About the Landau-Fermi-Dirac Equation With Moderately Soft Potentials - Archive ouverte HAL
Article Dans Une Revue (Data Paper) Archive for Rational Mechanics and Analysis Année : 2022

About the Landau-Fermi-Dirac Equation With Moderately Soft Potentials

Résumé

We present some essential properties of solutions to the homogeneous Landau-Fermi-Dirac equation for moderately soft potentials. Uniform in time estimates for statistical moments, $L^{p}$-norm generation and Sobolev regularity are shown using a combination of techniques that include recent developments concerning level set analysis in the spirit of De Giorgi and refined entropy-entropy dissipation functional inequalities for the Landau collision operator which are extended to the case in question here. As a consequence of the analysis, we prove algebraic relaxation of non degenerate distributions towards the Fermi-Dirac statistics under a weak non saturation condition for the initial datum. All quantitative estimates are uniform with respect to the quantum parameter. They therefore also hold for the classical limit, that is, the Landau equation.

Dates et versions

hal-04126511 , version 1 (13-06-2023)

Identifiants

Citer

R. Alonso, V. Bagland, L. Desvillettes, B. Lods. About the Landau-Fermi-Dirac Equation With Moderately Soft Potentials. Archive for Rational Mechanics and Analysis, 2022, 244 (3), pp.779-875. ⟨10.1007/s00205-022-01779-z⟩. ⟨hal-04126511⟩
17 Consultations
0 Téléchargements

Altmetric

Partager

More