in
Section 5 and finally, conclusions and future research perspectives
are drawn in Section 6.

2. FACTOR GRAPH REPRESENTATION WITH MATRIX
DECOMPOSITION

Factor Graphs (FG) are graphical representations associated with the
factorization of a given probability distribution, in our case the a
posteriori probability (APP) distribution P (x|y,H). The different
random variables of the system are associated with variable nodes
(circles) in the graph, while ”constraints” on these variables are rep-
resented through factor or function nodes (squares). The FG repre-
sentation will depend on the factorization of the APP. Prior partial
knowledge of x and perfect knowledge of H are assumed in this
work as it is often the case with digital communication contexts.
Since w is considered as white, the APP can be factorized for a
coded communication system as:

P (x|y,H) ∝
Nr∏
j=1

P (yj |x,H)︸ ︷︷ ︸
fEQU
j

Nt∏
i=1

P (xi|ci)︸ ︷︷ ︸
fDEM
i

P (ci)︸ ︷︷ ︸
fPRI
i

(2)

where fEQU
. are likelihood functions, fDEM

. are the factors associ-
ated to the demodulation process and fPRI

. are priors associated to
coded binary vector labels ci that map to constellation symbols xi,
∀i ∈ J1, NtK. This factorization is used in [3, 10, 11] and referred
to as scalar factorization. The scalar FG drawn from (2) is shown
in Fig. 1. One can notice that, ∀i, j ∈ J1, NtK, J1, NrK, the sub-
graph between function nodes fEQU

j and variable nodes xi is fully



Fig. 1. Factor Graph of P (x|y,H) factorized as in (2). Dotted
edges are removed after QRD pre-processing and variable nodes in
grey are known variables.

connected as it expresses the dense nature of the channel matrix. To
enable a sparser FG representation (ie. less connected), matrix de-
composition techniques can be used, leading to MPAs that can com-
bine both scalar and vector messages depending on the type of the
matrix decomposition.

Assuming H known at the receiver, previous works [10, 11] use
QR Decomposition (QRD) [9] to split the channel into two matrices,
with H = QR, where Q is a unitary matrix and R is an upper
triangular matrix. Then, the observation model can be updated as
follows:

ỹ = QHy = Rx+QHw (3)

Statistical properties of the additive noise remain unchanged due to
the unitary property of Q. The new FG is shown in Fig. 1 with the
dotted segments corresponding to removed edges thanks to the QRD.

We now consider two other possible decompositions and analyze
the resulting factor graphs. The Golub-Kahan bi-diagonal Decom-
position (GKD) [9] of H ∈ CNr×Nt (Nr ≥ Nt) gives H = QBZ
with Q ∈ CNr×Nr and Z ∈ CNt×Nt being unitary matrices while
B ∈ CNr×Nt is an upper bi-diagonal matrix. The corresponding
modified observation model is given by

ỹ = QHy = BZx+QHw = Bx̄+QHw. (4)

where x̄ = Zx. This leads to the following factorization:

P (x|y,H) ∝
Nr∏
j=1

P (ỹj |x̄,B)P (x̄|x)
Nt∏
i=1

P (xi|ci)P (ci). (5)

Using (5), the new FG is presented in Fig. 2. The graph has a new
function node f x̄|x which represents the link between x̄ and x. The
last decomposition studied in this work is the Singular Value De-
composition (SVD), which can be efficiently calculated starting from
GKD. In this latter case, we have H = UΣV with U ∈ CNr×Nr

and V ∈ CNt×Nt being unitary matrices, while Σ ∈ CNr×Nt is a
diagonal matrix. Based on the corresponding modified observation
model, the factorization (5) remains valid with x̄ = Vx, Q = U
and B = Σ. It is worth noting that ∀j ∈ J1, Nr − 1K, there is no
edge between fEQU

j and x̄j+1 but only ”parallel” edges like on the
demapping side of the graph.

Once the graph is appropriately represented, one can derive EP
messages along these graphs to estimate the variable nodes xi. It
is worth noting that a vector factorization of P (x|y,H) like in [2]
cannot benefit from those decompositions as the equivalent vector
FG is not sensitive to matrix decomposition.

3. EXPECTATION PROPAGATION OVER GKD OR SVD
FACTOR GRAPHS

Expectation Propagation (EP) [8] is an approximate Bayesian infer-
ence technique that can be interpreted as a generalization of Belief
Propagation (BP) within the Message Passing (MP) framework. EP
aims at tracking a distribution p by approximating it with a distri-
bution q which lays in a specified set Q of ”simple” distributions.
q is the distribution in Q which is the closest to p according to the
inclusive KullBack-Leibler divergence DKL. So the projection of p
onQ = CN (µ, ν) problem can be written as:

projQ[p(xi)] = q(xi) = argmin
q̃∈Q

DKL(p(xi)||q̃(xi)) (6)

The projection is equivalent to moment matching, i.e., the mean and
covariance of p and q are the same [8]. The message sent on an edge
from a factor node fj to a variable node xi of the FG is:

mfj→xi(xi) =
1

mxi→fj (xi)
×

projQ

[
mxi→fj (xi)

∫
x
fj(x)

∏
i′∈N (fj),i

′ ̸=i

mxi′→fj (xi′)

]
(7)

with N(fj) the set of the neighbour variable nodes of fj . This
projection constraint only affects few messages in practice because
most of the pre-projection distributions of the graph already lie in
the Gaussian family. We define the different messages of the graph
as the complex Gaussians represented on Fig. 1. Authors from [3]
show the application of EP on scalar FG without decomposition and
authors from [10] show the application of EP on scalar FG with
QRD. There are several possible types of iteration in the graph, the
first one between equalization nodes and variable nodes xi is called
inner iteration, the second between equalization nodes and demap-
ping nodes is called auto iteration, and the last between equalization
nodes and prior probabilities nodes is called turbo iteration. The
comparison between proposed scalar EP (SEP) algorithms in [3] and
[10] shows that the QRD pre-processing modifies the graph by re-
ducing the number of edges (the dotted edges of Fig. 1). It also
reduces the complexity, as there are fewer exchanged messages, and
it can improve performance as the graph is less loopy. This QRD
factorization does not require a new factor node as the proposed de-
compositions (ie. GKD and SVD) do.

The apparition of a new function node f x̄|x in Fig. 2 modifies
the behaviour of the exchanged EP messages compared to Fig 1. The
inner-graph between equalization nodes and variable nodes is even
sparser than with QRD.

The function node f x̄|x creates four new message types (Fig 2.(b,
c, f, g)) and the messages coming from this node to either x̄i or xi

can be computationally demanding as they require a matrix inver-
sion. Indeed, Fig. 2.(c,g) messages are vector messages, so the
proposed EP algorithms combine scalar and vector messages, and
are referred to as Hybrid EP (HEP) algorithms. The pre-projection
pdf q̃(x̄) of the message Fig. 2.(c) is a multivariate complex Gaus-
sian of covariance and mean :

V̄Z =

((−−→
V̄Z

)−1

+

(
Z
←−
VdZH

)−1
)−1

(8)

µ̄µµZ = V̄Z

((−−→
V̄Z

)−1−→
µ̄µµZ + Z

(←−
Vd

)−1←−
µµµd

)
(9)
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Fig. 2. Factor Graph of P (x|y,H) factorized as in (5) considering Nt = Nr . Dotted edges are removed after SVD and greyed variable

nodes are known variables. (a): CN
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µd
i ,
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νd
i

)
, (b): CN

(←−
µz
i ,
←−
νz
i

)
, (c): CN

(←−
µ̄z
i ,
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ν̄z
i

)
, (d): CN
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µ̄e
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i,j

)
, (e): CN
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µ̄e
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ν̄e
i,j

)
, (f):

CN
(−→
µ̄z
i ,
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ν̄z
i

)
, (g): CN

(−→
µz
i ,
−→
νz
i

)
, (h): CN

(−→
µd
i ,
−→
νd
i

)
.

with
←−
Vd = diag(

←−
νd
1 , · · · ,

←−
νd
Nt

),
−→̄
VZ = diag(

−→
ν̄Z
1 , · · · ,

−→
ν̄Z
Nt

),
←−
µµµd =

[
←−
µd
1, · · · ,

←−−
µd
Nt

]T and
−→
µ̄µµZ = [

−→
µ̄Z
1 , · · · ,

−−→
µ̄Z
Nt

]T . Unlike the EP mes-
sages, the a posteriori pdf q̃(x̃) does not have a diagonal covariance
matrix so the matrix inversion is computationally demanding. The
same behavior occurs for Fig. 2.(g) posterior q̃(x), which has a co-
variance matrix and mean vector:

VZ =

((←−
Vd

)−1

+

(
Z
−−→
V̄ZZH

)−1
)−1

(10)

µµµZ = VZ

(
ZH

(−−→
V̄Z

)−1−→
µ̄µµZ +

(←−
Vd

)−1←−
µµµd

)
(11)

The computational complexity issue is tackled naturally is many
scenarios. For instance the first auto-iteration has the particularity

that
−→̄
V z and

←−
V z are scalar diagonal matrices which translates into,

∀i ∈ J1, NtK, mf x̄|x→xi
(xi) = CN (xi;

∑Nt
i′=1 zi,i′

−→
µ̄z
i ,
−→
ν̄z
i ). For

the return message Fig. 2.(g), the posterior variance can be com-

puted by inverting a diagonal matrix since
←−
VZ is a scalar diagonal

matrix. To auto-iterate while keeping the complexity low, the mes-
sage Fig. 2.(f) variance can be set to a scalar diagonal matrix using
the minimum of variances which makes the inversion a diagonal ma-
trix inversion without losing any performance during the Fig. 2.(c)
message update. The choice of using the minimum instead of the
mean of variances is an heuristic from the studied cases of Section 5.

The study of Z (for GKD pre-processing) shows that its first row
and first column are vectors with a one as first element and zeros
for the rest which highlights the fact that the function node between
x1 and x̄1 could be represented as an identity function. The matrix
inversion is less complex as we can work with a smaller matrix
of size (Nt − 1) × (Nt − 1). The Hybrid EP with Golub-Kahan
decomposition (HEP GKD) algorithm is shown in Alg. 1. Note that,
in Alg. 1, non informative Gaussians refer to as complex Gaussian
distributions with a zero mean and infinite variance. Furthermore,
Alg. 1 can take soft input so it could also be used in a BICM-ID (Bit
Interleaved Coded Modulation with Iterative Decoding) scheme.
The only differences in the messages of HEP SVD compared to
HEP GKD is the computation of the messages Fig. 2.(d,f). In
HEP SVD, ∀i ∈ J1, NtK, mx̄i→f x̄|x(x̄i) = m

fEQU
i →x̄i

(x̄i) and
m

x̄i→fEQU
i

(x̄i) = mf x̄|x→x̄i
(x̄i) which are simpler to compute.

4. COMPUTATIONAL COMPLEXITY

In this section, floating point operations (flops) are used to quan-
tify the computational complexity of the algorithms. According to

3.5 4 4.5 5 5.5 6 6.5 7
E

s
/N

0
 (dB)

10-3

10-2

10-1

B
E

R

Auto 0
Auto 1

VEP
SEP
SEP QR
HEP GKD
HEP SVD

Fig. 3. Detection performances of 32× 32 coded MIMO-OFDM

[9], the QRD complexity order is O(N3
t /3) flops. The GKD can

be efficiently computed starting with a QRD, and its overall com-
plexity isO(2NrN

2
t +2N3

t ) flops. Finally, SVD is efficiently com-
puted starting with GKD, and its total complexity is in the order of
O(2NrN

2
t + 11N3

t ) flops. Note that these pre-processings need to
be executed only when the channel changes, e.g. in a block fading
scenario only once per block. Those complexities are to be compared
to the full-rank matrix inversion, required in LMMSE or Vector EP
[2], complexity which is O(N3

t ). Thanks to the proposed simplifi-
cation which removes the need of inverting a matrix to compute the
message Fig. 2.(c), the amount of matrix inverses in HEP GKD and
HEP SVD is lower than in VEP if there are auto or turbo iterations.

5. NUMERICAL RESULTS

To assess the performance of the proposed algorithms, we first con-
sider a BICM MIMO-OFDM (orthogonal frequency division multi-
plexing) detection scheme. We use a 5G LDPC (low-density parity-
check) error correcting code without turbo-iteration, of length N =
2048 and coding rate r = 1/2 using the BP algorithm with 50 it-
erations. The resulting codewords are then mapped to QPSK sym-
bols after random interleaving. The symbols are sent via Nt = 32
transmit antennas through an ergodic flat Rayleigh channel using a
Nr = 32 receiving antennas receiver. The Bit Error Rate (BER) ver-
sus the energy-per-symbol to noise ratio Es/N0 is reported in Fig. 3,



Algorithm 1 Hybrid EP with GKD
Input: y,H, N0, λa (prior Log Likelihood Ratio - LLR)

Output: P (x|y,H) ∼ CN
(
x;
−→
µµµd,
−→
Vd

)
1: H = QBZ, y← QHy, H← B, x̄ = Zx
2: Set Fig. 2.(e).(f).(g).(h) to non informative gaussians
3: for a = 0 : auto-iterations do
4: Compute Fig. 2. (a) and Fig. 2. (b):
5: for i = 1 : Nt do

6: q̃(xi) ∝ exp

(
− |xi−

−→
µd
i |

2

−→
νd
i

−
∑N

n=1 ci,nλ
a
i,n

)
7: q(xi) ∼ CN

(
xi;µ

d
i = E [q̃(xi)] , ν

d
i = Var [q̃(xi)]

)
8:

←−
µd
i =
←−
νdi

(
µd
i

νd
i

−
−→
µd
i−→

νd
i

)
and
←−
νdi =

(
1
νd
i

− 1
−→
νd
i

)−1

9:
←−
µz
i =
←−
µd
i and

←−
νzi =

←−
νdi

10: end for
11: Compute Fig. 2. (c):
12: Pre-projection q̃(x̄) computed as in (9)
13: for i = 1 : Nt do

14:
←−
ν̄Zi =

(
1

ν̄Z
i

− 1
−→
ν̄Z
i

)−1

and
←−
µ̄Z
i =

←−
ν̄Zi

(
µ̄Z
i

ν̄Z
i

−
−→
µ̄Z
i−→

ν̄Z
i

)
15: end for
16: Compute Fig. 2. (d):
17: for i = 1 : Nt and j = 1 : Nr do

18:
←−
νei,j =

(
1
←−
ν̄Z
i

− 1
−−→
νe
i,j′

)−1

,
←−−
µe
i,j =

←−
νei,j

(←−
µ̄Z
i←−

ν̄Z
i

−
−−−→
µe
i,j′
−−→
νe
i,j′

)
with

j′ ̸= j and j′ ∈ N (x̄i)
19: end for
20: Compute Fig. 2. (e).(f):
21: for j = 1 : Nr and i = 1 : Nt do
22: σ2

i,j = N0 +
∑
i′ ̸=i

|hj,i′ |2
←−−
ν̄e
i′,j , zi,j = ỹj −

∑
i′ ̸=i

hj,i′
←−−
µ̄e
i′,j

23:
−−→
µ̄e
i,j =

zi,j
hj,i

and
−→
ν̄ei,j =

σ2
i,j

|hj,i|2

24:
−→
ν̄Zi =

( ∑
j′∈N (xi)

|hj′,i|
2

σ2
i,j

)−1

,
−→
µ̄Z
i =

−→
ν̄Zi

∑
j′∈N (xi)

h∗
j′izi,j

σ2
i,j

25: end for
26: Compute Fig. 2. (g).(h):
27: Pre-projection q̃(x) computed as in (11)
28: for i = 1 : Nt do

29:
−→
νZi =

(
1

νZ
i

− 1
←−
νZ
i

)−1

and
−→
µZ
i =

−→
νZi

(
µZ
i

νZ
i

−
←−
µZ
i←−

νZ
i

)
30:

−→
µd
i =
−→
µz
i ,
−→
νdi =

−→
νzi

31: end for // end for

with Es the sum of the energies of the symbols of all antennas. The
inner-iteration number of HEP GKD is set to one as the messages on
the inner graph, the graph between equalization nodes and variable
nodes, are smartly computed from bottom to top (only 2Nt−1 = 63
messages compared to the Nt(Nt + 1)/2 = 528 of SEP QRD and
N2

t = 1024 of SEP per inner-iteration) to achieve near optimal per-
formance. HEP SVD does not perform inner-iteration because it
already achieves optimal performance as the symbols x̄i are inde-
pendent after SVD pre-processing. The two proposed algorithms,
HEP GKD and HEP SVD, without any auto-iteration, have the same
performance of the Linear Minimum Mean Square Error (LMMSE)
detector [15]. For 1 auto-iteration, HEP SVD has the same perfor-
mance as VEP [2], while HEP GKD is 0.1 − 0.2 dB behind for a
target BER of 10−3. The classic SEP [3] does not converge without
auto-iterations and is still performing worse with more than 1 dB
loss at a target BER of 10−3. SEP QRD [10] requires at least one
auto-iteration to achieve LMMSE performance while not being able
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to be close to LMMSE without any auto-iteration. These behaviours
can be explained by the dense (fully connected) nature of the inner
graph of SEP and the lack of sparsity of the inner graph for SEP
QRD.

Some results for a Single-Carrier (SC) BICM scheme with soft
output equalization are also reported in Fig. 4, using a power nor-
malized frequency selective deterministic channel with 3 equal taps
at a delay of 0, 1 and 2 symbol times. In our example, H results in
a Nt = 16 and Nr = 18 channel matrix with the same value on the
diagonal and on the following two lower diagonals. A 5G LDPC er-
ror correcting code of length N = 2048 and r = 2/3, using the BP
algorithm with 50 iterations, is used without turbo-iteration. HEP
GKD and HEP SVD have the same number of inner-iterations as
before. For this scenario, SEP and SEP QRD are not able to equal-
ize the signal with or without auto-iteration, contrary to the MIMO-
OFDM case. Similarly to the MIMO-OFDM context, coded HEP
SVD can achieve the same performance as LMMSE without auto-
iteration and as VEP with one auto-iteration. Performance slightly
degrades with increasing Es/N0. Uncoded HEP SVD performs as
well as LMMSE without auto-iteration and as VEP with one auto-
iteration. Uncoded HEP GKD achieves LMMSE performance with-
out auto-iteration and achieves almost the same performance as SEP.
Coded HEP GKD can almost achieve LMMSE performance without
auto-iteration and it performs slightly better with one.

6. CONCLUSION

In this work, we investigate on new factor graph representations for
the Gaussian linear model, thanks to matrix decompositions. For
these graph representations, we derived two new EP based algo-
rithms. The proposed HEP GKD and HEP SVD benefit from the new
graphical representations to enhance the inference accuracy over the
SEP QRD algorithm at the cost of a higher complexity which can
be reduced with the proposed heuristics. The proposed HEP SVD
achieves same performance as VEP with similar complexity while
HEP GKD can achieve almost the same performance with a slight
reduction of complexity. Performance of the proposed algorithms
has been assessed for two main applications in digital communica-
tions, i.e. SC equalization and MIMO-OFDM detection, to highlight
the benefits of these new techniques compared to state-of-the art al-
gorithms. The proposed FG can be the support on which many other
MPAs could be developed, like AMP or BP.
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