1 Equilibrium conditions

The following system of equations represents the equilibrium conditions of our economy.
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2 Derivatives

2.1 Households

The Lagrangian of the maximization problem of households is given by:
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which we differentiate with respect to {Ch, Cyt, Hpr, Hyt, Dpt}. The first order conditions
of this maximization problem are:

- differentiation with respect to Cj; yields:
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- differentiation with respect to Hy, yields:
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We get (7):
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- differentiation with respect to Dy, yields:
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2.2 Green sector

The green firm maximizes its profits and solves the following problem :
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2.3 Brown sector

The brown firm maximizes its profits and solves the following problem :
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- differentiation with respect to H;; yields:
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2.4 Banks

The initial guess of the solution of the optimization problem is :

Vi = i Assety + v Ny (37)

and the incentive condition therefore simplified as :
thNt Z Assett (38)

where ¢; = v/ (o — %) is defined as the bank’s leverage ratio. We substitute the binding
constraint in the guessed solution and it yields V; = (v#¢; + ) Ni. Plugging the expression

into the value function of accumulation of capital N, we have

Vt = Et {At,t+1Nt+1} (39)
= Et {At7t+10_B [(R?—‘rl - Rg) Assett + Rth:I } (40)

where Ay 11 = Brisa [1 —op+o0B (7f+1¢t+1 + %+1)}. This allows to identify the arguments

of the value function:
vy = Ey {At,t+1UB (Rfﬂ - Rf)} and vy = E; {At,tJrlo'BR?}

For the private banks, their FOCs are determined as following :

Equation (24) - (25) are derived from the cost minimization of asset, given the CES in-
tegration of different assets. We assume that different assets provide identical contingent
dividend D; = 1 to shareholders. This is a strong assumption. However, it is not surprising
to assume that the dividend is contingent and exogenous as in Dib (2010). By having this

assumption, the price of each asset is directly linked to the asset’s interest rate. From the



bond valuation theory, we have

Dy
= 41
D,
= 42
qt R(f:t 1 ( )
D,
7 = 43
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Equation (28) determines the asset, which comes from the binding condition equation (38).

Equation (29) comes from the definition that asset equals to the sum of deposit and capital,
replace the asset by the binding condition of equation (38), we get the first order condition

for D4 equation (29).

Equation (30) is the dynamic of bank’s capital, which comes from the evolution of capital

on function of asset and the leverage constraint (38).

Equation (31) is the leverage ratio which is determined by the incentive condition together

with equation (37).

Equation (32) and (33) are to determine ~{ and -, from equation (37) and the bank’s value

function.

Equation (34) is derived from equation (40) and (37).

3 Steady-State

To find the steady state solution, we proceed in two steps: - First, we calibrate the parameters
and assign an empirical value to the capital stock z and we set ¢"" = 75e based on the ratio
of emissions in France to emissions in the rest of the world (see calibration section); second,
we solve analytically the system of equations of our equilibrium conditions (appendix ). We

get the value of RE, Ré, and RP from historical data. Note also that, the steady state value
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of ap and A, are equal to 1.
Then, from (12):
de = dy + diz + doz?, (44)

From (13), we can get :
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From (14) and (18) we can find the value of Y}, :
e = (L=n)eYs,
Yy = e/(1=n)e, (46)
with :
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L_

From these results, we can get the values of Ay, H,, Z and W}, respectively from (10),(9) and
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(15).
Recall that a; = 1. Thus :

Ay = (1 — dx)ay,
and then :
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From (8) we get :
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Then, we can rewrite the net worth equation from (30) and (31) :
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From (28), (24), (26), (31), and bank’s balance sheet Asset = D;+ N, we can get respectively

Asset, N, Dy, K, and B :
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Asset = Dp+ N,
D, = Asset — N,
Dy = ¢N-N,
Dy = (¢—1)N,

From (22),
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Knowing Y}, we can get H, from (20),

Then, from (7) and (2) :

€ e—1)/e € e—1)/e e/(e=1)
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From the government budget constraint, we have :

T = RB + 1. P,Cy + 7y(R, — 1)Ky — wW,Hy — @WyHy — 7ee — 1(R}, — 1)K}, — B,

Combining (4) and (5) we get,
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Cy = 11" CoPye(1 = pie),

We replace the result in the household budget constraint :

Co(l+ Py ' Pre(1—pe)) = (1 —@)WoHy + (1 — @) WyHg+ (R*~1) D,

+T+(1—O'B)N,

d
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)

and then :
C = (/(C)EE 4 (1 = p)Ve(Cy) ).
1 _1
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From (34),(33), (32) and (55), we get :
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AopR? =
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AopRt - ° (1—0pR*) — Aop (R* — R?) (1 — opR?)
OB (Ra — Rd) ’
AUBRd — o (1 — O’BRd) _ AO’B (Ra — Rd) (1 — O’BRd)
op (R* — RY) op (R* — R?) ’
1-— O'BRd)
A d — (— —A(1-— d
opR ozUB (e — 1) ( opR ) ,
1— O'BRd)
AogR*+ A (1 —0ogRY) = (—
opRY+ A (1 —opR?) aaB(Ra—Rd)’
1-— O'BRd)
A d A — A d (—
opR® + opR aUB (" — R}’
1 —ogR? Asset
A p— p— p—
R ==y (69)
From the last result, we obtain :
v = Aog(R*—R7), (70)
v = AopR%, (71)

The steady state value of the weight of work in the brown sector is given by the combination

of eq (7) and eq (6)

(l—=)\ = p HH, < W,

_1
(1_7”))‘ = (1_Nh)%HU+%Hg€/Wga
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From (4) and (6) we find :
i o1 1
A = puCteC, e
1 1
(1—@)WA = p H eH, *,

1

T o1 1 wr, 1o.—
e 'y+EC e — h HetecH,
H b (1 —ZU)W(, b

1 1 1 1 1 1
—log pie+ <—”y + —) log C—=1log C, = = log pup,—log ((1 — w) W)+ (0 + —> log H—— log Hy,
€ € € € € €

1 1 1 1 1 1
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1 e 1 1 y
== — )+ —w)Wy) + — — | —-1 — )| —ologH
~vlog C - log <Mh) log ((1 — @) Wy) - log ( ) - log < b> olog H,

Llog (Z—Z) +log (1 — @)Ws) + 11og (£) — L1og <ﬂ> —ologH

b

v = oz C : (73)
Also, we find «a as follows :
¢ = 7/(a=7%),
¢(a_7a) = 7
pa— " = 7,
pa = v+,
vy
a = —+7 74
5 (74)
To find 6 we use (36) :
PY,=P,Cy+03(K;,—(1-0)K,+ Ky, —(1-0)K,+T),
PY,=PC,+03(K,+K,—(1-6)(K,+K)+T),
(PY, — P,Cy) /03 =K, + K, — (1 -96) (K, + Kp)+ T,
51— 0.3(K,+ K, +1T)— (FY,— P,Cy)
B 0.3 (K, + Kp) ’
S—14+ —0.3(K,+ K,) — 03T + (BPY, — P,C,)
0.3 (K, + Kp) ’
5— pP)Y, - (P,C,+0.3T) (75)

0.3(K, + K,)
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4 The IRFs with endogeneous GQE

In this subsection, we try to address the scenario in which the Green Quantitative Easing

(GQE) is endogeneous and enters into the government’s budget constraint :

E —+ Rngt—l + Tc,tpg,t g,t —+ GQEt (76)

= wWy Hgs +wWo Hyy + Teser + 1o4(RY, — 1) Kpp1 + B,

Figure 1 shows the results. The light green curves represent IRFs of endogeneous GQE.
With endogenecous GQE, the inflationary effects become even more evident, with a strong
rise of relative price for green goods F, ;. Consequently, the consumption of green goods C| ;

decreases, and the C'O, emissions rise.
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Figure 1: Comparison among GQE (exogeneous and endogeneous), carbon tax, tax on brown
loans and subsidy for green consumption. The responses are quarterly log-deviations from

the variables’ steady state values.
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