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Abstract. The modified Constitutive Relation Error (mCRE) is a model updating functional
whose physics-based construction avoids the explicit dependency into a priori user’s expertise.
Its robustness to measurement noise and remarkable convexity properties make it a credible
alternative to classical model updating methods. In recent works, the authors developed an au-
tomated mCRE-based model updating framework for the offline update of finite element models
of structures submitted to ground motion inputs, before deriving it to data assimilation with the
development of the Modified Dual Kalman Filter (MDKF). In the latter, we addressed sequen-
tial data assimilation by integrating the mCRE as new observer within a dual Kalman filter.
Contrary to classical Kalman filters, the comparison between measurements and model pre-
dictions is achieved through the mCRE functional itself, in which the data-to-model distance is
enriched with a model error term with strong mechanical content (the CRE).

In this contribution, we focus on MDKF numerical improvements to achieve real-time data
assimilation for structural health monitoring applications where an extensive number of param-
eters may need to be tracked with a few amount of data, which makes the identification process
ill-posed and prone to instabilities. Using (i) parallelized mCRE computation and sigma-points
propagation, (ii) the Scaled Spherical Simplex Kalman filter structure and (iii) a CRE-based
clustering pre-step, CPU requirements are reduced by partial state update without loss of ac-
curacy. The MDKF methodology and the novel key ingredients for efficient (near-optimal) data
assimilation are illustrated throughout (simulated) earthquake engineering examples of grow-
ing complexity.
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1 Introduction
1.1 Earthquake engineering context

Earthquake engineering problems are no exception to the need of using experimental data
to build, validate and operate robust numerical models, in particular when it comes to mon-
itor and predict the structural state of civil engineering structures [5]. Such a data-to-model
interaction is commonly referred to as digital twin [25] or Dynamic Data-Driven Application
System (DDDAS) [8] as the updated model somehow impacts the response or the behavior of
experimental device. The problem that motivates the present contribution is the control of hy-
draulic actuators of the CEA/TAMARIS shaking-tables when performing experiments on dam-
aging specimens. If the control of electro-hydraulic shaking-tables for seismic replication is a
well-identified issue [23], most of the proposed strategies do not consider the fact that sudden
damage occurence in the tested specimen may lead to unstable experiments. Actually, because
the actuators, the shaking-table and the tested specimen are physically strongly coupled, the
controllability of the full device particularly depends on the modal signature of the specimen.
When damage propagates, the modal signature suddenly changes, which may turn the control
strategy inappropriate, the test unstable, and put the safety of the facility at risk. To avoid such
situations, an alternative lies in the above-mentioned DDDAS paradigm in which a close dialog
between the experimental device and a digital twin is performed in real-time (see Fig. 1).

Reference input
(acceleration)

Controller Actuators & shaking-table Damaging specimen |
of servovalves inputs Effective ground motion Equipped with sensors 1

Measurements

Adaptive control Structural Monitoring
law design Damage detection, response
prediction

Identification/Update

mCRE €& MDKF K‘

Figure 1: DDDAS framework for enhanced monitoring and control of shaking-table
experiments.

1.2 Data assimilation and Kalman filtering

The feasibility of Dynamic Data Driven Application Systems (DDDAS) lies (among oth-
ers) in efficient data assimilation schemes able to update model predictions from acquired data.
In particular, such algorithms must be able to operate in real-time whereas the computational
burden carried by recursive calls to model predictions can be prohibitive. With the extended
availability of data and the difficulties of validating complex nonlinear full order models, last
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decades have seen the emergence of hybrid approaches, often described as data-driven tech-
niques. They systematically involve a reduced order model and the correction of model pre-
dictions (due to mismodeling or unanticipated phenomena) by a data-based enrichment step.
Data assimilation techniques then differ according to the (reduced order) model structure and
the way data are integrated and exploited to update model predictions.

For the sake of conciseness, we will mostly focus on sequential data assimilation by Kalman
filtering (KF) in this contribution. Initially presented as an optimal linear unbiased quadratic
estimator for linear dynamic systems under Gaussian assumptions [15], the KF algorithm is
structured as a recursive prediction-correction scheme, where model predictions are sequen-
tially corrected based on newly assimilated measurements. The KF has been massively derived
and extended to process nonlinear systems. Among them, the Extended Kalman Filter (EKF)
is based on the principle of operator linearization [14], whereas the Unscented Kalman Filter
(UKF) [21] and the Scaled Spherical Simplex Filter (S3F) [22] are alternative algorithms based
on statistical regularization: these techniques are based on the fact that sampling points (called
o-points) transformed by nonlinear operators allow for a better approximation of state statistics
when nonlinearities are hardly linearizable. The Ensemble Kalman Filter (EnKF) [13] and the
Farticle Filter (PF) [6] use the same principle with much more propagated sampling-points as
they aim to reconstruct the full probability density of the estimated state.

In addition, parameter estimation techniques using the Dual or Joint extensions of nonlinear
KFs have also been developed to allow the simultaneous identification of mechanical state and
structural parameters.

Of course, all the performance of these different KF have been extensively compared [2, 17,
20], highlighting that UKF is often more efficient than EnKF and PF in terms of CPU time, and
is more accurate than EKF for an equivalent computational cost. Finally, it is worth noticing
that the recent S3F outperforms UKF: S3F can be used in all applications where UKF can be
involved, achieving the exact same numerical performance in terms of accuracy. However, by
sampling n+2 sigma-points instead of 2n+1 (n being the state space dimension), S3F preserves
all the important features of UKF with the minimal amount of sampling points to propagate and
significant CPU time savings (see Fig. 2).

Figure 2: Sigma-points locations around the current mean state estimate (n = 3) for UKF
(spread over a hypersphere - left) and S3F (corners of a simplex - right) - from [22].

1.3 The modified Constitutive Relation Error

Initially proposed for model updating in dynamics [7, 9] by Ladeveze and co-workers, an
alternative to standard deterministic/stochastic model updating techniques consists in using the
concept of modified Constitutive Relation Error (nNCRE). The mCRE functional is defined as a
quadratic model-to-measurements distance enriched with a term based on the concept of Con-
stitutive Relation Error (CRE) [16]. The idea behind this enrichment is to improve the ellipticity
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properties of the functional by adding a term which has a strong mechanical content and relaxes
the most unreliable parts of the model description. This energy-based residual offers interesting
advantages. First, it improves local convexity properties compared to a classical least-square
functional [1]. Besides, the CRE part of the residual, computed over the whole structure, allows
to select the most erroneous areas in order to restrain the updating process to a few parame-
ters [11]. The numerous applications of mCRE for model updating during the last two decades
have proven its robustness and efficiency throughout a wide range of applications. Recently, a
mCRE-based model updating algorithm has been fully automated in low-frequency dynamics,
with enhanced robustness with respect to measurement noise and a dedicated formulation when
dealing with random inputs [10, 11].

Although dedicated to model updating, this functional has been combined to model order
reduction for real-time data assimilation, leading to the Modified Kalman Filter in quasi-statics
[18, 19] and to the Modified Dual Kalman Filter (MDKF) in low-frequency dynamics [12].

1.4 Main contributions

In this paper, following the work initiated in [12], we will essentially focus on the Modified
Dual Kalman Filter algorithm and enhance its numerical performance. First, we compare and
assess several Kalman filters that integrate the mCRE as observation operator in order to exhibit
which KF structure is most appropriate for real-time data assimilation, with effort paid to opti-
mize the numerical performance of the MDKEF. Despite a well-chosen algorithmic structure, it
cannot still be enough to reach real-time constraints when the parameter space under study is
of high dimension. It is particularly the case when it comes to detect damage from linear FE
models [11]. A solution may lie in using at best the information stored in the Constitutive Re-
lation Error term. We thus propose to add a clustering step in the recursive KF-loop to generate
and propagate an optimal number of o-points at each data assimilation step (in the CRE sense),
with corrections focused on parameters that are identified as erroneous.

The remainder of the paper is structured as follows: Section 2 recalls the fundamentals of
mCRE and MDKEF for FE stiffness model updating in low-frequency dynamics. Improvements
for enhanced numerical performance are presented in Section 3 before being compared on an
academic earthquake-engineering-inspired example in Section 4. Conclusions and prospects
are finally drawn in Section 5.

2 The Modified Dual Kalman Filter for FE stiffness updating in low-frequency dynamics

This section intends to briefly recall the fundamentals of the mCRE-based model updating
framework for low-frequency dynamics, starting from a linear finite element (FE) problem writ-
ten in the frequency domain. The interested reader is respectively referred to [9, 10] and [12]
for additional information about mCRE and MDKF.

2.1 FE framework, measurements and stiffness parametrization

Let us consider the general case of an elastic structure €2 spatially discretized in £ (non-
overlapping) finite elements such that Q = UZ_| ), subjected to a given dynamical excitation
F'. We denote by K, D, M the stiffness, damping and mass FE matrices, respectively. F,, and
U, are the frequency counterparts of nodal loading conditions and displacement field. With
these notations, the dynamical equilibrium written in the frequency domain at a given angular
frequency w reads:

[~w?M +iwD + K| U, = F, (1)
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In addition to the dynamic equilibrium, a set of sensors is used to measure the magnitude
of certain kinematic quantities (displacement, velocity and/or accelerations). In the frequency
domain, assuming measurements are perfect, such information can be written without loss of
generality as:

v, =Y, (2)

where Y, refers to the frequency counterpart of measurements at angular frequency w and 11
denotes a projection matrix that allows to extract the components of U, that are measured.

As one can interpret damage as local stiffness loss, a convenient manner to parametrize a
linear FE problem for damage detection is to parametrize the stiffness matrix. Doing so, in
this contribution, the ny parameters to update § € © C R™ only affect the stiffness matrix K.
More precisely, the stiffness FE matrix is decomposed in 1y non-overlapping subdomains and
parametrized as follows:

K Z

Note that the subdomains can perfectly match with finite elements or gather some of them to
reduce the number ny of parameters to identify.

KOZ with K (6y) = ZKM (3)

2.2 The modified CRE: a physics-regularized approach for inverse problems

Originally intended to perform model validation [16], the key idea for the construction of
the CRE residual lies into the distinction between reliable and unreliable information on the
reference mechanical problem. The mCRE concept extends this distinction to the experimental
data as well. Indeed, the redundant information gathered in equations (1) and (2) means all
equations cannot be exactly verified. Some of them must be considered less reliable, and thus
relaxed as they will be only verified at best by minimizing the so-called mCRE functional.

At a given angular frequency w, the mCRE for stiffness identification is defined as:

€2 (50,0 V) 2 (2(5,.0) + gHHU - Y.l5

4)
1 (
with ¢ (50, 0) = 5 (U — V) K(O)(Us — Vo) = |0~ Vol and s, = (UL, Vo)

* The CRE (?(s,, §) measures the closeness of the mechanical displacement fields (U, V,,)
in the sense of the stiffness matrix. U, verifies the reliable kinematic equations of the
problem (boundary conditions, closeness to measurements as involved in the data-to-
model distance) and V, is constrained to satisfy the dynamic equilibrium of the problem.
In practice, s, is obtained by solving an optimization problem for all w (for a given
parameter set 0):

s.(0; Y,) = argmin [e] (s, 0; Y.,)] s.t. [~w’M +iwD)U, + K(0)V, =F, (5)

which is equivalent to solve the following matrix system:

( 4 (K (6) + iwD — w?M]" TG
—KH(9) [K(0) + iwD — w?M]
AX =bwith ¢ x :{ U, -V, U, }T (6)
b= { &nfey, E, )
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* The data-to-model distance is a Hermitian norm of the gap between model predictions
U,, with measurements Y,,. G is a symmetric positive-definite matrix guaranteeing that
|0l ¢ is homogeneous to (> and equivalent in level. The choice of G is not critical:
herein, G is taken proportional to the identity matrix and weighted by the strain energy
stored in the first (involved) eigenmodes. The tuning factor @« € R* enables one to
give more or less confidence to the measurements; large values can be specified when
measurements are considered reliable whereas close-to-zero values are better suited to
corrupted or noisy recordings. The choice of « is therefore crucial for providing relevant
parameter estimates. Its optimal calibration has been deeply studied in [10, 11], with
attention paid to its dependency into the measurement noise level if known.

As the model updating procedure is conducted on a given frequency bandwidth D, which
contains the essential information about the response of the structure, the mCRE functional 7
to be minimized is thus obtained by direct integration over D,;:

J(6,Y) :/ z(w)e (s(0, Y,,),0, Y, dw (7

where z(w) is a frequency weighting function such that | p, #(w) dw = 1 allowing to modulate
the importance of specific frequencies of D,,. Indeed, a frequency weighting function derived
from the experimental frequency content enables to automatically favor the vicinity of the ex-
perimental eigenfrequencies; this enhances the robustness of the functional to measurement
noise in low-frequency dynamics [10].

2.3 The MDKEF: integration of the mCRE as a nonlinear observer

As previously mentioned in the introduction, nonlinear KFs are relevant tools to update on-
the-fly FE models of dynamical (and evolutive) systems. They permit to track and identify
accurately structural parameters from sparse and noisy measurements. The starting point of the
KF theory is the definition of a dynamical system under state-space discrete form. Considering
the evolution with time of structural parameters alongside the physical state of the system, the
full dynamical system reads:

Or1 = O+ wo
Ty = Mp(r, Or, ex) + Wy (8)
Yer1 = Hip1(Trt1, €ht1) + Vi

In terms of notations, x; € R" is the state vector at time point ;. ¥ is the vector of obser-
vations. w, ~ N(0,Q,) and v ~ N (0, R) are zero-mean Gaussian white-noise accounting
for additive model and measurement errors respectively. The dynamical system is based on
two (possibly nonlinear) operators, namely the model operator M and the observation oper-
ator H. The latter classically extracts partial information regarding the predicted state z;, or
inputs e;. Without any a priori knowledge on parameters 05, € R", one can formulate a simple
stationary evolution law. As it remains a restrictive hypothesis (e.g. damage is not), the sta-
tionarity assumption is then relaxed with the addition of a last zero-mean Gaussian white-noise
wp . ~ N(0,Qp) so as to model uncertainty on parameters and enable their evolution during
the data assimilation process.

Although the common definition of a projection matrix as observer seems rather intuitive
since sensors directly collect measurements to be compared to model predictions, the choice

6
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of the observation metric (and thus the way measurements are processed) can be reconsidered
for enhanced robustness with respect to measurement noise. From a dual KF viewpoint, one
can choose to replace the dual observation operator (classically being a state prediction Kalman
filter composed of the last two equations of (8)) with another functional able to quantify the
closeness between model predictions and assimilated measurements.

The Modified Dual Kalman Filter (MDKF) derives the mCRE as new observation operator in
a dual Kalman filter framework [12]. Practically, in a similar manner as one would compute op-
timal parameters minimizing the functional 7 from (7), the observation equation of the MDKF
will reinvest the mCRE gradient V7 in order to guarantee the stationarity of the cost function.
Please note that no additional numerical error is made with the call to the mCRE gradient as its
analytical expression can be explicitly derived from the constrained minimization problem (6)
(see e.g. [4] for complementary details). The MDKF dynamical system thus reads:

Ori1 = O+ wop )
0 = VoJ Ok, Vi) + v

This new framework thus differs from classical KFs as measurements are indirectly compared

with model predictions through the mCRE functional. Parameter estimates are then sought as

minimizers of the mCRE (according to current measurements). The doubt put on the mCRE

gradient (with the observation noise v) then quantifies the authorized proximity of estimates to

the optimal set of parameters that minimizes the mCRE at each time step.

2.3.1 Algorithmic subtleties about MDKF

The use of MDKEF raises several questions, in particular regarding its robustness with re-
spect to measurement noise, the calibration of internal parameters and the achievable numerical
performance.

It is worth noticing that the coupling between mCRE and dual Kalman filtering avoids the
calibration of process and measurement covariance matrices for state estimation. However,
mCRE internal parameters should be well-tuned if one intends to obtain relevant data assimila-
tion results. It can be realistically assumed that the mCRE functional can be calibrated using the
rules given in [11] after a first training stage involving a low-level non-damaging random input
before performing data assimilation. Besides, the selection of filtering parameters, i.e. noise
covariance matrices, is made easier by several user-friendly guidelines that have been proposed
and validated to calibrate ()y and R in [12].

If complete explanations are available in [12], let us finally recall that MDKF implies time-
frequency domains nested interaction when mixing sequential data assimilation (in time) and
mCRE (written in the frequency domain). Compared to classical KF approaches, updating
parameters for all new data points does not seem relevant as the observer operates on data in
the frequency domain. A sliding window technique is thus proposed for handling the time-
frequency nested interaction. The overlapping rate between two consecutive windows defines
the amount of new assimilated data at each time step. Note that it also fully conditions the real-
time prospects of the MDKF algorithm to the extent that one considers data is assimilated in
real-time if the necessary CPU time per iteration is lower than the time between two consecutive
data assimilation time steps.
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3 MDKF improvements for real-time data assimilation

To prove the relevance of MDKF to perform data assimilation efficiently, the last point to
address concerns the numerical performance, in particular when the parameter set ¢ and/or the
number of degrees-of-freedom of the FE problem become important. This section is dedicated
to present several improvements that allowed to enhance numerical performance of MDKF.

3.1 Efficient mCRE computation

The most consuming operations of the MDKF algorithm are the frequency domain data
preprocessing and the computation of the mCRE for each set of o-points and frequency of D,,.
Even if the call to Fast Fourier Transforms is unavoidable, several actions can be made to reduce
the computational burden due to mCRE computations:

* The computation of the mCRE value for all o-points per iteration can be drastically short-
ened using reduced basis to decrease the size of the system (6) [9, 10].

* The gradient of the mCRE functional [/ with respect to parameters can be expressed
analytically and obtained after a low-cost post-processing operation once system (6) is
solved. It can be shown that:

d 2

|
Vk € [1;ng], d—f): = & [UF Kokl + UT Ko = VI KoV, VI KoVl (10)

with U, = R(U,,), U; = S(U,), V, = R(V,,), and V; = (V).

* Parallelization techniques can be used to propagate o-points so as to overcome the com-
putational burden of sampling-based KF, whose CPU time significantly increases with the
dimension of the parameter vector to update. In particular, the solution of system (6) for
all frequencies in D,, can be parallelized easily using new in-core page-wise left matrix
divide function pagemldivide (available since MATLAB® 2022a release).

3.2 Nonlinear Kalman filter structure

The system (9) is not constrained to be used in an UKF framework as originally presented in
[12]. As mentioned earlier, the S3F is an alternative sigma-point Kalman Filter that has proved
to have the same numerical performance than UKF with almost 50% CPU time reduction. In-
deed, the latter samples only (ng + 2) o-points whereas UKF needs (2n¢ + 1). Fundamentally,
the S3F and UKF algorithms do only differ in the way o-points (and associated weights) are
declared. The algorithmic modifications from UKF to S3F are therefore limited to a few code
lines.

Besides, UKF was preferred to EKF in the initial MDKEF due to its better accuracy in higher
order statistical moments. However, from the computational viewpoint, EKF avoids the (costly)
propagation of o-points, which implies it should be quicker without being much inaccurate as
the analytical expression of the mCRE gradient is available.

MDKEF based on dual EKF, dual UKF and dual S3F structures will be compared in terms of
accuracy and CPU time in the next section of this contribution.

3.3 CRE-based clustering for partial state-update

The CPU performance of sampling-based KFs remains directly proportional to ny. There-
fore, the processing of data in real-time may not be possible in cases where ny > 1, which
can be the case in realistic monitoring applications on large-scale structures. A possible way

8
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to improve numerical performance without loss of accuracy is to use the full potential of the
mCRE within the MDKF. The CRE term provides a direct insight regarding the validity of the
model itself, making it a relevant tool for identifying erroneous parts of the model as all finite
element contributions to CRE can be computed independently. If stiffness parameters affect
group of elements (i.e. subdomains of the FE model), the CRE per subdomain S; then reads:

1
Vi€ [1;ng], Cﬁ,i<5w79) = Z §HUW o V“’Hi(e('?) (in

eCS;

Thus, if the CRE can be a convenient local model indicator, one can imagine exploiting it so
that only most erroneous parts of the model should be corrected. To do so in an automated way,
a CRE-based clustering technique can be used. Briefly, clustering techniques allow to partition
a space in subsets (the so-called clusters) in the sense of a given distance: within a cluster,
the distance between objects of a cluster remains small, whereas a distance between objects of
different clusters is larger (see [24] for further details). Among the wide range of clustering
techniques, a fuzzy k-means clustering algorithm developed in [3] is reinvested in this work.
Originally intended for separating the physical modes from the spurious modes produced by
a growing model-order identification algorithm in modal analysis, its robustness with respect
to non-convex, poorly dissociated and heterogeneous clusters makes it a relevant tool to define
parameter distributions from the CRE map. Starting from the initial model, the key idea is to
identify a cluster of most erroneous elements through the computation of the model error (CRE)
map per element which naturally emphasizes on the damaged area if the initial parameter guess
is well determined. In other words, we perform a two-cluster distinction from

X = {/ z(w)(iidw} 9 (12)
w =1

and forthcoming correcting actions can be focused on the cluster of most erroneous elements
in the CRE sense. Note that this is not a computationally expensive procedure as it is a (vec-
torizable) post-processing operation once mechanical fields solution of (6) has been obtained.
Note that in an offline model updating context, it was shown that the clustering step works as a
form of regularization (in the Tikhonov sense) of the mCRE functional. An illustration of the
CRE-based clustering potentialities to update a large number of parameters from a few amount
of acceleration data is given in Fig. 3.

As a complement, the pseudo-code of the MDKF coupled to the CRE-based clustering is
given in Alg. 1.

4 Application to stiffness parameter tracking from sparse accelerometer data
4.1 Plane frame submitted to random ground motion

In this section, we intend to validate and compare MDKEF structures (EKF, UKF, S3F) and
the benefits of the CRE-based clustering approach with a typical earthquake engineering aca-
demic example. Let us consider the plane frame structure shown in Fig. 4, whose stiffness
distribution is assumed unknown. This structure is clamped to a rigid moving support (e.g. a
shaking-table) and submitted to a 120 s random bi-axial ground motion input. The reference
stiffness field presents a defect that suddenly appears in the wall W10 while the initial guess
does not perfectly correspond to the healthy reference configuration (10% underestimation).
The FE model is made of elastic beam elements and built with the CEA FE simulation software
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Algorithm 1: Clustered Modified Dual Kalman Filter (for a sampling-based KF struc-
ture)
Initialization:
e Sliding window, data assimilation time steps {¢x }
e mCRE tuning parameters: D,,, @, z(w) and reduced basis
e Initial statistics on parameters: mean gy and covariance P§
e Noise process and measurements covariance matrices: (Qg, R

fork = 0:00do

0) CRE-based clustering

Computes the CRE map at the current estimate: Cf(gk) Vi€ [1;ng]
Identification of a restricted subset in need of correction O 5, R C [1;n4]

1) Generation of samples
Computation of o-points for the restricted parameter set g 5,

2) Prediction step
Computation of a priori mean and covariance for 0g ;.

3) Processing new data in the frequency domain

Extraction of the new data block with the sliding window: y (%)
Fast Fourier transform for mCRE analysis: Yj(w) Vw € D,

4) Correction step

Propagation of the o-points through the mCRE functional and gradient computation
Correction of predictions to compute a posteriori statistics of O

The statistics of 6 e 11 remain unchanged compared to 0 .

end

Result: Successive estimates of the parameter vector statistics (@k, Pg )

CASTEM. Following (3), the updated stiffness FE matrix is decomposed in nyg = 6 or ny = 12
non-overlapping subdomains. They follow an intuitive wall/slab decomposition (see Fig. 4).

In order to assess the robustness of the data assimilation algorithms with respect to measure-
ment noise, a white noise of known standard deviation is added to the synthetic measurements.
The noise level ¢ (in %) is then defined according to the magnitude of the input ground acceler-
ation U, such that noisy synthetic acceleration data is obtained as follows:

ooy (1) = (1) + 6 sud (Ta(t)) m(t) (13)
where 7)(t) is a random Gaussian vector of zero mean and unitary standard deviation.
4.2 Comparative study between mCRE-based Kalman filters - procedure, results and

discussion

The first objective of this study is to assess which of nonlinear KF structures (UKF, EKF,
S3F) is the most appropriate to perform stiffness parameter tracking with MDKF accurately
in real-time from discrete acceleration measurements. Various levels of noise are considered
d = {0;5;15}% to assess the robustness to measurement noise. For the sake of conciseness
and clarity, we will only present in the forthcoming figures the probability density function

10
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(a) Plane wall with damage defect to identify from sparse acceleration measurements.
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Figure 3: Regularizing effect of CRE-based clustering for stiffness identification of a
non-convex defect on a plane wall submitted to random ground motion. Acceleration noisy
measurements are processed, and CRE-based clustering allows for better parameter estimation
with 75% of unchanged parameters - from [11].
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Figure 4: Two-story plane frame problem with sensors location (yellow dots) and subdomains.

of subdomain W10, even if all parameters are updated alltogether. A Ls-norm misfit error on
parameters allows to properly assess the different KFs in terms of accuracy. It is denoted ¢y is

defined as, : )
/ (3 (1)) "
= (14)

o / 0% (t)%dt
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MDKTF framework \ Reference value

Data sampling frequency fs = 1000 Hz
Overlapping rate for MDKF windows | oy, = 95%

mCRE frequency interval D, = [1 Hz;20 Hz]
mCRE frequency sampling step Af = 0.1Hz
Amount of new data per window (1- O‘ovlp) JAf = 0.1s
Covariance on parameter state Qo = 107%I
Covariance on mCRE R = 1078

Initial covariance on parameters P§ 0.011

Table 1: Reference setting parameters of MDKE.

with 6* the reference parameter value and 0 the mean estimate provided by KFs. The key results
of this study are all stored in Tab. 2, and illustrated in Figure 5. For the reader information, they
have been obtained on a standard personal laptop (Intel i5-10310, 8Go RAM).

0 = 0% (perfect data) 0 = 5% (noisy) 6 = 15% (highly-noisy)
KF basis UKF S3F EKF | UKF S3F EKF | UKF S3F EKF

wro 0.0052  0.0052 0.0083 | 0.0054 0.0054 00111 | 0.0069 0.0070 0.0198

€wni 0.0001  0.0001  0.0001 | 0.0005 0.0005 0.0004 | 0.0017 0.0017 0.0011

€wm 0.0002  0.0002  0.0002 | 0.0004 0.0004 0.0005 | 0.0004 0.0004 0.0005

€wn 0.0001  0.0001  0.0001 | 0.0009 0.0009 0.0015 | 0.0009 0.0009 0.0015

€m0 0.0004  0.0004  0.0003 | 0.0007 0.0007 0.0006 | 0.0007 0.0007  0.0006

€m0 0.0001  0.0001  0.0000 | 0.0003 0.0003 0.0004 | 0.0003 0.0003 0.0004
Average CPU 1) 5303 016379 0.13590 | 021300 0.16154 0.13137 | 021424 0.16375 0.12753
time per step [s]

Table 2: Comparison of mCRE-based KFs for stiffness parameter tracking from several
datasets. All filters perform in real-time as new assimilated data per iteration last 0.5 seconds.

Several remarks can be made from these results:

* Whatever the KF structure in which the mCRE has been integrated, the tracking of pa-

rameters is successfully performed in real-time, with always more than 50% of data as-
similation step remaining time to perform other operations online. Even for highly-noisy
measurements, the mCRE-based data assimilation framework provides a correct parame-
ter tracking, particularly the well captured fall of W10 stiffness.

From the error indicator values €, displayed in Tab. 2, one can consider the identification
of correct quality. The fact that €, is one order of magnitude higher is due to the slight
delay at the identification of the sudden change in W10. This delay is not abnormal as it
is a direct consequence of the sliding window technique [12].

Owing to the fact that UKF and S3F produce the exact same estimates [22], Fig. 5a-5c¢
and Fig. 5d-5f are identical. As almost half sigma-points are required for S3F compared
to UKF, the analysis of CPU times in Tab. 2 confirms that using S3F o-points allows a
significant gain on this academical example (30% faster, 8 o-points instead of 13 in that
case). There is no doubt that this CPU gain will be higher in problems where the parame-
ter space dimension ny is larger. The author thus strongly recommend the systematic use
of S3F instead of UKF, as it is as accurate for a lower computational cost.
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(0 yo)
10 - - ~Reference 10

W10

0 30 60 90 120 0 30 60 90 120 0 30 60 90 120

Time [s] Time [s] Time [s]

(a) = 0% - UKF basis (b) & = 5% - UKF basis (c) 6 = 15% - UKF basis

(6 0::) 35 (0 y0)

- - - Reference| - - - Reference|

I (6 |y0.x)

- - - Reference

W10
W10

0 30 60 90 120 0 30 60 90 120 0 30 60 90 120
Time |[s] Time |[s] Time [s]

(d) 6 = 0% - S3F basis (e) 6 = 5% - S3F basis (f) 6 = 15% - S3F basis

L5 = L5 - " -
I (0 [y0.) 25 I (O [yor ) I (0 [you)
_ - - —Reference o _ - - - Reference 12 - - —Reference, 8
1.25 1.25 25
20 10
___________________________ 6
SO 15 SEE 8 =
= = 6 = 1
10
0.75 \ 0.75 4 5
5 2
05 0.5
0 30 60 90 120 0 30 60 90 120 0 30 60 90 120
Time [s] Time [s] Time [s]
(g) & = 0% - EKF basis (h) & = 5% - EKF basis (i) 6 = 15% - EKF basis

Figure 5: On-the-fly update of W10 stiffness parameter using several mCRE-based KFs.

* EKF-based MDKF benefits from the simplicity of EKF and the parallel computation of
mCRE computations to process data faster than o-points-based MDKF. However, it also
naturally carries the limitations of EKF in terms of accuracy, with the loss of tracking
reactivity that appears at high measurement noise levels. Therefore, if EKF-based MDKF
is faster, it is also less accurate than mCRE-based sigma-points KFs.

In the end, it appears that S3F-based MDKEF is the best compromise between computational
cost and accurate estimates. It will thus be chosen as reference mCRE-based KF algorithm.

4.3 A proof of concept for the relevance of the clustered MDKF

In this last paragraph, we intend to complete the case study with the validation of the clus-
tered MDKF when trying to update the frame parametrization described by ny = 12 non-
overlapping subdomains. Having “too numerous” subdomains (as it is the case for damage
detection problems) will allow to present a proof of concept of the relevance of the clustered
MDKEF for large dimensional parameter tracking problems. More specifically, the objective of
this study is to assess the ability to recover the expected parameters from simulated acceleration
measurements acquired by discrete sensors scattered over the structure (yellow dots in Fig. 4),
with particular attention paid to accuracy and CPU time savings compared to standard MDKF.
The internal parameters of MDKF used to obtain the forthcoming results are still the ones spec-
ified in Tab. 1. In order to avoid falling into local minimas as the initial guess does not match
correctly with the expected parameters (10% gaps), the first 10 iterations (over 110) are forced
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to update the full set of parameters. Afterwards, the CRE-based clustering automatically drives
which parameters have to be updated.

The clustered MDKEF is applied to assimilate the same data that has been processed to obtain
the results displayed in Fig. 6. Parameter identification results are shown in Fig. 7 and the
comparison between CPU times is summarized in Tab. 3.

15 15 15 15
125 W (Olwor) | o 1.25 125 ~ 1.25 12
= - — —Reference ey - -
S 1 S 1 oo =1
= 0.75 = 0.75 =01 =015 "
05 05 05 0.5
0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120
Time [s] Time [s] Time [s] Time [s]
15 15 15 15 18
1% ~ 125 1% ~ 125
S 1 S 1 ~ 1 ~ 1 6
0
=075 =075 =075 =075
0.5 0.5 0.5 0.5
0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120
Time [s] Time [s] Time [s] Time [s] 4
15 15 15 15
L% o 125 L% o 125 )
S 1 S ] 1 ] 1
075 0.7 =075 =075
0.5 0.5 0.5 0.5
0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120
Time [s] Time [s] Time [s] Time [s]
Figure 6: MDKEF results of the frame model from noisy measurements (5 = 2%). Probability
density functions are plotted for each of the ny = 12 parameters with expected values.
15 15
~ 125 o 125 12
o1 =1
=075 =075
10
) ) 0.5 0.5
0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120 0 30 5060 90 120
Time [s] Time [s] Time [s] Time [s]
15 15 15 15 18
125 ~ 125 ~ 125 ~ 125
8 1 8 1 N1 N1 p
=075 =075 Z0s =07
05 05 05 05
0 30 5060 90 120 0 30 5060 9 120 0 30 5060 90 120 0 30 5060 90 120
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Figure 7: Clustered MDKEF results of the frame model from noisy measurements (6 = 2%).
Probability density functions are plotted for each of the ny = 12 parameters with expected
values.

The analysis of these results allow to conclude that clustered MDKF does not have significant
effects on the identification quality of the results by respectively comparing Fig.6-7. Indeed,
the noise level and MDKF internal parameters still condition accuracy results, whether the
clustering step is present or not.
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Algorithm ng | Average CPU time per iteration
UKF-based MDKF 6 |0.33s
S3F-based MDKF 6 |0.16s
UKF-based MDKF 12 | 0.76 s
S3F-based MDKF 12 | 044 s
Clustered UKF-based MDKF 12 | 0.48 s (including 0.02 s for the clustering step)
Clustered S3F-based MDKF 12 | 0.35 s (including 0.02 s for the clustering step)

Table 3: Comparison of CPU time per iteration between MDKF and clustered MDKF to
assimilate the same amount of data.

In terms of computational times, it is undeniable that the clustering step is not a time-
consuming procedure: only 0.02 s on the 0.5 s allowed to process data in real-time. However, it
provides a significant speed-up according to the results given in Tab. 3: in most time steps only
half of the clusters (the ones located at the bottom of the frame) are updated. The remaining
saved time can therefore be spent for DDDAS purposes instead of trying to update low-sensitive
or already well-identified parameters (with respect to the CRE). Besides, one should note that
only 12 parameters were updated here and that the value of ny does not explictly affect much
the required CPU time for clustering. The speedup one can expect when 1y > 1 may thus be
even larger than the one observed in this case study.

As alast remark, CPU time comparisons between UKF-based MDKF and S3F-based MDKF
have also been done in Tab. 3 in order to show that when combining (i) a KF in which the
number of sigma-points is optimized and (ii) an adaptive parametrization of the problem, con-
siderable gains can be made for substantially equivalent precision.

5 Conclusion and prospects

In this paper, a new sequential data assimilation method, using the mCRE as an alternative
metrics for observations, has been presented and several improvements has been proposed to
improve its performance. We discussed and fairly compared possible variants of the MDKF
according to the KF structure in which the mCRE functional is embedded, with the conclusion
that the mCRE-based S3F is the best compromise between computational cost and estimation
accuracy. Finally, an extension of MDKF for partial state update without loss of accuracy
was presented. An additional (low-cost) CRE-based clustering step was included in the data
assimilation scheme so as to exploit at best the information carried by the model error term of
the mCRE observer. The clustering step permits to restrain the amount of updated parameters
per iteration, which allows to achieve real-time constraints without losing accuracy, and to save
extra-time for post-processing operations in a DDDAS context. A proof of concept from an
academic earthquake engineering example allowed to validate the relevance of the proposed
MDKEF extension and to draw first limitations that are (unsurprisingly) inherent to the mCRE
ones.

The MDKF algorithm will be soon reinvested to perform adaptive model-based control in
the context illustrated in Fig. 1 to enhance the control of time-evolving systems (e.g. damaging
structures). The clustered MDKF would be particularly relevant when considering rich/full-
field measurements and damage detection problems such as the ones that can occur in structural
health monitoring.
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