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Abstract

This article analyses a one-sector growth model where the consumption takes
time. When the consumption takes time, the consumption set is compact and
we meet satiety. However, we prove that dynamic constraints are binding. This
result is crucial to prove that, under well-known assumptions in macroeconomic
dynamic programming, the optimal path is monotonic and always converges to
a unique non-trivial steady state as in the case where consumption is timeless.

Keywords: elastic labour supply, time consuming, dynamic programming,
super-modularity.
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1 Introduction

Many well-known economic models are based on the assumptions that consump-
tion is instantaneous, i.e. it does not take time. In the reality, this assumption
is not plausible. In the past or even today, it took people time to wash clothes
or to prepare the meals. Even with the invention of new machines and technolo-
gies, there are activities which cannot be reduced in time, for example watching a
match of soccer or listening to a Beethoven’s symphony.

Economic agents must always make the trade-off between the time devoted for
the production, and the time for leisure. The consumption time constraint was
first formally introduced by Gossen [6] and much later generalized by Becker [2]
in his famous contribution to the theory of time allocation. Recently, Tran-Nam
& Pham [14] consider the question with a general equilibrium approach. Le Van
et al. [13] extend this model to a general equilibrium model with many goods
and many heterogeneous economic agents. In their article, consumption itself
takes time. A typical household is subject to a financial constraint and a time
constraint as well. They show that the economy possesses at least one autarkic
Walrasian equilibrium.

In our knowledge, though the problem is well analysed in static economy, there
is no theoretical research in a dynamic framework. To give a response for this
gap, in this paper, we consider a one sector growth model, in which consumption
is itself time consuming. At each period, the agent must share her/his available
amount of time between consuming and working.

In this case, the consumption set is compact, i.e. there is a satiation point while
in the usual models where consuming is timeless the consumption is the positive
cone and we have no satiation point. That is the main difference. However, we
prove that all the dynamic constraints are binding in our model. This result is
crucial to prove that, under well-known assumptions in macroeconomic dynamic
programming, such as concavity of the production and utility functions, and com-
plementarity between capital and labour, the optimal path is monotonic and con-
verges to a unique non-trivial steady state as in the case where consumption is
timeless. That is our main result1. We mention that the steady state capital stock
is lower than the one obtained in economies where consumption is timeless.

The effects of incorporating an explicit time for consumption in other classes of
dynamic models would be worthwhile to investigate in future work, including for
models of pollution and growth (e.g., Ghosh et al.,[5]), dynamic allocation of
government expenditures (e.g., Le Van et al., [11] and Fan et al., [4]), or impact

1The results of this model are similar to those obtained from a one sector growth model with
elastic labour, see e.g. [12].
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of social capital on growth [10], and other dynamic models.

The article is organized as follows. Section 2 describes the model. Section 3.2
presents the indirect utility function and a modified optimization problem which
is equivalent to the initial one. Section 3.4 studies the main properties of the
optimal paths. The proofs are given in Appendix.

2 Fundamentals

Time is discrete. The production requires physical capital and labour. The utility
of the agent depends only on the consumption which takes time. We assume that
in each period, the total amount of time of the agent is inelastic, and is divided
in two parts: the first part is devoted for the production, and the second part for
the consumption.

At period t, given capital kt and labour which is measured by the labour time lt,
the production is

Yt = F (kt, lt).

Let 0 ≤ δ ≤ 1 be the depreciation rate of the physical capital. The dynamics of
the accumulation of the capital stocks is

kt+1 = (1− δ)kt + It,

where It is the investment at time t. It is worth noting that we do not impose
that δ is strictly positive.

Given the maximal supply of labour time L and the working time lt, the available
time for consumption is L− lt. Hence, there are two constraints for the consumers,
the resource constraint and the time constraint:

ct + It ≤ Yt,

act ≤ L− lt,

where a > 0 is the required time to consume a unit of good.

With the discount factor β ∈ (0, 1), the utility function u, for given capital stock
k0 > 0, the economic agent solves the following maximization problem (P ):

v(k0) = max

[
∞∑
t=0

βtu(ct)

]
,

s.t ct + kt+1 ≤ (1− δ)kt + F (kt, lt), (2.1)

act + lt ≤ L, (2.2)

ct, lt, kt ≥ 0 for any t. (2.3)
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The function v is called the value function of problem (P ).

For k0 ≥ 0, let Π(k0) denote the set of feasible paths of the capital stocks {kt}∞t=0.
That is the set of capitals for which there exist a consumption sequence {ct}∞t=0,
and a labour sequence {lt}∞t=0 such that for any t ≥ 0, the constraints (2.1) to
(2.3) are satisfied.

Before analysing the properties of this economy, we set assumptions on its funda-
mentals. These assumptions are usual in economic dynamic programming litera-
ture.

Assumption A1. i) The production function F is strictly concave, strictly in-
creasing, twice differentiable. It satisfies F (0, l) = 0, F (k, 0) = 0 for any
(k, l) ≥ 0. Moreover, for any k, l > 0, we have F1(0, l) =∞ and F2(k, 0) =∞
where F1, F2 are respectively the partial derivatives with respect to k and to l
(Inada conditions).

ii) The utility function u is strictly concave, strictly increasing, twice differen-
tiable. It satisfies the Inada condition: limc→0 u

′(c) =∞.

iii) No triviality: For any k0 > 0, there exists {kt}∞t=0 ∈ Π(k0) such that there
exist a consumption sequence {ct}∞t=0 and labour sequence {lt}∞t=0 satisfying
(2.1) to (2.3) and

∞∑
t=0

βtu(ct) > −∞.

iv) Tail-insensitivity: For any k0 > 0, any ε > 0, there exist T0, a neighbourhood
V of k0 such that for any k′0 ∈ V, any feasible path {k′t}∞t=0, any consumption
sequence {c′t}∞t=0, and labour sequence {l′t}∞t=0 satisfying (2.1) to (2.3), we
have, for any T ≥ T0,

∑∞
t=T β

tu(c′t) < ε.

Conditions (i) and (ii) are well-known. Condition (iii) ensures that even in the
case where the utility function u is unbounded from below, the problem is not
trivial. Under condition (iv), tail-insensitivity, the inter-temporal sum is upper
semi-continuous with respect to the product topology. Moreover, the value func-
tion v is upper semi-continuous. By Weierstrass theorem, this continuity property
on a compact set implies the existence of an optimal path. The strict concavity
of the production function F and of the utility function u ensures the concavity
of the value function and hence, the uniqueness of the solution. For details and
discussions about tail-insensitivity condition, see Le Van & Morhaim [9].
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3 The dynamics

3.1 The Optimal path

Under condition A1, there exists a unique solution. By the Inada conditions, the
optimal consumption and the capital stock are strictly positive. Naturally, it raises
the question whether the constraints in resource and time are binding. Lemma
3.1 provides an answer for this question.

Lemma 3.1. Assume A1. Let k0 > 0. Assume that the sequence {(c∗t , k∗t+1, l
∗
t )}∞t=0

is the solution to problem (P ). Then for any t ≥ 0:

k∗t , c
∗
t > 0,

0 < l∗t < L,

k∗t+1 = F (k∗t , l
∗
t ) + (1− δ)k∗t +

l∗t − L
a

,

ac∗t + l∗t = L.

To understand more deeply the global dynamics of the economy and the role of the
time devoted for consumption, we define and study the indirect utility function
and a modified optimization problem. Section 3.2 is devoted to this question.

3.2 The indirect utility function

Consider the correspondence Γ defined on R+:

Γ(k) = {y ≥ 0 : ∃ c ≥ 0, l ≥ 0, c+ y ≤ (1− δ)k + F (k, l) and ac+ l ≤ L}

We verify easily that the correspondence Γ is non empty, convex, compact valued.
We will characterize the interior of Γ(k) for k > 0 and also the interior of graph
Γ.

Lemma 3.2. i) For any k > 0

int Γ(k) = {y : y > 0,∃c ≥ 0,∃l ≥ 0, such that c+y < F (k, l)+(1−δ)k and ac+l ≤ L}.

ii) The couple (k, y) ∈ int(graphΓ) if and only if

∃c ≥ 0,∃l ≥ 0, s.t. c+ y < F (k, l) + (1− δ)k and ac+ l ≤ L.

We define the indirect utility function V : graphΓ→ R as:

V (k, y) = maxu(c), (3.1)

s.t. c+ y ≤ (1− δ)k + F (k, l), (3.2)

ac+ l ≤ L, (3.3)

c ≥ 0 and l ≥ 0. (3.4)
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As in Stokey, Lucas & Prescott [15], we rewrite the optimization problem as fol-
lows. For k0 > 0, the agent solves the problem (P ′):

max

[
∞∑
t=0

βtV (kt, kt+1)

]
,

kt+1 ∈ Γ(kt) for all t ≥ 0.

The two optimization problems (P ) and (P ′) are equivalent and have the same
optimal paths of capital stocks.

Lemma 3.3. i) If a sequence of consumptions, labour times, and capital stocks
{(c∗t , l∗t , k∗t )}∞t=0 is solution to problem (P ), then the sequence {k∗t }∞t=0 is solu-
tion to problem (P ′).

ii) A sequence of capital stocks {k∗t }∞t=0 is solution to problem (P ′) if and only if
there exist a sequence of consumptions {c∗t}∞t=0 and a sequence of labour times
{l∗t }∞t=0 such that {(c∗t , l∗t , k∗t )}∞t=0 is a solution to problem (P ).

The proof of Lemma 3.3 uses usual arguments in dynamic programming literature.
For the detail, see Stockey & Lucas (with Prescott) [15].

It is also well-known that the value function v of the two problems (P ) and (P ′)

is the solution to the Bellman functional equation2:

v(k0) = max
k1∈Γ(k0)

[V (k0, k1) + βv(k1)] .

A feasible path {k∗t }∞t=0 is optimal if and only if

v(k∗t ) = V (k∗t , k
∗
t+1) + βv(k∗t+1),

for any t ≥ 0.

By the strict concavity of v, there exists a unique k1 which is solution to this
equation. Let ϕ denote the optimal policy function which is defined as follows:

ϕ(k) = argmax
k1∈Γ(k)

[
V (k0, k1) + βv(k1)

]
.

The function ϕ is continuous. If {k∗t }∞t=0 is an optimal path, then for any t,
k∗t+1 = ϕ(k∗t ). A non trivial steady state is a capital level ks > 0 such that
ks = ϕ(ks).

2If the utility function u is bounded from below, then v is the unique solution.
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3.3 The super-modularity

This section is devoted to study some important features of the indirect utility
function V . The two partial derivatives will play an important role in the analysis
the monotonicity of optimal path of accumulation of capital.

Lemma 3.4. Assume A1. Consider k > 0 and y ∈ int Γ(k). Then

i) The function V is strictly concave, increasing with respect to the first argument
and decreasing with respect to the second one.

ii) There exists a unique (c∗, l∗) which satisfies u(c∗) = V (k, y) and constraints
(3.2) to (3.4). The couple (c∗, l∗) is the solution to the optimization problem
yielding the indirect utility V (k, y).

iii) V is differentiable at (k, y) and

∂V (k, y)

∂k
=

u′(c∗)

1 + aF2(k, l∗)
× [F1(k, l∗) + (1− δ)],

∂V (k, y)

∂y
= − u′(c∗)

1 + aF2(k, l∗)
.

The concavity of V and the uniqueness of (c∗, l∗) are direct consequences of condi-
tions (i) and (ii) in A1. Under a suitable assumption that requires the complemen-
tarity between capital and labour, the function V has positive cross derivatives.
Hence, V has strictly increasing differences as showed in Amir [1].

Assumption A2. F12(k, l) ≥ 0 for all k > 0 and 0 < l < L.

Under A1 and A2, the indirect utility function V is twice differentiable and its
cross derivative is strictly positive.

Lemma 3.5. Assume A1 and A2. For k > 0 and y ∈ int(Γ(k)), the function V
is twice differentiable at (k, y) with positive cross derivative:

∂2V (k, y)

∂k∂y
> 0.

Since the function V has increasing differences, it is supermodular.3. Then, by
Amir [1], the optimal policy function ϕ is an increasing mapping. Any optimal
path of capitals is therefore monotonic. This monotonicity allows us to a better
understanding of the economy.

3The (strict) super-modularity is defined as follows. For every (x, x′) and every (y, y′) that
belong to Graph(Γ), we have V (x, y) +V (x′, y′)(>) ≥ V (x′, y) +V (x, y′) whenever (x′, y′)(>) ≥
(x, y). When V is twice differentiable, (strict) super modularity is equivalent to positive cross
derivative: V12(x, y)(>) ≥ 0 for any x, y.
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3.4 The global dynamics

This section analyses the global behaviour of the economy. The optimal path of
capitals always converges monotonically to a unique steady state, even in the case
where unbounded feasible paths are possible.

Proposition 3.1. Assume A1 and A2. For any k0 > 0,

i) The optimal capitals sequence {k∗t }∞t=0 is monotonic.

ii) For any t ≥ 0,

(k∗t , k
∗
t+1) ∈ int(graphΓ).

iii) The optimal path {(k∗t , c∗t , l∗t )}∞t=0 satisfies the Euler Equation4:

u′(c∗t )

1 + aF2(k∗t , l
∗
t )

= β
u′(c∗t+1)

1 + aF2(k∗t+1, l
∗
t+1)
×
[
F1(k∗t+1, l

∗
t+1) + (1− δ)

]
.

We may wonder whether extinction of the economy is possible. In a one-sector
economy, following the results in Kamihigashi & Roy [7], if the productivity at zero
is greater than 1

β
, the economy does not converge to zero. The next proposition,

Proposition 3.2, provides a similar answer for this question, thanks to the Inada
condition in Assumption A1.

Proposition 3.2. Assume A1 and A2. For any k0 > 0, the optimal capitals path
beginning from k0 does not converges to zero.

As in Amir [1], the super-modularity ensures the monotonicity of the optimal
capitals path. Given an initial level k0 > 0, can we know whether the optimal
capitals path beginning from k0 is increasing or decreasing? Moreover, is it possible
that it converges to infinity?

First, we characterize the non trivial steady states. The proof of Proposition 3.3
merely uses usual arguments in dynamic programming.

Proposition 3.3. The list (cs, ls, ks) is an interior steady state if it satisfies

i) (cs, ls) solves (3.1) to (3.4) for k = y = ks.

ii) F1(ks, ls) = 1
β
− 1 + δ.

There exists a unique non trivial steady state. Any optimal capitals path converges
monotonically to this value.

4Using the indirect utility function V , the Euler equation can be written as: V2(k∗t , k
∗
t+1) +

βV1(k∗t+1, k
∗
t+2) = 0.

8



Proposition 3.4. i) There exists a unique interior steady state (cs, ls, ks) .

ii) If 0 < k0 < ks, then the optimal capitals path is increasing and converges to
ks.

iii) If k0 > ks, then the optimal capitals path is decreasing and converges to ks.

It is well known that for 0 < δ ≤ 1, the economy is bounded, in the sense that
every feasible capitals path is bounded5. For the case δ = 0, we verify easily that
there exist feasible capitals paths that converge to infinity. Proposition 3.4 states
that, even in this case, every optimal capitals path is bounded from above and it
converges to the unique steady state.

Remark 3.1. Observe that the steady state capital stock is lower than the one
we obtain in economies where consumptions does not take time. Indeed, let k′s

denote the steady state capital stock corresponding to the case where consumption
is timeless. It satisfies F1(k′s, L) = 1

β
− 1 + δ. In our model we have F1(ks, ls) =

1
β
− 1 + δ, with ls < L. Since F12 > 0, we have

F1(ks, ls) = F1(k′s, L) > F1(k′s, ls)

and since F11 < 0, we have k′s > ks.

4 Conclusion

This article considers a growth model in which agent needs time to consume.
Under usual conditions, a detailed description of the dynamics is given. We obtain
that the optimal capitals path still is monotonic and converges to a unique steady
state as in the case where consumption is timeless. However, the steady state
capital stock is lower than the one we obtain in economies where consumptions
does not take time.

Many economic problems may be reconsidered in future work with time consuming
consumption, including for models of pollution and growth (e.g., Ghosh et al.[5]),
dynamic allocation of government expenditures (e.g., Le Van et al. [11], and Fan
et al. [4]), or impact of social capital on growth [10], and other dynamic models.

Finally, it would be interesting to understand what happens in the case where the
agent invests in technology, or in infrastructure in order to diminish the time for
consumption, (for example the use of machines may reduce the washing time, or
the Internet helps us to shop online), and frees people for other activities. For us,
this problem, though interesting, represents a challenge and should be subject of
a future research.

5The proof for this statement is given in the Appendix.
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5 Appendix

5.1 Proof of Lemma 3.1

Consider a sequence {(c∗t , k∗t+1, l
∗
t )}∞t=0 which is the optimal solution to problem

(P ).

We prove that ac∗t + l∗t = L for any t. Assume the contrary, for some t we have
ac∗t + l∗t < L. Then there exists εc, εl > 0 such that

a(c∗t + εc) + (l∗t + εl) ≤ L,

(c∗t + εc) + k∗t+1 − (1− δ)k∗t ≤ F (k∗t , l
∗
t + εl).

This implies u(c∗t + εc) > u(c∗t ) and we obtain a feasible sequence which provides
a higher utility level: a contradiction.

We prove the existence of some t ≥ 0 such that l∗t > 0. Indeed, assume the
contrary, l∗t = 0 for all t ≥ 0. This implies c∗t = L

a
and F (k∗t , l

∗
t ) = 0 for any t. We

have

k∗t+1 ≤ (1− δ)k∗t −
L

a

< k∗t .

Thus, the sequence {k∗t }∞t=0 is decreasing and converges to some k∗ satisfying
k∗ ≤ (1− δ)k∗ − L

a
: a contradiction.

Now, we prove that if l∗t > 0, then

k∗t+1 = F (k∗t , l
∗
t ) + (1− δ)k∗t +

l∗t − L
a

.

Assume the contrary, for some T , l∗T > 0 and

k∗T+1 < F (k∗T , l
∗
T ) + (1− δ)k∗T +

l∗T − L
a

.

Take some ε > 0 small enough such that 0 < ε < l∗T and

k∗T+1 ≤ F (k∗T , l
∗
T − ε) + (1− δ)k∗T +

l∗T − ε− L
a

.

Define the sequence {(ĉt, l̂t, k̂t)}∞t=0 as follows:

ĉt = c∗t for any t 6= T,

l̂t = l∗t for any t 6= T,

ĉT = c∗T +
ε

a
,

l̂T = l∗T − ε,
k̂t = k∗t for any t.
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We verify easily that the sequence {(ĉt, l̂t, k̂t)}∞t=0 is feasible. Moreover,
∞∑
t=0

βtu(ĉt)−
∞∑
t=0

βtu(c∗t ) = βTu(ĉT )− βTu(c∗T ) > 0,

a contradiction.

Now, we prove that l∗t > 0 for any t ≥ 0.
Suppose the contrary. Without loss of generality, we can suppose that l∗0 = 0 and
l∗1 > 0. We have successively

c∗0 =
L

a
, (5.1)

L

a
+ k∗1 ≤ F (k0, 0) + (1− δ)k0 ≡ G(k0, 0), (5.2)

c∗1 + k∗1 = F (k∗1, l
∗
1) + (1− δ)k∗1 ≡ G(k∗1, l

∗
1), (5.3)

c∗1 =
L− l∗1
a

.

With some ε > 0, define k1, c0, c1, l1 as follows:

c0 + k1 = F (k0, ε) + (1− δ)k0 ≡ G(k0, ε), (5.4)

c0 =
L− ε
a

, (5.5)

c1 + k∗2 = F (k1, l1) + (1− δ)k1 ≡ G(k1, l1), (5.6)

ac1 + l1 = L. (5.7)

(5.6) and (5.7) imply

c1 + k∗2 = G(k1, L− ac1). (5.8)

Combining (5.8) and (5.3), one gets

c1 − c∗1 = G(k1, L− ac1)−G(k∗1, L− ac∗1)),

≥ Gk(k1, L− ac1)(k1 − k∗1)− aGl(k1, L− ac1)(c1 − c∗1). (5.9)

This implies

(1 + aGl(k1, L− ac1)) (c1 − c∗1) ≥ Gk(k1, L− ac1)(k1 − k∗1) (5.10)

(5.4) and (5.5) yield

k1 = G(k0, ε)−
L0 − ε
a

. (5.11)

Combine with (5.2), we obtain

k1 − k∗1 ≥ Gl(k0, ε)ε+
ε

a
. (5.12)
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Let ∆ = u(c0) + βu(c1)− u(c∗0)− βu(c∗1). We have

∆ ≥ u′(c0)(c0 − c∗0) + βu′(c1)(c1 − c∗1).

Using (5.1), (5.5),(5.10) and (5.12), it comes

∆ ≥ u′(c0)
(
− ε
a

)
+ βu′(c1)

Gk(k1, L− ac1)

1 + aGl(k1, L− ac1

[
Gl(k0, ε)ε+

ε

a

]
,

∆

ε
≥ −u

′(c0)

a
+ βu′(c1)

Gk(k1, L− ac1)

1 + aGl(k1, L− ac1)

[
Gl(k0, ε) +

1

a

]
.

Let ε→ 0. Then

u′(c0)→ u′(c∗0) <∞,
u′(c0)→ u′(c∗0) <∞,
u′(c1)→ u′(c∗1) > 0,

Gk(k1, L− ac1)→ Gk(k
∗
1, l
∗
1) > 0,

Gl(k1, L− ac1)→ Gl(k
∗
1, l
∗
1) ∈ (0,∞),

Gl(k0, ε)→ Gl(k0, 0) =∞.

Thus ∆
ε
converges to infinity when ε converges to 0. This implies implying ∆ > 0

when ε is small enough, a contradiction.

�

5.2 Proof of Lemma 3.2

i) Consider k, y > 0 such that there exist c ≥ 0, l ≥ 0 satisfying

c+ y < F (k, l) + (1− δ)k,
ac+ l ≤ L.

For any ε > 0 small enough, we have,

c+ (y + ε) < F (k, l) + (1− δ)k,
c+ (y − ε) < F (k, l) + (1− δ)k,
ac+ l ≤ L.

that means y ∈ intΓ(k).
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Now, consider y ∈ int(Γ(k)). Then there exists ε > 0 such that the interval
(y − ε, y + ε) ⊂ Γ(k). For some c ≥ 0, l ≥ 0

c+ y + ε ≤ F (k, l) + (1− δ)k,
ac+ l ≤ L.

Therefore

c+ y < F (k, l) + (1− δ)k,
ac+ l ≤ L.

ii) Consider (k, y) ∈ int(Γ). Then for any ε > 0 small enough, (k, y + ε), (k, y −
ε), (k − ε, y) ∈ Γ(k). This implies y > 0 and k > 0.

There exist c ≥ 0, l ≥ 0 such that

c+ (y + ε) ≤ F (k, l) + (1− δ)k,
ac+ l ≤ L.

Hence, c+ y < F (k, l) + (1− δ)k, ac+ l ≤ L.

Now, consider (k, y) such that k, y > 0 and there exist c ≥ 0, l ≥ 0 satisfying

c+ y < F (k, l) + (1− δk),

ac+ l ≤ L.

There exists ε > 0 such that for any y′ ∈ (y − ε, y + ε), any k′ ∈ (k − ε, k + ε) we
have

c+ y′ < F (k′, l) + (1− δ)k′, ac+ l ≤ L.

�

5.3 Proof of Lemma 3.4

1) Consider the Lagrangian

L = u(c) + λ[F (k, l) + (1− δ)k − c− y] + µ(L− ac− l) + ξ1c+ ξ2l.

Consider the Kuhn-Tucker first-order conditions:

u′(c∗)− λ− aµ+ ξ1 = 0,

λF2(k, l∗)− µ+ ξ2 = 0,

λ ≥ 0, λ[F (k, l∗) + (1− δ)k − c∗ − y] = 0,

µ ≥ 0, µ[L− ac∗ − l] = 0,

ξ1 ≥ 0, ξ1c
∗ = 0,

ξ2 ≥ 0, ξ2l
∗ = 0.
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The Inada condition of the utility function implies that c∗ > 0. Hence, ξ1 = 0.
The Inada condition on labour’s marginal productivity implies that l∗ > 0, hence
ξ2 = 0. The strict increasingness of F implies that λ > 0 and µ > 0. This implies
0 < l∗ < L. The uniqueness of the solution comes from the strict concavity of u.

2) We have

u′(c∗)− λ− aµ = 0, (5.13)

λF2(k, l∗)− µ = 0, (5.14)

c∗ + y = F (k, l∗) + (1− δ)k,
ac∗ + l∗ = L.

Differentiating the above equations with respect to k and y gives:

u′′dc∗ − dλ− adµ = 0,

F2dλ+ λ[F12dk + F22dl
∗]− dµ = 0,

dc∗ + dy − [F1dk + F2dl
∗]− (1− δ)dk = 0,

adc∗ + dl∗ = 0.

Writing these equations in a matrix form we get:
u′′ 0 −1 −a
0 λF22 F2 −1

1 −F2 0 0

a 1 0 0


︸ ︷︷ ︸

A


dc∗

dl∗

dλ

dµ

 =


0 0

−λF12 0

F1 + 1− δ −1

0 0


(
dk

dy

)
.

The determinant of matrix A is:

det(A) = (1 + aF2)2.

Since the production function F is strictly increasing then det(A) > 0 and A is
invertible. It implies that c∗(k, y), l∗(k, y), λ(k, y), µ(k, y) are continuously differ-
entiable in a neighborhood of (k, y).

By the Envelope Theorem we have:
∂V (k, y)

∂k
=
∂L

∂k
(c∗, l∗, λ, µ) = λ[F1(k, l∗) + 1− δ],

∂V (k, y)

∂y
=
∂L

∂y
(c∗, l∗, λ, µ) = −λ.

and v′(k) = V1(k, ϕ(k)) = λ[F1(k, l∗) + 1− δ]

From (5.13) and (5.14) we have

λ =
u′(c∗)

1 + aF2(k, l∗)
; µ =

u′(c∗)F2(k, l∗)

1 + aF2(k, l∗)
.

3) This is a direct consequence of (i) and (ii).
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�

5.4 Proof of Lemma 3.5

In the following, λ denotes the same notation as in the proof of Lemma 3.4. Using
the same arguments as in the proof of Lemma 3.4, by tedious computations, we
get:

∂λ

∂k
=

1

(1 + aF2)2

[
−aλ(1 + aF2)F12 + (a2λF22 + u′′)(F1 + 1− δ)

]
.

Consider the expression in the parentheses. Observe that the concavity of F and
strict concavity of u imply (a2λF22 + u′′) < 0. Then the second term is strictly
negative. By Assumption A2, the first term is strictly negative. Hence

∂λ

∂k
< 0.

It follows that

∂2V (k, y)

∂y∂k
= −∂λ

∂k
> 0.

The optimal policy ϕ is therefore increasing (see Amir [1]). Obviously, if {k∗t }∞t=0

is the optimal path, then for any t, k∗t+1 = ϕ(k∗t ).

�

5.5 Proof of Proposition 3.1

i) We have that for all t ≥ 0,

k∗t > 0, c∗t > 0, 0 < l∗t < L,

c∗t + k∗t+1 = F (k∗t , l
∗
t ) + (1− δ)k∗t ,

ac∗t + l∗t = L.

Consider 0 < c < c∗t . Then

c+ k∗t+1 < F (k∗t , l
∗
t ) + (1− δ)k∗t ,

ac+ l∗t < L.

From Lemma 3.2, (k∗t , k
∗
t+1) ∈ int graph Γ.

ii) Since (k∗t , k
∗
t+1) ∈ int(graphΓ), By Lemma 3.4, the indirect utility function is

differentiable at (k∗t , k
∗
t+1). Therefore the Euler equation holds.

�
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5.6 Proof of Proposition 3.2

Fix k0 > 0. Assume that the optimal path {k∗t }∞t=0 converges to zero. By the
monotonicity of the optimal capitals path, this is possible only if this path is
strictly decreasing.

First, we prove that for T large enough, we obtain an interior solution. This allows
us to work with Euler equations.

From the Inada condition, for any k small enough we have

F1(k, L) + (1− δ) > 1

β
.

This implies that for k small enough

F (k, L) + (1− δ)k > k.

Hence, for T large enough, for any t ≥ T we have

0 < k∗t+1 < F (k∗t , L) + (1− δ)k∗t ,

which implies that k∗t+1 ∈ intΓ(k∗t ) for any t ≥ T . Let {c∗t}∞t=0 and {l∗t }∞t=0 be the
corresponding consumption and labour sequences. Recall that from Lemma 3.1,

k∗t+1 = F (k∗t , L) + (1− δ)k∗t +
l∗t − L
a

.

Since {k∗t }∞t=0 converges to zero, this implies {l∗t }∞t=0 converges to L.

Denote by V1 and V2 respectively the partial derivatives corresponding to the first
and the second arguments. Let λt = −V2(k∗t , k

∗
t+1). By Lemma 3.4, we have

V1(k∗t , k
∗
t+1) = λt (F1(k∗t , l

∗
t ) + (1− δ)) .

Consider the Euler equations for t ≥ T :

V2(k∗t , k
∗
t+1) + βV1(k∗t+1, k

∗
t+2) = 0,

which is equivalent to

−λt + βλt+1[F1(k∗t+1, l
∗
t+1) + (1− δ)] = 0.

Hence, for any t ≥ T ,

βF1(k∗t+1, l
∗
t+1) + (1− δ) =

λt
λt+1

.

By the Inada condition, for t large enough we have

λt > λt+1.
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On the other hand, by the envelope theorem, for t large enough, we have

v′(k∗t+1) = V1(k∗t+1, k
∗
t+2)

= − 1

β
V2(k∗t , k

∗
t+1)

=
λt
β
.

Using the same arguments, we obtain

v′(k∗t+2) =
λt+1

β
.

Hence v′(k∗t+1) > v′(k∗t+2). By the concavity of the value function v, this implies
k∗t+1 < k∗t+2: a contradiction. The optimal path {k∗t }∞t=0 does not converge to zero.

�

5.7 Proof of Proposition 3.4

First, we prove that for any l > 0,

lim
k→∞

F1(k, l) = 0.

Indeed, by the concavity of F , for k ≥ 1, we have

1

k
F (k, l) +

(
1− 1

k

)
F (0, 0) ≤ F

(
1

k
× k +

(
1− 1

k

)
× 0,

1

k
× l +

(
1− 1

k

)
× 0

)
= F

(
1,
l

k

)
.

This implies

lim
k→∞

F (k, l)

k
≤ lim

k→∞
F

(
1,
l

k

)
= F (1, 0)

= 0.

By the concavity of F , for any k ≥ 0, we have k × F1(k, l) ≤ F (k, l). Hence

lim
k→∞

F1(k, l) = 0.

Let c∗ and l∗ be the solutions that solve (3.1) to (3.4). We prove the following
claim. The value of labour l∗ is the unique solution to

L− l
a

+ k = F (k, l) + (1− δ)k. (5.15)
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It is easy to verify that there exists a solution l̃ to equation (5.15). Let

c̃ =
L− l̃
a

.

Assume that l∗ > l̃. Since ac∗ + l∗ = ac̃+ l̃, we have c∗ < c̃. Hence, u(c̃) > u(c∗),
a contradiction.

Consider the case l∗ < l̃. We have c∗ > c̃. Moreover,

c∗ = F (k, l∗)− δk
< F (k, l̃)− δk
= c̃,

a contradiction.

Hence, l∗ = l̃. The claim is proven.

Now, we prove that if a steady state exists, it is unique. For k > 0, let l̃(k) be the
solution to

F1(k, l) =
1

β
− 1 + δ.

By the Implicit theorem, the function l̃ is differentiable and

l̃′(k) = −F11(k, l̃(k))

F12(k, l̃(k))
.

Since F11(k, l̃(k)) ≤ 0 and F12(k, l̃(k)) ≥ 0, the function l̃ is increasing with respect
to k.

By the Claim, the capital stock k > 0 is a steady state if and only if it is a solution
to

L− l̃(k)

a
+ k = F (k, l̃(k)) + (1− δ)k,

that is equivalent to

H(k) = 0,

where

H(k) = F (k, l̃(k)) + (1− δ)k − L− l̃(k)

a
− k.

We have

H ′(k) = F1(k, l̃(k)) + F2(k, l̃(k))l̃′(k)− δ + l̃′(k)

=
1

β
− 1 + δ + F2(k, l̃(k))l̃′(k)− δ + l̃′(k)

=
1

β
− 1 + F2(k, l̃(k))l̃′(k) + l̃′(k)

> 0,
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since 1
β
− 1, F2(k, l̃(k)), l̃′(k) are positive.

Hence, the function H is strictly increasing. This implies that if a steady state
exists, it is unique.

To complete the proof, we must prove that a steady states exists, and any non
trivial optimal capitals path converges monotonically to this value.

Fix some k0 > 0, let {k∗t }∞t=0 be the optimal capitals path beginning from k0,
{c∗t}∞t=0 and {l∗t }∞t=0 be the corresponding sequences of consumption and labour.

We prove that {k∗t }∞t=0 is bounded from above. Assume the contrary, this implies
that this sequence is strictly increasing and converges to infinity.

By Lemma 3.4, for any t ≥ 0, we have

u′(c∗t )

1 + aF2(k∗t , l
∗
t )

= −V2(k∗t , k
∗
t+1)

= βV1(k∗t+1, k
∗
t+2)

= βv′(k∗t+1)

< βv′(k∗t ),

since v′ is strictly decreasing with respect to k.

We also have

v′(k∗t ) = V1(k∗t , k
∗
t+1)

=
u′(c∗t )

1 + aF2(k∗t , l
∗
t )

(F1(k∗t , l
∗
t ) + 1− δ) .

This implies

F1(k∗t , l
∗
t ) + 1− δ > 1

β
,

for any t ≥ 0.

Let t converges to infinity,

lim
t→∞

F1(k∗t , L) ≥ lim
t→∞

F1(k∗t , l
∗
t )

≥ 1

β
− 1 + δ

> 0,

a contradiction with the property that limk→∞ F1(k, L) = 0.

Hence, for any k0 > 0, the optimal path beginning from k0 is bounded from
above. Moreover, by Proposition 3.2, this path does not converge to zero. The
monotonicity implies that {k∗t }∞t=0 converges to some ks that is strictly positive.
In other words a steady states exists.
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The uniqueness of the steady state ensures that for 0 < k0 < ks, the optimal
capitals path beginning from k0 is increasing and converges to ks. Otherwise we
obtain either the existence of another non trivial steady state, or the extinction
of the economy. With a similar argument, for k0 > ks, the optimal capitals path
starting from k0 is decreasing and converges to ks.
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