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Abstract

We extend the Lucas’ 1988 model introducing two classes of agents
with heterogeneous skills, discount factors and initial human capital
endowments. We consider two regimes according to the planner’s
political constraints. In the first regime, that we call meritocracy,
the planner faces individual constraints. In the second regime the
planner faces an aggregate constraint, redistributing. We find that
heterogeneity matters, particularly with redistribution. In the mer-
itocracy regime, the optimal solution coincides with the BGP found
by Lucas (1988) for the representative agent’s case. In contrast, in
the redistribution case, the solution for time devoted to capital ac-
cumulation is never interior for both agents. Either the less talented
agents do not accumulate human capital or the more skilled agents
do not work. Moreover, social welfare under the redistribution regime
is always higher than under meritocracy and it is optimal to exploit
existing differences. Finally, we find that inequality in human capital
distribution increases in time and that, in the long run, inequality
always promotes growth.

Keywords: human capital, heterogenous patience and skills, in-
equality and growth.
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1 Introduction

Though the consideration of human capital as a source of economic growth
and development goes back at least to Adam Smith (1776),' for a long time
the concept of human capital was dormant. Interest in the economic role
of human capital was awakened in the late 1950s and early 1960s through
the writings of Mincer (1958, 1962), Schultz (1961, 1962) and Becker (1962,
1964), who rekindled this concept by emphasizing its importance in explain-
ing earnings differentials and its links with economic growth.

Human capital as an engine of growth was incorporated into growth the-
ory by Uzawa (1965). The emergence of a new endogenous growth literature
stimulated the interest of economists in the role of human capital as a deter-
minant of economic growth. In his widely cited paper, Lucas (1988) shows
that the growth rate of per capita income depends on the growth rate of hu-
man capital, which in turn depends on the time individuals use for acquiring
skills.

However, the idea that human capital plays a major role in economic
growth was not accepted by all. Several years ago there seemed to appear
some kind of consensus among growth theorists, based on solid empirical
evidence, that human capital plays a modest role in determining long-run
rates of growth. Several recent papers have undermined this consensus. The
results of Manuelli and Seshadri (2014) “suggest that human capital has a
central role in determining the wealth of nations and that the quality of
human capital varies systematically with the level of development”. Illus-
trative accounting estimates by Jones (2014) “suggest that human capital
variation can be substantially amplified, including to the point where capital
variation could possibly fully account for cross-country income differences”.
Lucas (2015) argues that it rests on a misinterpretation of the evidence. He
proposes “a very simple model of an economy that conforms well to the cen-
sus evidence but in which all growth is driven by schooling and on-the-job
learning”.

Most of endogenous growth models with human capital accumulation as-
sume a representative agent, which is only a fair approximation if income
and wealth inequality play a negligible role in the process of economic devel-
opment. However, it is widely recognized that inequality has a strong impact

!Adam Smith included in the capital stock of a nation the inhabitants’ acquired and
useful talents, and noticed that human skills increase wealth for society.



on economic growth.

The endogenous growth literature flourished in the Nineties to explain
the Asiatic "miracles”. Lucas (1993) contributed by raising an interesting
puzzle: why two countries such as Philippines and South-Corea, so similar
in 1960, since then, experienced very different growth rates (respectively, 2
and 3% at average during three decades). Disagreeing with Lucas, Bénabou
(1996) claimed that, in fact, these countries were no so similar. Indeed, the
income distributions (in terms of Gini coefficients) in these two countries
were very different at the beginning.

The literature on the relationship between inequality and growth sug-
gests different channels through which inequality can impact growth. On the
one hand, the accumulation of savings (Stiglitz, 1969; Bourguignon, 1981),
unobservable effort (Rebelo, 1991) and the investment project size (Barro,
2000) represent the main channels through which inequality may enhance
growth. On the other hand, in the presence of credit market imperfections,
inequality has a negative impact on investment (Bénabou, 1996 and 2000)
and entrepreneurial activity (Banerjee and Newman, 1993), and hence on
economic growth. FKEconomists have also paid some attention to the rela-
tionship between the accumulation of human capital and inequality. Becker
and Tomes (1979), Viaene and Zilcha (2003) and Galor and Moav (2004)
emphasize educational attainment as one of the causes of greater income in-
equality. Galor and Zeira (1993) and Banerjee and Newman (1993) identify
credit market constraints as the channel relating the accumulation of human
capital and inequality. Political considerations and education are considered
in Saint-Paul and Verdier (1991), Glomm and Ravikumar (1992) and Eck-
stein and Zilcha (1994). Bénabou (2002) compares educational and fiscal
redistributions and finds that the former is better for growth. Eicher and
Garcia-Penalosa (2001) build a model, which predicts a non-monotonic rela-
tionship between educational attainment and inequality and explain the lack
of a clear relation between inequality and growth. Most of these papers con-
sider overlapping generations models in which the transfer of human capital
across generations is an important factor of growth.

Turnovsky (2011) and Turnovsky and Mitra (2013) propose two-sector
endogenous growth models? linking human capital accumulation and income
inequality. In those models agents are infinitely-lived and the heterogeneity of
agents, which is the underlying source of income inequality, stems from their

2The sectors considered produce respectively the final output and human capital.



initial distribution of endowments of human capital. Their results suggest
that an increase in the growth rate resulting from productivity enhancement
in the human capital sector will be accompanied by an increase in inequality
whereas a productivity boost in the final output sector results in a reduction
in inequality.

Overall, the impact of inequality on growth depends on which channels
dominate.

Empirical studies also are generally inconclusive. While analyses by
Alesina and Rodrik (1994), Persson and Tabellini (1994) and Perotti (1996)
show a negative relationship between inequality and growth, more recent
works by Partridge (1997), Forbes (2000) and Frank (2009) find a positive
relationship. Barro (2000) finds that the effect of income inequality on eco-
nomic growth may differ between poor and rich economies.

In practically all growth models with infinitely-lived agents, patience
plays a key role. In exogenous growth models with physical capital, higher
patience implies a higher propensity to save and hence a higher steady state
stock of physical capital. In the context of endogenous growth models with
human capital accumulation, higher patience implies greater incentives to de-
vote time to the acquisition of skills and hence leads to higher rates of growth.
Recent results of Hiibner and Vannoorenberghe (2015) suggest that increas-
ing patience by one standard deviation raises per-capita income by between
34% and 78%. Dohmen et al. (2015) show that average patience explains a
considerable fraction of the variation in growth rates both in the medium run
and in the long run and about 40% of the between-country variation in in-
come. Their results establish that, within countries, average patience in geo-
graphical regions predicts average years of education and, in individual-level
analyses, that individual patience predicts educational attainment within
countries and regions. Patience varies not only between countries, but also
within countries. According to Falk et al. (2015), between-country variance
accounts for about 13.5 percent of total variation in patience. Respectively,
within-country variation accounts for about 86.5 percent of total variation.

There is a literature on models with infinitely-lived agents heterogeneous
in their discount factor (see a very good survey by Becker (2006)). At the
same time, to the best of our knowledge, all models with human capital
accumulation assume either a representative agent or agents with an identical
discount factor. In fact, the only type of heterogeneity considered in these



models was heterogeneity in initial human capital.?

Our model focuses more on the basic mechanism of saving/investment in
human capital in a model with central planner and heterogenous agents that
differ in their discount factors, their skills in accumulating capital and initial
human capital endowments. There is no room for (credit) market imperfec-
tion as in Galor and Zeira (1993) and Bénabou (1996 and 2000) and, thus,
conclusions are quite different: inequalities have a positive impact on growth
as was the case in the seminal papers by Stiglitz (1969) and Bourguignon
(1981).

More precisely, in order to better understand the trade-off between in-
equalities and growth, we extend the Lucas’ 1988 model introducing two
classes of agents with heterogenous skills, patience and initial human wealth.*
and we consider two regimes according to the planner’s political constraints.
In the first regime, that we call meritocracy, the planner faces individual
constraints. In the second regime the planner faces an aggregate constraint,
redistributing. We find that heterogeneity matters, specially with redistribu-
tion. Indeed, although in the meritocracy regime the solution coincides with
the representative agent’s Lucas BGP, in the redistribution case the optimal
solution for non-leisure time devoted to capital accumulation is never interior
for both agents. Either the less talented agents do not accumulate human
capital or the more skilled agents do not work. A second important result
is that social welfare under the redistribution regime is always higher than
under meritocracy. Third, the redistribution of consumption is not affected
by the distribution of skills, depending only on differences in patience. In
contrast, the allocation of tasks takes into account skills differences. Finally
we find that inequality in the distribution of human capital increases in time,
and that inequality is associated with higher rates of growth in both regimes.

The rest of the paper is organized as follows. In the next section we
present the fundamentals of the models considered. The "meritocracy” case
and the "redistribution” cases are analyzed in Sections 3 and 4 respectively.
In Section 5 we compare both cases and further discuss our results. Finally,
in Section 6, we provide some concluding remarks. Proofs and computations
are relegated to the Appendix.

3See Turnovsky (2011) and Turnovsky and Mitra (2013) cited above.

4Note that differently from the Ramsey model with physical capital accumulation
(Becker, 1980), our extensions exhibit long-run distributions of capital (heterogenous hu-
man capital) that are non-degenerated.



2 Fundamentals

The models considered follow closely the Lucas (1988) framework, extending
it to account for agents heterogeneity. Since we want to focus on the role of
heterogeneity in human capital accumulation on inequality and growth, we
ignore technological change and physical capital accumulation.

We consider two classes of agents: patient and impatient households,
labeled respectively by 0 and 1. They have different discount rates, p;, 7 = 0, 1
with py < p1.

We denote the individual labor supply by [;; and the size of each class by
;. We normalize the size of the entire population to one so that mo+m; = 1.
Then, [;, aggregate labor supply is given by

1
ly = Zﬂ'ilit (1>
i=0

We consider a linear constant returns technology.
Assumption 1 Technology is represented by a production function
yr = Al (2)
where y; denotes aggregate production and A > 0 is a scaling parameter.

Leisure time is exogenous. Non-leisure time is normalized to one and
spent either working or accumulating human capital (education and health).
Individual labor supply is given by the product of human capital, h;, and
working time, u;, i.e.,

Lit = higui (3)

This means that both factors are necessary in order to supply labor. The
remaining non-leisure time, 1—u;, is devoted to human capital accumulation.
The specification chosen for human capital accumulation of each class of
agents is identical to the one considered in Lucas (1988). However we assume
that the two classes have different skills in accumulating human capital.

Assumption 2 The law of human capital accumulation is given by

hz’t/hit = B; (1 - Uit) <4>



If an individual does not devote any non-leisure time to human capital
accumulation then there is no accumulation. If an individual devotes all his
non-leisure time to human capital accumulation then his human capital grows
at its maximal rate, B;, which is specific to each class, denoting different
skills. As in Lucas (1988) we assume that B; > p;.

We denote by c¢;; real consumption of an individual of class ¢, and by ¢;
aggregate consumption in the economy. Production is entirely consumed so
that ¢, = 22:0 TiCit = Y.

For simplicity we assume no labor or capital accumulation disutility so
that:

Assumption 3 Preferences are rationalized by a logarithmic felicity

/ e P In ¢yt (5)
0
with po < p1.

As in Lucas (1988) we consider a planner who maximizes the weighted
sum of utilities

an intertemporal welfare functional, under (4).°

In the following, we consider two regimes according to the planner’s po-
litical constraints. In the first regime, that we denote by ”"meritocracy”, the
planner’s faces individual constraints:

cit < Aly (7)

Remark that when instead of two classes of individuals the subscript ¢
denotes two countries, the meritocracy regime corresponds to the autarky
situation.

5The question of time-consistency can be raised in the case of a welfare function max-
imization with heterogenous agents. As noted by Zuber (2011) and Heal and Millner
(2015), stationarity and time-consistency of aggregate preferences hold together only if
agents have the same discount factor.



In the second regime, that we call "redistribution”, the planner faces an
aggregate constraint:

1
Z T;Cit S Alt (8>
=0

When ¢ denotes countries instead of classes of individuals, this regime
corresponds to the case where the two countries are integrated in one union.

3 Meritocracy

In this case the planner maximizes (6) subject to (4) and (7). The Hamilto-
nian writes:

1 1
Z 7T7;€_pit ln (Ahztult) + Z )\zthzth (1 — uit)

=0 1=0

We have two state variables (h;;) and two controls (u;). The strict con-
cavity of the objective function and the concavity of the law of motion with
respect to (hy,u;) satisfy the Arrow-Mangasarian sufficient condition for
Hamiltonian maximization and imply the uniqueness of the planner’s solu-
tion.

Proposition 1. The optimal solution is the Balanced Growth Path (BGP):

uZt = % and h;kt = hioe(Bi_pi)t (9)

fort > 0. This solution is unique.

Proof. See the Appendix. m

This solution coincides with that forwarded by Lucas (1988) in the repre-
sentative agent’s case. In fact, what the planner is doing in the meritocracy
case is simply solving two independent problems, each of them featuring iden-
tical agents. Note that with the functional forms chosen we are able to prove
analytically Lucas (1988) conjecture that the BGP is the optimal solution.

We can see that the equilibrium growth rate of human capital of class ¢
increases with the class ability in investing in human capital, B;, and declines
with increases in the class discount rate, p;. However, what really matters for



human capital growth is the difference between these two parameters. This
means that more skilled but very impatient agents may accumulate human
capital at a lower rate than less skilled but more patient ones. Since this
outcome is not supported by empirical studies, we rule out this possibility,
assuming that the growth rate of human capital accumulation of the patient
consumer, By — pg, always exceeds the growth case of the impatient one,
By — py, i.e. we consider that the patient consumer, ¢ = 0, is the dominant
one. Let 0 = (By— po) — (B1 — p1) denote the difference between the growth
rates of patient and impatient consumers. We assume that :

Assumption 4 ) > 0.

3.1 Inequality and growth in the meritocracy case

Let us now discuss the trade-off between social inequalities and growth in the
meritocracy case. The first choice that we have to make is how to measure
these two concepts. Most studies use income inequality data as a proxy
for social inequality and the growth rate of income to measure economic
growth. In this work we chose to measure social inequalities using the Gini
index of consumption, while economic growth is measured by the growth
rate of aggregate consumption. In the meritocracy case as consumption and
income (output) coincide, both at the individual and aggregate level, this
choice is irrelevant. In contrast, in the redistribution case, although aggregate
consumption is still identical to aggregate output, the real welfare of each
individual is given by consumption and not by output. Therefore, social
inequalities are better proxied using a measure of consumption inequality.
Also, since in this work we focus on the effects of human capital on inequality
and growth we start by presenting the Gini index of human wealth, which
measures inequality in the distribution of human capital.

Proposition 2. If, without loss of generality, ho; > hyy, the period t Gini
index of human wealth is given by
T hay

_ 10
mohot + m1hi (10)

Ght = T1
Proof. See the Appendix. =

The stock of human capital that a class has accumulated until period t,
h;t, depends not only on the class rate of growth of human capital accumula-
tion, B; — p;, but also on its initial human capital endowment, h;y. However,

10



it is easy to see that, in the long run, the growth rate effect will dominate.
We have therefore the following proposition.

Proposition 3 (human wealth inequality). Let Assumption 4 hold.

1. If hoo > hig, then hoy > hyy for every t and

m1hipe™?

Ght = T1 —

11
Tohoo 4 T1hipe ™0 (1)
Thus, g; increases monotonically from grg = m1—m1hio/ (mohoo + m1h1o)
10 goo = T1-

2. If hoo < hyg, then there is a critical date

_ hl (hlg/hoo)

T
h 5

(12)
beyond which the human capital stock of the dominant (patient) class
exceeds the human capital stock of the impatient class. In this case, the
Gini index of human wealth is given by

mohoo
— — t<T 13
i o Tohoo + m1hipe ™0 Jort = T (13)
h —ot
gt = T — T fort >T, (14)

7T0h00 + 7T1h10€_6t
Proof. See the Appendix. =

Since human capital and consumption of an individual of type i grow at
the same rate along the BGP, the observed differences in the evolution of
the Gini index of human wealth and the Gini index of consumption reflect
mainly differences in initial endowments, being therefore relevant only in the
short run.

Definition 4. If, without loss of generality, coy > c1;, the Gini index of
consumption is given by

T1C1¢
Got =T — —————— (15)
ToCot + T1C1¢

Proposition 5 (consumption inequality). Let Assumption 4 hold.

11



1. If cog > c19, then cop > cqy for every t and

Ticie

(16)

Get = T1 — —
ToCoo + m1c10€~ %
Thus, g increases monotonically from gy = m — w10/ (ToCoo + T1¢10)
10 §oo = 1.

2. If coo < cr9, then there is a critical date

h’l (Clo/Coo)

1. =
)

(17)
beyond which consumption of the dominant (patient) class exceeds con-
sumption of the impatient class. In this case, the Gini index of con-
sumption is given by

ToCoo

= Ty — ort <T, 18
Jet " Toceo + micipe Jort = Ie (18)

micre

Jet = M1 — fort>T, (19)

ToCoo + m1c10e ™0
Proof. See the Appendix. =

Remark that hgy > hig does not imply cog > c10. Indeed, using (3), (7)
and (9), we can rewrite this last inequality as

p1 Bo
hoo > hio——
0> Mo g

where p;/py > 1, so that we have ¢19 > ¢y if By is sufficiently low.

We now describe the evolution of the growth rate of aggregate consump-
tion.

Proposition 6 (consumption growth rate). The dynamics of the aggregate
consumption growth rate are given by

- 5t
_ & mocoo (Bo — po) € 4 micio (Br — p1)
Voo = — = —
C ToCoo€®" + M1C10

(20)

12



Proof. See the Appendix. m

We can now characterize the trade-off between inequality and growth in
the meritocracy case.

Proposition 7 (trade-off inequality-growth). Let Assumption 4 hold.
In case (1) of Proposition 5 (cog > c10), the higher the consumption in-
equality, the higher the growth rate:

Ye = o (Bo — po) + 71 (B1 — p1) + dge (21)

In case (2) of Proposition 5 (cog < c10), this trade-off holds after T, and
is reversed before:

Ye = o (Bo—po) +m (B1— p1) —0g. fort < T,

(22)
Yo = mo(Bo—po)+m (Br—p1)+0ge fort>T,

(23)

Proof. See the Appendix. =

We conclude that, in the long run, inequality always promotes growth in
the meritocracy case. However, in the short run, depending on the initial
distribution of skills and endowments, this result may be reversed. Indeed, in
the subcase t < T, of case (2) where cog < ¢19, the lower the social inequality,
the higher the growth rate.

4 Redistribution

In this case the planner maximizes the same social welfare functional:

1 o o 1
E 7Ti/ e Pit lncz-tdt:/ E me Pt n ¢y dt
i=0 0 0 =0

under the resource constraint

1 1
Z micq < A Z il Wiy (24)
i=0 i=0

13



and the law of motion of human capital
hz’t =B (1 - uit) hiit

with 0 < u; < 1.

There are two state variables (h;) and four controls (¢; and w;). In
this case, since there is redistribution, the planner can solve its problem in
two stages. In the first stage, given h; and wu;, the planner solves a static

problem:
1

max E me Pitln ey

Cot,C1t

subject to (24). The solution of this static program is given by:

1

> im0 Tl
1

D= i€

Note that the division of consumption among individuals is only deter-
mined by the degree of impatient, p;, not being influenced by the distribution
of skills, B;. Since ¢, = y;, using (24) and (25) we obtain the consumption
share

ey = Ae Pt

(25)

TG 7Ti€_pit
Cy Z]l o Tje —pjt
Substituting now (25) in the original problem it becomes

Ae—rit 1 1
max/ [Z me Pitln — Z ¢ (Z Wie-ﬂ#) lnz thjtujt] dt
i=0 §=0

—pjt
j= —o ;e I

or, equivalently,

o /1 1
max/ (Z Wiepit> In Z thjtu]'tdt
0 i=0 =0

subject to hy = B; (1 — i) hy with 0 < uy < 1.

We now have to obtain the optimal solution for h; and u;. To better
understand the mechanisms involved we will start by analyzing the case
where By = Bj, the only difference between the two types of agents being
their degree of patience.

14



4.1 Redistribution without heterogeneity in skills
In this case By = By = B, and 0 < py < p;.

Proposition 8. If By = By = B, and 0 < py < p1 the optimal trajectory
(hits Wit);—g , 15 given by:

1 1 o(B=pj)t
Z T (B—p. 1> i gmje !
hir = OGi ~rel®7 and it = E E jl i o(B—pj)t

j=0 "7 =0 p;

€ (0,1)  (26)

fort >0, where

1

- g h;
2110—;;0 and §; = —r—2—— i0
Dico o > j—0Tiljo

Proof. See the Appendix. m

¢ = (27)

Observe that in this case (By = B; = B), we have uy = uy; = 4y, which
converges to po/B. The total human capital stock H; = 2320 m;h;, satisfies

Ht = BHt (1 — Ut)

4.2 Redistribution with heterogeneity in skills

In this subsection we obtain the optimal trajectory (hg, u:) i=0.1 for By # By,
and 0 < py < p1.
Our first important result is given in the Lemma below.

Lemma 9 (no interior solution). Let By # By. For every t, there exists an
i such that u; € {0,1}.

Lemma 9 tells us that, in contrast to the meritocracy case and to the
redistribution case without heterogeneity in skills, we never have an interior
solution for working time, u;, of both classes of agents.

Using this lemma, we can find the explicit planner’s solution, which is the
optimal trajectory. To this purpose we introduce the following assumption.

Assumption 5 By > By > p1 > po.

According to Assumption 5 the dominant class is not only more patient
(po < p1), but is also more talented in accumulating human capital (By >

15



By). Assumption 5 is of course more restrictive than Assumption 4. Indeed,
Assumption 5 implies § > 0, while the reverse is not true.

Let us define the average discount rate, p (t), as a time-dependent har-
monic mean of discount rates

1 —1
1 merit
p(t) = —_ € (po,p 28
(t) (;PiZ}:oﬂje‘”ﬂ> (Po: p1) (28)

Of course, under Assumption 5, By > By > p(t). Moreover, p(t) decreases
from p (0) € (po, p1) to p(o0) = po. If t =0, (28) simplifies to:

p(0) = (Z Z—)

which is a harmonic mean where the weights are the size of each class, ;.
In the following,

H;
t ;e and Ot HOt Hlt ( )

will denote respectively the human capital of class i at time ¢ and its aggregate
share. Of course, ZLO oy = 1.

To simplify the presentation we will consider separately the following two
cases:

1. 010 S O'iko = p(O) /Bo,
2. 010 > O'IO.

Note that in the first case, since oy is sufficiently small, the more patient
and talented class is also relatively well endowed in initial human capital.

4.2.1 The case where o0y < 07

The optimal trajectory in this case is given in Proposition 10 below.

16



Proposition 10. Let Assumption 5 hold and assume that o9 < o7y =
p(0) /By. Then, the optimal trajectory (hi, wit);_q, s given by

1
H 0 (Bo—pi)t
hoy = Hyo p (0) Zﬂ-i [e— B 010} (30)
010 To 25 Pi Pi
Zz‘l:o Uy [G(Bgopi)t B %]
Uot = 1 e(Bo—pi)t - G (07 1) (31)
Zi:O i [ Pi - ﬁ]
and
hlt == th (32)
Uy — 1 (33)

for every t > 0.

Proof. See the Appendix. =

We notice that 0 < ug; < 1 and uy; = 1 for every t > 0. This means that
when the initial human capital endowment of the patient and talented class
is relatively important, the less patient and less talented class never invests
in human capital, devoting all its non-leisure time to work. This result can
be seen as an application of the comparative advantage principle, according
to which agents will specialize in the activity where they are relatively better.
However, the more patient and talented agent also devotes some non-leisure
to work every period. Remember that in order to supply labor, contribut-
ing therefore to production, an agent must devote some time to work. See
(3). In this case, as the initial capital endowment of the skilled class is suf-
ficiently important, these agents divide each period their non-leisure time
between work and capital accumulation, contributing to the production ef-
fort since the beginning. Also, since, under Assumption 5, By > p;, we get
limy o0 oy = po/Bo < 1.

It is easy to conclude that since only the more talented and patient class
accumulates human capital, its human capital share, o, strictly increases in
time. Replacing (30) and (32) in (29) we obtain the dynamics of the human
capital shares.

17



Lemma 11 (shares of human capital). Under Assumption 5 and 019 < 05, =
p (0) /By, the shares of human capital at time t are given by

o = l—ou

. 010
o1t = Zilzo wie(BO—Pi)t (34)

for any t, where the denominator is an average with weights

1

=ty

i

4.2.2 The case where 0,9 > 0j,

We start by introducing four important critical values: Tg, 11, Th, with
Ty < Ty, and Ajg. We define T and T5 (A1g) respectively as the solutions of
the two following equalities below

g = g = P(T0)
1To 1T0 - B()
g = g = P(T3)
1T% 17 — BO
that we can rewrite respectively as:
BO HOO BoT,
= 1+ ——e7° 35
p (To) Ho (35)
By " Hgy ePoT2 Zizo o (1—en™) (36)
p(Ty) Hyp ePrTh S, Ze=piTn
where T7 (A1p) is the smallest solution of
Lo Lo
)\10h10 = —le_piTl + - 1-— 6_’0iT1 37

Note that at T} we have u;; = 1. Notice also that T equals T, when T} = 0.
Finally, let Aiop be the solution of

1 1 1 N
f () = p(Tz(A0))  Bo > o e piT1(Mo)
- 1

L 1 —piTa (A
p(T1(A10)) By Zi:O mem P 2(Ao0)

=0 (38)



A1o determines in turn 77 (A1) and T3 (Agp)-

The optimal trajectory in this case, where 019 > 07, i.e., the initial
human capital share of the less patient and less talented class exceeds the
critical threshold o3, = p (0) /By, is given in Proposition 12 below.

Proposition 12. Let Assumption 5 hold and assume that 019 > o}, =
p(0)/Bo.

1 If

1
B < B = (39)

1 1 1 1 s
A~ Lotk — | Sicome ™

then the optimal trajectory (hit, wir);_q, is given by

hoe = hooe™ for 0 <t <T; (40)
I m (Bo—pi)t
H i=0 5 €
hoy = 10[21 O:f‘ — —1] fort > Ty (41)
0 Zi:o B—;e( 0o—pi)To
uge = 0 for0<t<Ty (42)
Loomi o(Bo—pi)t _ N mi (Bo—pi)To
- Tie o e
Uy = Zzl_o 17‘5:0 Bo_pr)i Z;_O fo Bop T € (0,1) fort > T(43)
Zi:o p—:e( o—pi _Eizo HoelBo pi)To
and
hiy = hy for anyt (44)
uy = 1 foranyt (45)
2. If
1

Bl>BTE

1 1 1 1 .
Ao~ Lotk — 5] Shcome ™

then the optimal trajectory (hit, wit);_y, is given by

hOt = hoo@BOt fO?” 0 S t S TQ (46)
L m (Bo—pi)t
H1T2 Zi:O pie

hoe = o [ M, g, eBoTe L) Jort=1T (47)
uy = 0for0<t<T,

L mi o(Bo—=pi)t _ N\ iy @B0T2

e e
Uy = Zzl_() Bo e € (0,1) fort>1T, (48)

Ti »(Bo—pi)t _ BoT:
Ei:o p:e( 0 pl) Angh‘nge 042
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1
1 T
(1 —erit or 0 <t <Ti(49
A1oh1o P Pz‘( ) d <t<Ti(49)

hlt = thl fOTt Z T1

1 1 i —pit
Uy = — Zzzloﬁ 6_ € (0,1) for 0 <t < Ty(50)
Bi Mohio + >, % (e=pit — 1)

uy = 1 fort>1T1

hlt = hloeBlt 1-—

where Apho is given by (37),

1

1
A, = Z %e"’ﬁl + Z% (G_PiT2 _ e_PiTl) (51)
i=0 "

1=0

and H1T2 = 7T1h1T1 .
Proof. See the Appendix. m

In case 1 of Proposition (12), although the initial capital share of the
less talented and less patient individuals is now above the critical threshold
p(0) /By, as they are not sufficiently skilled, B; < Bf, these individuals
still never accumulate human capital, devoting all their non-leisure time to
work, i.e. we have, as in the previous case, hi; = hyy and uy;; = 1 for any t.
However, now the dominant class does not work initially, devoting all their
non-leisure time to capital accumulation, that, until period T} increases at the
maximal accumulation rate, By. See (42). Therefore, in this case for ¢ < Tj,
specialization is more intense: the less talented agents just work, while the
others only accumulate capital. Nevertheless, once the share of human capital
of the more talented class reaches the critical level 1 — p(t) /By, i.e. when
o117, = 017, the dominant class starts working and, since less time is devoted
to capital accumulation, the rate of growth of human capital decreases over
time.

As the less talented agents never accumulate capital Hy; = H;o for any t.
Then, we get immediately the following result.

20



Lemma 13 (shares of human capital). In case 1 of Proposition (12), the
shares of human capital at time t are given by

oo = 1l=oy foranyt >0
010
— 0<t<T 52
01t 010+(1 _010) oBot fOT SU > 1g ( )
o 01Ty
o = 23:0 e Bo i To) fort > 1Ty (53)

where the denominator in (52) is an average with weights

Qe(Bo—Pi)To
k3

_ P
w; =
‘ Zl- i o(Bo—p;)To
J=0 p;
and
Zl i o(Bo—pi)To
oo — £21=0 By
1To — 1 7
Ti o(Bo—pi)To
Zizo o e( Pz)

We observe that (34) is a particular case of (53) with 7 = 0.

In case 2 of Proposition (12), since the starting value of the capital share
of the more talented class is below 1 — o7},, again the dominant class does
not work initially, only accumulating capital, which until period T5, where
oor, reaches the critical value 1 — p(T3) /By, increases at the maximal ac-
cumulation rate, By. See (46). As in the previous case, after date T the
more talented agents start working and accumulate capital at a lower pace.
However, as, in this case, the more impatient agents are more skilled in accu-
mulating capital, they now accumulate capital until period 77, dividing their
non-leisure time between capital accumulation and work. Note however that
the time they devote to capital accumulation decreases continuously from
period 0 to T3, where uy, = 1. After period T; they stop accumulating cap-
ital, devoting all their non-leisure time to work. As T} < 15 and until 75 the
other class is accumulating capital at the maximal rate, their capital share
declines steadily until period T}, The evolution in time of the capital shares
of both classes is given below in Lemma 14.
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Lemma 14. In case 2 of Proposition (12), the shares of human capital at
time t are given by

ope = 1—oy foranyt >0
010
o 1 A1ohige(Bo—B1)t fO’I’ 0 <t< Tl
010 + (1 — 0o19) Mohio=Xi—g 5k (1-€7*i")
017

o= orT) <t<T

! o, + (1 —o17y) eBo(t—T1) f 1St < 1

o

o = 1T, fort >1T, (54)

Zil:O wie(Bo—Pi)(t—T2)

where Aphig is given by (37) and the denominator in (54) is an average with

weights
s o(Bo—pi) T2

— P
w; = -
CSL, Te(Bopy)Te
7=0 p;
and
BoT:
R A1, ha, €702
1T, — 1
i p(Bo—pi)T2
Do et

4.2.3 Summarizing interpretation

In this section we considered two classes with different skills, different degrees
of patience and different initial capital stocks. We assumed, in line with
empirical plausibility, that the more talented class is also more patient and
better endowed in terms of initial human capital. We showed that in this
case we never have an interior solution for working time of both classes of
agents. Moreover, several optimal solutions exist, depending on the initial
distribution of human capital and on the level of skills of the less talented
class. If the initial human capital share of the less skilled individuals is not
high enough, they will never accumulate human capital, devoting all their
non-leisure time to work. If their initial human capital share is sufficiently
high two cases are possible. Either they are not sufficiently skilled and again
they only work, never accumulating human capital, or they are sufficiently
skilled and devote initially some of their non-leisure time to human capital
accumulation. However, the time they devote to human capital accumulation
decreases steadily in time, so that in the long run we find that, as before,
the less talented agents never accumulate human capital. In contrast, the
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more talented individuals always accumulate human capital. When their
initial human capital share exceeds a critical value, these individuals will
also work every period. However, if their initial share of human capital is
not high enough, they will not work initially, devoting all their non-leisure
time to capital accumulation, that grows at the maximal possible rate. This
behavior continues until this critical level of their capital share is reached.
After, they will start working and accumulating capital as in the previous
solution. It is interesting to note two things. First, what matters for the
choice of the optimal solution is the distribution of human capital and not
its level.® Second, in the long run, independently of the initial conditions and
of the level of skills, we always get the same result: less talented individuals
never accumulate capital and the more skilled agents work and accumulate
capital.

4.3 Inequality and growth in the redistribution case

Let us now discuss the trade-off between social inequalities and growth in the
redistribution case with heterogenous skills and discounting. From Lemmas
11, 13, and 14, we obtain immediately the dynamics of the Gini index of
wealth in this case.

Proposition 15 (human wealth inequality). If, without loss of generality,
hot > h1y, the Gini index of human wealth is given by

Ght = T1 — O (55)

The dynamics of wealth inequality are the following.
When o019 < 07y:

o
Ght = T1 — =3 10 foranyt >0

Zi:O wi@(BO—Pi)t
When o019 > 07y and By < Bj:

010

= T — or 0 <t <T

9ht 1 10 + (1 — 0_10> eBOt f >t =40
01T,

Tt —pi)(t—
Zi:o wie(BO pi)(t—To

ght = T1 )fort>T0

SRemark that the critical share of one class is always equal to one minus the critical
share of the other class.
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When 019 > O'TO and B; > BT

010

g = T — ot (1—om) iohioe(Bo B for0<t<T
10 10 Moh1o— Zz 02 (1 e Pﬂ)
011
gt = T — forTy <t <T
' oy, + (1 —oupy) ePolt=10)
o
gt = T1— e fort >1T,

Z;:O w;e(Bo—pi)(t=T2)

In any case, the optimal Gini index of human wealth inequality increases
over time.

Proposition 16 (consumption inequality). The Gini index of consumption
15 given by
T1C1¢ T

ot =T — ———————— =T — 56
Jet Y mocor + micy L+ moele—polt (56)

The Gini index of consumption increases over time from 0 to .

The dynamics of the aggregate consumption growth rate are complicated
and depend on the regime considered. For simplicity, we focus on the more
plausible situation. i.e. the case considered in subsection 4.2.1, whose dy-
namics are given Proposition 10. In this case, 019 < 0}, meaning that the
more patient and talented class is relatively well endowed in human capital
at the beginning.

Proposition 17 (consumption growth rate). In the case of Proposition 10,
the dynamics of aggregate consumption and its growth rate are given by

1

T
C = AH % BO —pi)t -
¢ 10” -~ ; B -
by = G D™ (Bo— po) el "
ct = Ct 27:1:0 7T7;€(B0_Pi)t

Proposition 16 shows that, in the case of redistribution, the Gini index
of consumption converges to m; or, equivalently, the consumption share of
the impatient class converges to 0. The same happens in the case of mer-
itocracy (Proposition 5). However, in the case of meritocracy, the growth
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rate of consumption of the impatient class is By — p;, while, in the case of
redistribution considered in Proposition 17, it is equal to By — p;. Thus, in
this case of redistribution, the consumption of the impatient class grows at
a higher rate.

We can now obtain the trade-off between inequality and growth.

Proposition 18 (trade-off inequality-growth). The (aggregate) consumption
growth rate 7. is a function of the Gini index of consumption g.. More
precisely, the growth rate is an average whose weights depend on the Gini
index:

Ve (gc) = Z (BO - pz) Wi (gc) (59>

)

with

Bo—p;
T T To+ge | P17PO
. v\ 7o T1—9ec
wl (gC) - BO—p]-
1 71 To+ge | P1—PO
2 =0T (%ﬁ) 1
Ye (9e) s an increasing function, increasing from 7. (0) = By — (mopo + m1p1)
to ve (m1) = Bo — po. Thus, the higher the social inequality, the higher the
economic growth rate.

This proposition means that inequality promotes growth even in the case
of redistribution. These results are consistent with empirical evidence. Many
advanced economies have experienced increasing (income) inequality since
the 1980s, see Atkinson (1999) and Goldin and Katz (2008). Moreover,
according to Turnovski and Mitra (2013), this recent increase in inequality
is explained by the increasing role of human capital as an engine of growth.”

5 Discussion of the results and further com-
ments

Our first important result is that heterogeneity matters. Without hetero-
geneity, redistribution is not an issue and, therefore, the two policy regimes

"Goldin and Katz (1999, 2001) and Abramovitz and David (2000) find that the contri-
bution of human capital to growth almost doubled during the 20th century in the United
States, while the contribution of physical capital decreased.
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considered are indistinguishable. Also the effect of heterogeneity is much
more pronounced in the case of redistribution. Indeed, in the meritocracy
case the optimal solution for each agent is identical to the Lucas (1988) rep-
resentative agent BGP, whereas with redistribution the optimal solution is
never the BGP. The type of heterogeneity also plays an important role.

Although we did not discuss it previously, it is easy to see that, if we only
had considered heterogeneity in the initial capital endowments, the optimal
solution would converge to the Lucas BGP, being identical in the long run
under both the meritocracy and redistribution regimes. When we introduce
also different degrees of patience, the role of heterogeneity becomes more
important and the optimal solutions of the two regimes are no longer asymp-
totically identical. However, they are both interior in what concerns working
time. Finally, when we also consider heterogeneity in skills, in the redis-
tribution case, the optimal solution for non-leisure time devoted to capital
accumulation is never interior for both agents, being therefore dramatically
different both from the meritocracy and from the representative agent so-
lutions. A second important, although trivial result is that social welfare
under the redistribution regime is always higher than under meritocracy.
Indeed, the ability to redistribute cannot reduce overall welfare since one op-
tion available to the planner is to choose to not redistribute. Since we have
seen that this is not the optimal path, the planner must do strictly better
redistributing.

Together, these two results imply that it is optimal to exploit existing
differences. We conjecture that, provided there is redistribution, welfare is
higher (within mean preserving transformations) when we move from the
representative agent case to an unequal distribution of skills. The proof is
left for further works.

It is also interesting to note that, in the redistribution regime, the dis-
tribution of consumption is not affected by skills heterogeneity. Indeed only
differences in patience, i.e. in preferences, are taken into account by the plan-
ner when she allocates consumption to each agent. However, skills differences
are determinant for the allocation of tasks between agents. We found that, in
the long run, the less talented class never invests in human capital, regardless
of the initial distribution of human capital and of the efficiency of the less
skilled agents in accumulating human capital. Also, whenever the human
capital share of the more skilled class is below a certain critical threshold,
these agents do not supply labor, devoting all their non-leisure time to capi-
tal accumulation at the beginning. We conclude that selection in the access
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to education and specialization are optimal.

We also find that, in both regimes, the inequality in the distribution of
human capital increases in time. In the meritocracy regime this is due to
differences in skills and in patience, which have therefore permanent effects,
while with redistribution specialization is also an important driver of this
result. Discussing now the relation between inequality and growth we find
that in both regimes, in the long run, inequality promotes growth. It is
easy to see that, within our framework, human capital accumulation is the
channel through which inequality is associated with higher rates of growth.
This happens, even with redistribution, suggesting that although redistribu-
tion increases utility and growth, it does not prevent a deterioration in the
distribution of consumption during the growth process.

6 Concluding remarks

In this paper we extended the Lucas (1988) framework, introducing simulta-
neously heterogeneity in patience, in skills and in initial capital endowments.
We considered two policy regimes: ”meritocracy” and ”"redistribution”. Our
main conclusions are the following. First, heterogeneity changes significantly
the optimal solution, specially in the presence of redistribution. Second,
cooperation is always better, i.e. utility under the redistribution regime is
always higher than under meritocracy. We conjecture that welfare is higher
(within mean preserving transformations) when we move from a represen-
tative agent economy to an economy with an unequal distribution of skills.
This means that it is optimal to exploit existing differences. Third, the re-
distribution of consumption only depends on preferences. In contrast, the
distribution of tasks takes into account skills differences. Finally, we find
that inequality is associated with higher rates of growth.

These results are novel, showing that heterogeneity really matters, which
implies of course that the representative agent approach may be misleading.
Another point of our contribution we want to stress, is that heterogeneity,
instead of being considered a problem, should be optimally exploited in order
to increase welfare. However, for this outcome redistribution is essential. In
particular, we found that with redistribution, differences in skills should be
translated into specialization in tasks and in a differential access to education.
Note however that these results were obtained using a very stylized model.
Therefore they should not be seen as policy recommendations. Nevertheless,
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in spite of the simplicity of the framework considered, the message that het-
erogeneity implies choices that are not only radically different from the ones
associated with a representative agent economy, but which also dominate
them in terms of welfare, should still be true in more general settings. Fi-
nally, in this work we have only considered the first best (planner’s solution).
Future work on the decentralized market solution is therefore welcome.

7 Appendix

Proof of Proposition 1. The Hamiltonian writes:

1 1
Z mie P In (Ahjuy) + Z Xithit Bi (1 — wyy)

=0 1=0

We have two state variables (h;;) and two controls (u;).

We derive the first-order conditions: 0H;/0N;; = hy, OH;/Ohy = — A,
OH;/O0u; = 0 and the transversality condition limy ., (Ajshy) = 0. The
first-order conditions write

Uy = (Biuz't - Pz’) Uy (60)
hii = B, (1 - uit) it

jointly with the transversality condition lim; ., (e~ /u;) = 0.
Focus on the solution of ODE (60).
There are three cases.
(1) If uio < pi/ B,
1 Pi
AT

1 ./ Bi
ci=—1In ('OZ/ . —1)

Pi Ui

Uyt

with

(2) If wio = pi/ B,

w P
it BZ
Ui — 1 for ¢t > t*
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with

1. Buj — p;
c = —In Hio d <0
Pi Buyg
1 .
TA— —ln(l—&)—ci>0
Pi B;

(1) Focus on the case u;y < p;/B;.
We evaluate the utility along this trajectory:

o 1 B;
/ eipit In (Ahztu,t) dt = — |:hl (Ahlouzo) + — - 1:|
0 Pi i
(2) Consider the second case: u;o = p;/B;.
The economy is at the steady state from the beginning.
We evaluate the utility at the steady state.

> 1 B;
/ eipit In (Ahltuzt) dt = — |:1n (Ahzoulo) + — = 1}
0 Pi Pi
Therefore, in the cases (1) and (2), we find:
arg max / e P In (Ahgug) dt
0

ui0<p;i/Bi

1 B; pi
= arg max — |In(Ahjpup)+ — —1| ==
guioﬁpi/Bi Pi |: ( ’ 0) Pi :| B;

and
> 1 i B;
max / e "' In (Ahyuy) dt = — {ln (Ahiop—> + — — 1}
wi0<pi/Bi J Pi B; Pi

(3) Focus on the case w;g > p;/B;.
The solution becomes

uy = 1fort>t"
where

1 Biuio — p;

¢ = —I2HTr
Pi Buy
1 ;

tr = —ln(l—'o—)—c,»>0
pi B;
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We evaluate the utility along this trajectory.

0o t* o)
/ e P In (Ahgu) dt :/ e P In (Ahyug) dt —|—/ e P In (Ahy) dt
0 0 t

Pi Usio

-+ hl (Ahlouzo):|

Let us maximize

o0 11—y
/ e~ In (Ahiug) di = — [ 0 4 n (Ahiouioﬂ
0 Pi Ui

with respect to u;g. Notice that

:———2<O
U40 Uszo

1 — w
[m(AhiouwH “’0} L 2

duig Uio
for wo € [pi/Bi, 1). Then, [~ e ”"In (Ahjuy)dt decreases in [p;/B;, 1) and
attains its maximum at ujy, = p;/B;.

The value at u}, = p;/B; is

> 1
/ e P In (Ahyuy) dt = — <ln
0

Pi

+= -1

Ahiopz’ B, )
i Pi

We conclude that v}, = p;/B; maximizes the utility whatever the case we
consider. Since u}, = p;/B; is also the steady state, we find that the BGP
(9) is the planner’s solution. m

Proof of Proposition 2. Under the assumption hy; > hys, the Gini index of
wealth is given by:

ﬂ'oh0t42r7T1h1t _ (7T17r21h1t + 7T07rlh1t + ﬂ’oﬂ'gh()t)

mohot+mi1hit

9ht =

that is by (10). m

Proof of Proposition 3. In order to compute the dynamics of the wealth Gini
index, we consider the optimal individual wealth dynamics (9): hy = hieBirt,
Under Assumption 4, By — py > B; — p1. There are two cases: (1)

hoo > th and (2) h()() < th-
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(1) In the first case, ho; > hy for every t and, then,

Wlhloe(fﬁ—m)t

Wohooe(BO*PO)t + 1 hloe(Bl —pP1 )t

Ght = T1 —

that is (11). It is easy to check that gp; increases in time.

(2) In the second case, hgy < hig. Beyond the critical date T}, the
dominant consumer earns the higher revenue. Hence, T}, is solution of hor =
hir, that is of hggeBo=rP0)T = ppeBr=rUT  We get (12).

Therefore, the Gini index of wealth is given by

. mohot
mohot + m1h
1l

Jh :71-1——fort>Th
' mohot + m1h

gt = To for t < Ty

Replacing the expressions h;; = hieP 7t we obtain (13) and (14). m

Proof of Proposition 5. Under the assumption co; > ¢y, the Gini index of
consumption is given by:

TocCot+micit T1T1C1t TQTOCOt
2 - ( 2 + ToT1C1¢ + 2 )

Get = Tocot+mICI1t
2

that is by (15).

In order to compute the dynamics of the consumption Gini index, we con-
sider the individual income dynamics: c;; = Ahyuy; = Ahijp;ePi=r)t/B; =
Cioe(Bi_Pi)t‘

Under Assumption 4, By—py > By —p;. There are two cases: (1) coo > c19
and (2) Coo < C10-

(1) In the first case, co; > ¢y4 for every t and, then,

ﬂ—lcloe(Bl _Pl)t
WOCOO@(BO*PD)t + 7T1610€(B17p1)t

Get = T1 —

that is (16). It is easy to check that g. increases in time.

(2) In the second case, cgp < ¢10. Beyond the critical date T, the domi-
nant consumer earns the higher revenue. Hence, T, is solution of cor = ¢17,
that is of cooelPo=P)T = ¢jpeBr=P)T We get (17).
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Therefore, the Gini index is given by

ToCot
gt = m9— ————— fort <T,
ToCot + T1C1¢
T1C1¢
gop = m — ————— fort>T,
ToCot + T1C1t

Replacing the expressions c¢;; = cipeZi=?)t we obtain (18) and (19). m

Proof of Proposition 6. The aggregate consumption growth rate is given by

. 1 Bi—pi)t]’ 1 Bi—pi)t
~ Ct [E i=0 Wicioe( i=pi) ] E i—0 TiCio (Bz — pz) 6( i=pi)
t= 1 ot 1 .
Ct g =0 7'(2-0@-06(31 pi)t E =0 71'1-02-06(31 pi)t

that is by (20). =
Proof of Proposition 7. Focus on case (1): cpo > ¢10. From (16), we find

—5t _ T0Co0 71 — Gt
T1C10 To + G

Replacing this in (20), we obtain the trade-off (21) between inequality
and growth.
Focus on case (2): cgo < c19. In the case t < T', we have

_st _ T0oCoo M1 + Gt
T1C10 Mo — Gt

(&

Replacing this in (20), we find the trade-off between the inequality and
growth (22). Similarly, we obtain (23). m

Proof of Proposition 8. In this case By = By = B, and 0 < py < p1. By
supposing that we have interior solution, the Hamiltonian writes:

1 1 1
Hy = (Z 7Ti€pit> In Z mihiug + B Z it (1 — ug) by
i=0 i=0 i=0
Since h;; maximizes Hy, OH;/Ou; = 0, which implies:

1 —pjt
Z' e Pj

7=0"J
B/\it = T 1

> im0 Tl
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Replacing (61) in 0H;/0h;; = — )\, we find
—Nit = Nt Buis + it B (1 — uir) = By
Which implies A\i; = \jpe~Pt. We have also for any t,

& _ B)\Ot _ @
At By ™

Define
70 1

(b_ —

R

From (61), we get
1 5 <&
ihiruir = — el Bt
; T Ut B ; ;e

Define H; = 23:0 H; = Zi:o mihi. We have

1 1 L
H, = Zﬂ-thit = ZmBhit (1 —uy) = BH; — ¢Z7Tie(3*pi)t
=0 i=0 P

Define .
w=H 06y %e(Bpm
i=0 "

We get

1
. : U e
= H 3 B g
i=0 "
1 1 .
= BH, — ¢ 7Tte(prz‘)t — ¢ —Z(B B pi)e(pri)t
= BZt

This implies z; = zoe®! and

1
H; = zeP' + ¢ Z T g(B=pi)t
— Pi
=0

33



From the tranversality condition, we have

)\,
lim (ki) = 22 lim (e Bmhy) = 0

=500 T oo
Then, limy_,o (e~ P'm;hy;) = 0 and
1 1

which implies z; = 0 for any ¢. Thus,

1 1

E Wihit = Ht = gb E E€(B_pi)t (62)
- ; Pi
1=0 =0

We can guess that the solution must satisfies, for ¢ = 0,1, equation (26)
where (y and (; satisfy ZLO m(; = 1. We observe that (; in (27) satisfies
this condition.

We can also guess that

1
hituit = %Q Z TFje(B_pj)t (63)
=0

We observe that (63) satisfies (26).
This is equivalent to
%Ci Zjl'zo mjel et

0G Ljmo e

Ugt

that is (26).
We can now construct the solution. Considering (62) with ¢ = 0, we get
¢ in (26).
Considering (63) with ¢ = 0, we get
. hio
¢ ico ™/ Ps
that is ¢; in (26). We observe that > m¢ = 1.
Define My = m;/¢ yielding \y; = e Bim; /.

Gi
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Observe that 0 < u;; < 1 and hy, = Bhy — Bhiuy = Bhi(1 — uy).
We can verify easily that (h, u;, \i) satisfies Pontryagin conditions.

Observe that in this case (By = By = B), we have uy, = uy; = uy, which
converges to po/B. The total human capital stock H; = Z;:o mihi, satisfies
Ht = BHt(]_ — Ut). | |

Proof of Lemma 9. Suppose the contrary: there exists ¢ such that, for every
1, 0 < uy < 1. This implies the existence of t; < t5 such that 0 < u; < 1 for
every t; <t < ty. On the interval (¢;,?2) the Hamiltonian writes:

1 1 1
H; = (Z Wie_pit) In Z mihiug + Z it Bj (1 - Uit) hi
i=0 i=0 i=0

For every t; < t < ty, we have H;/0u;; = 0, OH;/0\yy = hy and
OHy/Ohy = —Ai. The first equation implies that, for every i:

1 .
.o Pt
Zj:O e

1
> im0 Tihjieuge

Replacing (64) in 0H;/Oh;; = — Ay, we find

—}\it = N Biuir + N\ B (1 — ui) = A\ B;

Integrating from t; to t, we obtain Ay = Ay, e Pt for any t; < ¢t <
ty. From (64), we have also BoAot/ (BiAi:) = mo/m. This implies that
e~ (Bo=BI=t) — 7B\, / (71 Booy, ) for any ¢, < t < to. This leads to a
contradiction with By # Bj since, in this case, the left-hand side changes
over time. m

Proof of Proposition 10. The Hamiltonian writes

Lemma 9 allows us to focus on a candidate solution which is a corner
solution for one agent: there exists 7" > 0 such that

0<wuy <1landu;, =1 (65)
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for every t > T. We will show that 7" = 0 and the Pontryagin’s optimal
conditions are satisfied.
If (65) is solution, we have

1

0H . 7Ti€_pit
au i = WohOtZ:fJ—W - BO)\OthOt =0 (66)
0t lo<ugs <1 Zi:() Tl Uit
0H 41_ 7Ti€_pit
Ju t = Wlhltzzlz_o— — BiAithiy 2 0 (67)
1t =1 Zizo il
Therefore,
1 .p—Pit
BoXot = WOM (68>

Zizo il i
0 < ug; < 1 implies

1 iy

8Ht Z o Ti€ pit
_ah = —Tolot =1 5
0t Z i—0 Wihituit

Aot =

(69) entails

Aot = Aore Pot=T) (70)
for any ¢t > T.
uy¢ = 1 implies
. OH. 1_ Wie_pit ™
At = ——— = —Wlultzzll_o— — BiAy (1 - ult) = __lBo)‘Ot
Ohyy > io TilitWit 7o
Moreover,
. T T 2
Aip = ——130)\015 - _1)‘0t
o o
that is

m ™ —Bo(t— m
At = L (Aot = Aor) + Air = _1)\0T€ Bolt=1) 4 My — _1)‘0T (71)
0 o 7o

A candidate solution satisfies the transversality condition, that is

lim ()\lthlt) = lim E)\OTBBO(tT)hzh;| + lim |:(>\1T — E)\OT) hlt‘| =0
t—o0 t—o0 | T t—r00 70
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which holds only if A\ — Agrm1/m9 = 0. According to (71), we find

US|
At = — Aot
o

Replacing (70) in equation (68), we get

1 1
7T0 Bo—p:)t
— 0
Z ﬂ-ihituit = B BoT Z 771'6( pi)
oAore =0

1=0

and, noticing that u;; = 1 and hy; = hyp for every t > T, we obtain
1
I ..U (72)
i=0

Therefore,

) T
hot = Bohot — Bouothor = Bohor + Bow—lhm -
0

This differential equation is equivalent to Z; = Byz;, where

Zl i o(Bo—pi)t

=0 pi

eBoT

m
2z = hoy + —hip — \
o 0T

The solution of 2, = Byz; is 2 = zreP0¢=D) for ¢+ > T. Thus

=0 p;
T (73)

i
hoy = zpeP T — L
To Ao

A candidate solution satisfies the transversality condition, that is, accord-
ing to (70),

. . . Zi:o %6<Bo_p2)t m
tliglo (Aothor) = tlggo (Aorzr) + tliglo <>\0t [ g cBoT ——hir| | =

which holds only if zp = 0, that is only if

Zl i o(Bo—pi)T
i=0 pi

AgrePoT Aor <= pi

mihir 4+ mohor = o
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(68) and (74) imply

By _ mohor + mihir
p(T)  mhir + mohoruer

(75)

where p (T') is given by (28).
We compute uor from (75) and we impose the economic restriction 0 <
upr < 1 or, equivalently,
BO 1
<
p(T) = oir
(0 < wgr is equivalent to the RHS, while ugr < 1 to the LHS).

Inequality in the LHS of (76) is satisfied by Assumption 5: By > p; >
p(T).

Thus, the candidate solution holds for every ¢ > 0 only if the RHS holds
at T'= 0. It is the case because (76) with 7" = 0 is equivalent to the initial
condition o9 < 07}.

Let us now provide the explicit trajectory for h;; and u; and show that
the optimal conditions are verified.

From (75) with 7" = 0, we have

0 _ [, o) t

1<

(76)

Upo =
0

As seen above, 0 < wugg < 1 under Assumption 5 and inequality oy <

p(0) /o
From (68) and (74) with 7" = 0, we find Agp.
Moreover, (73) with zr = 0 and 7" = 0 implies

1

1 T . T
oy = —— Zip(Bo—pi)t _ “1p 77
Ot Moo ; Pze o 10 ( )

Replacing (77) in (72) with 7' = 0 and solving for ug,;, we get (31).
Let us show that

—Bot L

o€ s

Aot = ———— — 78

o Hoo + Hig o Pi (78)
T

At = — ot (79)
o
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and (32) to (31) satisfy the Maximum Principle by Pontryagin.
First, replacing (78), (30) and (31) in (66), we find

OH,

Qugy O<ugi<1

=0
Assumption 5 (By > Bj) implies

1 —pit

T Ty g€

Bilit < BoAiy = Bodoy— = : 5
mo  Tohotor + m1hig

and, so, according to (67), also

OH, >0
8U1t ups=1
Moreover,
. OH,
Xt = —M\puB -
ot 0t Do Do,
. e Pit OH
L 2 — DBy = -
m1hio + mohotUor o Ohyy

Finally, we check the transversality conditions. Since

thm ()\nhn) =

tlg?o ()\ioe_Bithit) = i tlgilo (G_Bithiﬁ

t oo
— )\1’0 hm |:€_Bithi0€f0 Bi(l—uis)ds] — )\iOG_Bi fO u;sds
t—o0

the transversality conditions are equivalent to fooo u;sds = oo. These equal-
ities are satisfied because lim; o ug; = po/Bo > 0 and uy, = 1 for every t.

Proof of Proposition 12. (1) Focus first on the case By < Bj.
Lemma 9 allows us to focus on a candidate solution which is a corner
solution for one agent. We prove the first subcase by considering a potential

solution such that

upy = O0for0<t<T
O0<uy < lfort>T (80)
uy; = 1 for any t
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by deriving its explicit trajectory and checking that this trajectory satisfies
the Pontryagin’s Maximum Principle.
According to the Maximum Principle, we need

1

OH, o mie P
5 ! = WohOth*O— — BoAothot <0 (81)
U0t | y,=0 Zizo il
0H, L mie Pt
5 ! mhltz:f_o— — BiAithyy > 0 (82)
ULt |oyy,=1 Zizo il
for any ¢ € [0, T}, that is
1 »—pit 1 .p—Pit
Bohg > 10 Zi=0™€ " 1 By, < 2eim0 T
T th th
Moreover, for any ¢ € [0, T,
8Ht 21_ 7"-ie_pit
Aot = — = —Toup =" — Bl (1 —u
o Ohgy o ZLO iy " Ot( Ot)
. 8Ht Zl_ 7Ti€_pit
Ay = — = —mup==" B (l—u
1 Ohyy e Zi:o il ' M( u)

that is )
Aot = —BoAgy and Ay, = —E:Z_O—Z
h1o

with solutions

1

_ 1 T 4
)\Ot:)\goe Bot and Alt:Alo—h—w;E(l—e tpl)

If t > T, according to the Maximum Principle, we require

OH, L merit
B : = WOhOt% — BoXotho = 0
U0t |0<ygy<1 Y ico Tl
that is .
BoAor = Wo% (83>

Zizo il
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which implies in turn

1 it
pi
i—o i€

Aot = —uo 7TOZ— — BoAot (1 — o) = —BoAo
ZZ Oﬂihz‘tuit

with explicit solution A\g; = /\006 Bit Thus, this trajectory holds for every t.
If 0 <t < T, we obtain ho; = Boho from hg, = By (1 — ugt) hog, that is
hor = hooe?t.
If t > T, (83) and uy; = 1 entail

1 .
_nT;€E pit T T -
)\1t _ﬂ-lultll_o— - Bl)\lt (1 — ult) = ——IBO)\Ot — _1)\0t
Zi:o ﬂ-lh it Wit o 7o
and
A1t = ()‘Ot = Aor) + Az = _>‘0 T A\ — —1>\0T (84)
U o

According to the Maximum Principle, a candidate trajectory satisfies also
the transversality condition:

hIIl (Althlt) - llm |:E)\QT€_BO(t_T)h1t:| + lim |:(/\1T — E)\QT) hlt:| =0
7T0 t—o0 7T2
which holds only if Az — Agpm/mg = 0. Therefore, (84) implies Ay, =
Ao¢T1 /o, for any ¢t > T. In particular, we get Ay = Aormi/mo. Replacing
Aot = Agoe B0t in equation (83), we get

1 1 it 1 Bo—p: )t
b — mo Y g mie Pt oy, o mePomrd)
TN Uy =

Bo)\goefBot N Bo)\OTeBoT
and, noticing that u;; = 1 and hy; = hyp for every t > T', we obtain

1 Bo—p;)t
Zi:O 7T2'€( 0 Pl) T h
- —_ar
Bo)\OTeBoT o

hotuor =

Therefore, for t > T,

1 . (BO pz)
/ ™ E . Te
hot = Bohot — Bohostios = Bohey + Bo—hap — =2=2 =—
o )\OTG 0
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or, equivalently, z; = Byz; with

Zl i o(Bo—pi)t
=0 p;

)\OTGBUT

T
2z = hoy + —hip —
o

whose solution is 2z = zpeP¢=1) Thus,

1 m (Bo—pi)t
T Zi:o pie '
To Aorero

Bog (th) o

hot = zre

fort >1T.
As above, a candidate solution satisfies also the transversality condition:

(83) and (85) imply

By _ mohor + T1har
p(T)  mohoruor + mhir

(86)

Since ugr = 0, hir = hig, hor = heoeP? and Hyy = m;hy, (86) is equivalent
to (35).

The critical time T of the candidate trajectory (80) is precisely the so-
lution Ty of equation (35). This solution exists and is positive. Indeed, we
know that p(T) € [po, p(0)], a bounded interval. Moreover, (35) is equiv-
alent to e®THyy/Hyg = By/p(T) — 1, whose RHS is positive according to
Assumption 5 (By > p1 > p(T)) and bounded from above. The LHS goes
from Hoy/Hyp to oo. If Hyy/Hyo < By/maxp(T) —1 = By/p(0) — 1, then
a solution Ty exists. But this inequality is precisely equivalent to inequality
o109 > 01y, precisely the case we are considering in Proposition (12).

From (85), we get
o 22:0 %e—mTo
HypeBoTo 4 Hyg

)\OTO =
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and, from (35),

1 — 0. T,
Mo D img Ti€ "

Ao, = 87
0T BOHlo ( )

We want to prove that the trajectory defined by equations
Aot = Aor, €207 for any ¢ (88)

1

1 1 Uv — it — 0. T,
Ay = —A — — (e7Pt —e7 Pt for 0 <t < T, 89
! o o ¥ h1o ; Pi ( ‘ ) orl=r=do (89)

A = %/\OTOeBO(TO_t) for t > T (90)
0

and (44) to (43) satisfies the Pontryagin’s Maximum Principle.

It is easy to check that Ag; and Ay are differentiable functions with respect
to t in [0, +00) with Ny = —0H;/0h; and that, for any t, we have hoy =
By (1 - UOt) ho.

Let us show that uy and wy; maximize the Hamiltonian. For ¢ > Tj,
apply the proof of Proposition 10. Focus now on 0 <t < Tj.

We want to prove that 0H;/0ug| <0.

. 1 N . . .
Since S, mePo=rit ig strictly increasing and
=0

ugt=0

L ,(Bo—pi)To
By ico 0 & ’

1
_ E (Bo—pi)To
= e
1 +6B0TOH00/H10 o

then, for any ¢ € [0, Ty], we have

L mi o (Bo—pi)To 1
BO 21:0 pi € > Z 7.‘.ie(BO—Pi)T()
1+ ePotoHo/Hyp — 4=

or, equivalently,

1
Bolot = B(])\OTOGBO(TO%) > Woz:fﬁo—
Zizo il

because ug; = 0 for 0 < ¢ < Ty and uy; = 1 for any ¢. Then, (81) is verified.

This means that ug; = 0 maximizes the Hamiltonian.
We want to prove that 0H;/0uq| > (.

u1=1 =

ﬂ-l.e_pit
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(39) is equivalent to
which implies

for any ¢ € [0, Tp], because the LHS of (91), under Assumption 5, is a de-
creasing function of ¢. By definition of T,

1

1
(2 &)= i
- i BO BO Hl(]

=0

Inequality (91) becomes

1

1 1
1 1 1 H 1 1
E - Pt « — 7700 .o(Bo—pi)To _ - _ o—PiTo
. ( B ) e =B Hyy & 2 (pi BO) e
1=0 1=0

Pi 1 0
(92)
for any t € [0,7p). (89) and (87) imply

Therefore, (92) becomes

1 — D 1 .
.p—Pit ,—pit
B, < Ez’:o me T - zi:o me "
A S T =T
10 Zizo T3t Wit

(because ug; = 0 for 0 < ¢t < Ty and uy; = 1 for any t), that is, accord-
ing to (82), OH;/0uy| > (0. This means that u;; = 1 maximizes the
Hamiltonian.

(2) Focus now on the case B, > Bj.

Lemma 9 allows us to focus on a candidate solution which is corner solu-
tion for one agent. We prove the second subcase by considering a potential

’U,ltzl
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solution such that

up = 0for 0<t<T

0 < wug<lfort>1T,

0 < up<lfor0<t<Ty
uy = 1lfort>1T)

with 77 < T3, by deriving its explicit trajectory and checking that this tra-
jectory satisfies the Pontryagin’s Maximum Principle.

Applying the arguments of point (2.1) to determine T (namely, the
transversality condition), we find 75 as solution of

Bo _ y  Hom
p(T2) Hy,
— 14 Hoo e
HlO eBlTl [1 + )\101h10 Z21:0 % <€7piT1 - 1)]
that is of (36).
For 0 <t < 7T} we have
0H, 1_ Wie_pit
t = Wlhlt—zf_o — BiAihyy =0
duy O<uis<1 Zi:o iy
that is ) .
2ig i€ "
B\ =="—— 93
o hagugy ( )

since ug; = 0 and 0 < uy, < 1 (because T} < T).
Moreover, using (93), we find

: OH 1_ 7Ti€_pit
A = __a}htt = _Wluu—%f:_jﬂ'ihituit — By (1 —uy) = —=Bi)y

Therefore, for 0 <t < Ty, Ay = Age Bt and, from (93),
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The law of motion /g = By (1 — uy) hyy and (94) imply

1
. 1 s
hyy = Bihy — o ; me Bt (95)
We define )
1 i _
Zr = hlt —_ le(Bl_pl)t (96)
A1o i—o Pi
Using (95), it is easy to verify that 2, = Biz;. Thus, 2; = z;eP1". From
(96), we obtain
1 <7 1 <=7
B — sieBit L ZeBi=pdt with 21 = Ao — —— — 97
W= AeT A1o ZZ_; Pz’e s v Ao i—o Pi o7)

(95) and (97) imply hy = ePiig (t) where
1
1 B B '
¢ (t) = Bihi — o Zwi {—1 + (1 — _1> e—pzt]

Assume that

1 1 T
Bihyg </\10<h_101 OE
Therefore,
1 Bl ! v
¢ (0) = Bihyo — o > 0> Bihy — e ;:0 E = ¢ (0)

Thus, ¢ (£) = 0 (that is 2y, = 0) has solution. Let 77 > 0 be the smallest
solution. This solution depends on Ajp. ¢ (71) = 0 is equivalent to (37).
Function T3 (A1) behaves as follows.

1
A < T (Ag) — 0
0 — Bihig 1 (A1)
1 ! T
)\10 — h—m;p—Z@Tl(Aw)—)OO
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There exists a constant C' such that hy; < CeP'? for any ¢ > 0. Hence for
T7 big enough we have

h0T1 eBoT1 B e(Bo—B1)Th ™ |:

> =
h1T1 Ceb T C

0 %‘1]

or, equivalently, By/p (T1) < 1+ Hop, /H1r,. Since By/p (0) > 1+ Hy/Hjyo,
there exists A such that for T =1T; M)

We observe that T} ()\10) < T ()\10) for 1/ (Blhl[)) < Ao < 5\ Differenti-
ating ¢ (t) = 0 with respect to t and Ao, we find at t = Ts:

y Blth/Z;ZO 7Tj€7pjTl
Tl ()‘10) = 1 miePiTl
Bl - Zi:() plz—

1 L —piTy
j=0Tj€ 7

>0

Moreover, T1 () = Ty(X).

Therefore,
: 0H, U omerit > L merit
Ay = — - — Li=0""" B\, (1 — = _£=07"" (g8
1t Ohyy T1U1t Zil:o P 1 1t( U1t) ( )

har,
At t =Ty, we have OH;/Ouy; = 0, that is

1 T
o—piT1
Zizo me "

99
Bihyr (99)
Integrating (98) from T3 to t < Ty, we get

>\1T1

1
1 v Y S
)\1t=)\1T1—|-h —( p’t—ep’Tl)
1Ty g Pi

Replacing (99), we obtain

1
1 T , Pi .
A\ = e rit =21 P for Ty <t < T 100
1t mﬂ;pi [6 +(B1 )6 } or 13 S 1= 1g (100)
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and, in particular, (51).
At time T3, the optimal solution satisfies 0H;/Oug, = 0 or, equivalently,

1 .
. p—Pil
Zi:o me "

Bolgt = m 101
o 022_:0 i ( )

that is )
Aor, = e Ptz 102
0Ty BoHrr ; e (102)

Using (101), we find
: 0H, L mePit T -
Aip = — L = _Wlultzjlz_o— — By (1 - Ult) = __IBO)\Ot = —1)\01‘,
Ohay Yo it o o

Integrating (98) from T3 to t < Ty, we get
™ ™ _ _ ™
Aip = — (Aot — Aoy ) + Ay = _1/\0T1€ Bolt=T1) 4 N\, — _1/\OT1
0 o o

A candidate solution satisfies the transversality condition, that is

lim (Ayhy¢) = lim ﬂ/\OTle_BO(t_Tl)hlt} + lim |:(/\1T1 - ﬂ/\OTl) hlt} =0
t—o0 t—o0 T

t—o00 7TO 0

which holds only if Aip, — Aoy /7 = 0. This implies Ay = Agy71/m0. In
particular, at the point 7, > T3, we have A1, = Aop,m1 /7 and, according to
(102),

1
1 T

—pi
;€
BOthl i—0

™
)\ITQ - 7_‘__)\0T2 -
0

Using (51), we obtain (38). To conclude, we must prove that there exists
/\10 with



we have T7 (A1p) = 0 and T3 (A19) = Tp and, so,

1

f ()\10) = P(?O)

1

- 1 — 0. T
> iz miePiTo

because of (??). For A = A, we have T} (Ay0) = T (A19) and, so,

<0

B~ |-

B

~
o

=

1 1
f ()\10> — P(T1(1>\10)) Blo _1>0

p(Ti(0)) — Br

since By > B;. f is a continuous function. Then, there exists Aig such that
f (Ao) =0, that is (38) is satisfied.

Finally, we can construct the explicit solution with A;y solution of (38).

We have A\g; = Agge B0 for any ¢ with Aoy = A\ip,eP0T2m /7. Moreover,
hot = hgoePt for 0 < t < Ty, while for ¢t > Ty, we obtain (47) similarly to
(41). We have also ug; = 0 for 0 < ¢t < T3, while, for t > T5, we obtain (48)
similarly to (43).

For 0 <t < Tj, from (94) and (97), we obtain (50). We observe that
hlt = thl for t > Tl.

For 0 < t < Ty, it is easy to see that Ay = A\jge= P!, while, for T} <t < Ty,
A1 is given by (100). For ¢ > Ty, we find Ay = \jpe P00-2) m

Proof of Proposition 15. Under the assumption hg > hy, the Gini index of
wealth is given by:

ﬂ'ohoﬂzrmhlt _ (7T17r21h1t + 7T07Tlh1t + ﬂ'Oﬂ'é)hOt)

mohot+mi1hyt

9ht =

that is by
st hlt Hlt

g =T ——————F— =T —
! mohot + Tl Hy + Hyy

or, equivalently, by (55). m

Proof of Proposition 16. According to (25), po < p1 implies co; > ¢14. Thus,
the Gini index of consumption is given by
T C1¢
Jot =T — ————— 103
' ToCot + T1C1y (103)

Replacing (25) in (103) we get (56). =
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Proof of Proposition 17. Focus on Proposition 10. According to (25), we
obtain the aggregate consumption:

Z il
=0 tjltgtthit
gme’” =0 T

~1 _ 4
—p;t
ZJ oTje

and, so, replacing expressions (30) to (33), we find (57). Computing the time
derivative of (57), we obtain the aggregate consumption growth rate (58). =

=A (WOhOtUQt + Wlhltu1t>

Proof of Proposition 18. From equation (56), we find

Bo—pi

eWBompt  ((TLT0 ¥ Get ) 7170 (104)
T T1 — et

Replacing (104) in (58) we find (59). Finally, it is easy to show that 7, is an
increasing function of g.. m
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