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Introduction

In this report, we seek to evaluate the interest of a method for estimating the click parameters of NBHF (Narrow band
high frequency) clicks of dolphins based on Gabor wavelet mathematical models. For this, we compare this method
with more traditional ways of estimating these parameters. The aim of this study is to find a method that would
allow to effectively separate species of coastal dolphins that have similar vocal behavior. In particular, when we have
a medium or long term follow-up, without visual counterpart and when many clicks are detected.

1 Preliminary description of clicks, parameters and difficulties

1.1 Description of coastal dolphin clicks from Chile, general issue

The clicks and buzz recorded in the Puyuhuapi channel in May 2021 (Patris et al. 2023) are very likely Chilean dolphin
clicks (Cephalorhynchus eutropia). These are very brief sound emissions, of the order of a few tens of µs and very
high frequency, the energy usually being above 100 kHz. However, this could also be clicks from Peale’s dolphins
(Lagenorhynchus australis) or Burmeister’s porpoise (Phocoena spinipinnis). The clicks recorded in December 2021 in
the Strait of Magellan are clicks of Peale’s dolphins (Lagenorhynchus australis) and those recorded at Llico in October
2022 are of dolphins Chileans (Cephalorhynchus eutropia) (visual confirmation in both cases). These species do not
seem to emit whistles but sometimes emit buzzes, when the clicks are emitted in large numbers in a short time (the
time between two clicks can go down around 2 ms). In figure 1, we recall the waveform and spectrum of the clicks
of these three species described in former papers. These three species have very similar vocal behavior and a current
challenge is to be able to separate them on the basis of their sound emissions alone.

Pr
es

su
re

(1
0^

7 
Pa

)

Pr
es

si
on

 (
Pa

)

Po
w

er
 (

dB
)

.

Figure 1: Left : typical click of a Chilean dolphin (Cephalorhynchus eutropia), waveform and spectrum (Götz et al.
2010). In the center : typical click of a Peale’s dolphin (Lagenorhynchus australis), waveform and spectrum (Kyhn et al.
2010). Right: typical click of a Burmeister’s Porpoise (Phocoena spinipinnis) waveform and spectrum (Reyes Reyes
et al. 2018). All these recordings had a sampling frequency of 500kHz.

1.2 Click parameters typically used in bioacoustic studies and issues with using them

To acoustically describe the type of clicks emitted by small cetaceans, many classic indicators are used in bioacoustics.
Since Au (1993), there has been a relative standardization of the measurements carried out on dolphin clicks.
This standardization allows reproducibility of the measurements and the declared aim is often to find a way to
differentiate species with similar vocal behaviors (Reyes Reyes et al. 2018). This type of method makes it possible,
for example, to effectively separate bottlenose dolphins (Tursiops truncatus) and NBHF dolphins, the former having
a much lower peak frequency and a much wider bandwidth than the seconds (Kamminga et al. 1996).

The majority of the characteristics of these signals are divided into two dual categories, a temporal category and
a frequency category. Among the temporal characteristics, we can note : the average date of the signal, the duration
characteristic at -10dB (∆t (10dB)) and at -20dB (∆t (20dB)), the characteristic duration ’rms’ (for ’root mean square’).
Among the frequency characteristics, we can note : the ’peak’ frequency fp of the signal, the ’centroid’ frequency fc,
the bandwidths at -10dB y -3dB (∆f (−10dB) and ∆f (−3dB)), the characteristic bandwidth ’rms’ and the factor of



quality at -3dB (Q (3dB)). The definitions of the parameters associated with a signal s(t) (and its Fourier transform,

defined by the formula S(f) =
∫ +∞
−∞ s(t)e−2iπftdt) are (Au 1993) :

� The energy of the signal E =
∫ +∞
−∞ |s(t)|2dt =

∫ +∞
−∞ |S(f)|2df

� The amplitude of the signal, which is the maximum value of the signal s

� The amplitude peak-to-peak of the signal, which is the maximum value minus the minimum value of s

� The mean date of the signal defined by tc =
∫ +∞
−∞

t|s(t)|2dt
∫ +∞
−∞

|s(t)|2dt .

� The duration ’rms’ : ∆t =

√

∫ +∞
−∞

(t−tc)2|s(t)|2dt
∫ +∞
−∞

|s(t)|2dt .

� The duration at -10dB (∆t (−10dB)) is defined as the duration when the envelope of the signal is above the

maximum of the envelope divided by
√
10. In practice, we get the envelope taking the modulus of the Hilbert

transform of the signal.

� The duration at -20dB (∆t (−20dB)) is defined as the duration when the envelope of the signal is above the
maximum of the envelope divided by 10

� The peak frequency fp du signal is the frequency where the spectrum |S(f)| of the signal is maximum.

� The ’centröıde’ frequency fc is defined by the formula fc =
∫ +∞
−∞

f |S(f)|2df
∫ +∞
−∞

|S(f)|2df .

� The ’rms’ bandwidth : ∆f =

√

∫ +∞
−∞

(f−fc)2|S(f)|2df
∫ +∞
−∞

|S(f)|2df

� The bandwidth at -3dB (∆f (−3dB)) is the length of the interval around fp where the modulus of the spectrum

is larger than max(|S(f)|)√
2

(it is equivalent to max(|S(f)|2 − 3dB when max(|S(f)|2 is in dB).

� The bandwidth at -10dB (∆f (−10dB)) is the length of the interval around fp where the modulus of the spectrum

is larger max(|S(f)|2)√
10

.

� The quality factor at -3dB is Q (3dB) =
fc

∆f(−3dB)
.

� The quality factor ’rms’ is Qrms =
fc
∆f .

� The duration-bandwidth product ’rms’ is ∆t×∆f =

√

∫ +∞
−∞

(t−tc)2|s(t)|2dt
∫ +∞
−∞

|s(t)|2dt ×
√

∫ +∞
−∞

(f−fc)2|S(f)|2df
∫ +∞
−∞

|S(f)|2df

Remark : it should be noted that the functions |s(t)|2/
∫ +∞
−∞ |s(t)|2dt and |S(f)|2/

∫ +∞
−∞ |S(f)|2df are considered

as probability densities of the random variables t and f . When we compute tc and fc, we compute the first order
moments of these random variables. When we compute ∆t and ∆f , we compute the second order centered moments
of these random variables.

For the three species of Chilean coastal dolphins mentioned above, articles and reports have measured all or part
of these parameters (Rojas-Mena 2009; Götz et al. 2010; Kyhn et al. 2010; Reyes Reyes et al. 2018; Patris et al. 2023).
The majority of these indicators describe the frequency content of the signal and are generally used to classify, by
statistical methods, the different species (Rojas-Mena 2009; Reyes Reyes et al. 2018). Nevertheless, it is important to
note several flaws in the calculation of these parameters :

� The indicators used are not always the same from one article to another and there is no consensus, among
bioacousticians studying dolphins, on which are the most interesting to classify clicks.

� Some of these parameters are not well defined. As an example, the centroid frequency (whose definition given
above corresponds to the average of the frequency considering the energy in the spectrum) is defined as such in
Rojas-Mena (2009); Götz et al. (2010); Reyes Reyes et al. (2018). But it is sometimes defined as the median of
the energy distribution in the spectrum (Kyhn et al. 2010; Reyes Reyes et al. 2015). And in some studies, the
two values of the centroid frequency are compared (Reyes Reyes et al. 2018). This confusion is already present
in Au (1993), p 217.



� These parameters are often closely linked or even redundant, in particular the different frequency measurements
(peak or centroid), duration or bandwidth, which complicates the work of classification.

� Even if the cited studies present statistical indicators of data dispersion, there is rarely a study of the error
made in estimating these parameters. Dispersion that may come from the diversity of emissions but also from
the measure of the signals.

� Signals recorded in the field often have one or more replicas and these replicas have a significant influence on
the calculation of the parameters and therefore their accuracy (see section 3).

Finally, the parameters calculated for the three species mentioned above are often quite similar (Rojas-Mena 2009;
Reyes Reyes et al. 2018), which implies the need to find indicators with few errors of measure to be able (perhaps) to
discriminate between them. For all these reasons, classification is not easy even after calculation of these indicators
and no reliable classification method resulting from the measurement of these parameters has been offered until now.
In an attempt to improve the classification and clarify the importance of these parameters, we propose the study of
another method, already used for other species, which is the adjustment of a mathematic function to these signals.

2 Gabor wavelet

2.1 Definition

The clicks of dolphins presented in figure 1 are signals which seem to be able to be approximated by a simple math
model : Gabor wavelets.
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Figure 2: Left : waveform (above) et spectrogram (below) of a typical clic form a Chilean dolfin (Cephalorhynchus
eutropia) (Götz et al. 2010) - sampling frequency of 500 kHz. Right : a Gabor wavelet, with f0 = 130kHz, T = 200µs
and φ = 0 and a sampling frequency of 10GHz

These signals, in waveform, centered on the date t0 are given by the formula:

g(t) = A e−
(t−t0)2

T2 cos(2πf0(t− t0) + φ) (1)

These are mathematical functions obtained by the multiplication of an amplitude A, of a Gaussian, centered at
t0 and standard deviation σ = T

2 and a cosine function of frequency f0 and phase shift φ at t = t0. These wavelets
are therefore defined by 5 parameters (t0, A, T, f0 and φ): t0 is the central time of the wavelet, A is the amplitude, f0
the frequency of the fast oscillations of the wavelet given by the cosine, T the characteristic time of duration of the
wavelet and φ the phase difference between the Gaussian and the cosine. These wavelets are very similar to dolphins

NBHF clicks presented in figure 1 and in figure 2. The Gaussian A e−
(t−t0)2

T2 is the envelope of the signal. Note that



the parameters which seem the most important to properly characterize the Gabor wavelets are the time T and the
frequency f0. One of the most important traits of coastal dolphin clicks is that they are narrow bandwidth, which
is related to the fact that we ”see” a lot of cosine oscillations before the Gaussian becomes very weak : we are in
the case where 1

T << f0 or, equivalently T0 << T where T0 = 1
T0

corresponds to the period of the cosine. These
signals have been named polycyclic (we see several oscillations) in opposition to oligocyclic signals, such as clicks
of Tursiops, for example, which usually have less than four visible oscillations (Kamminga et al. 1996) or sperm whale
clicks (Goold and Jones 1995).

This representation of the clicks of small dolphins through a Gabor wavelet was proposed there already several
decades in a series of articles, by C. Kamminga and other authors, entitled ”Investigation on cetacean sonars” (articles
I to XI published in Aquatic mammals in the 80s): for example for the family phocoenidae (Kamminga et al. 1996)
or to compare species (Wiersma 1982). More recently, an article models the click production of Tursiops truncatus
and Phocoena phocoena by Gabor wavelets (Wei et al. 2020). It can also be noted that other mathematical models
modeling the waveform of dolphin clicks have been proposed, more sporadically, essentially to model their production
(Dubrovsky et al. 2004). The signals recorded in the field are not exactly Gabor wavelets but Gabor wavelets can
be considered as a first good approximation of these signals. We can try to adjust a wavelet to the real signal and
measure the difference with a real signal. These wavelets can be considered as a standard signal against which we will
measure our signals.

2.2 Classical parameters for Gabor wavelets

In this section, we calculate precisely the classical parameters presented in section 1.2 for a Gabor wavelet, in the case
of narrow frequency band signals (i.e. in the case where T0 << T ).

2.2.1 Analitic signal associated to a Gabor wavelet

.

Another Gabor wavelet model is the complex Gabor wavelet :

g(t) = Ae−
(t−t0)2

T2 e2iπf0(t−t0)+iφ (2)

The advantage of this wavelet is the greater simplicity of the calculations of the parameters mentioned above. For
example, the Fourier transform of g is

G(f) =
√
πATe−π2T 2(f−f0)

2

e−2iπft0+iφ (3)

The proof is given in appendix 6. It is interesting to note that the Fourier transform of the signal complex is also a
complex Gabor wavelet centered at f0 and that its standard deviation is proportional to 1

T . It is the same remark than
formulated in the previous section : the larger T is, the more the Fourier transform will be stitched around f0 (and
hence narrower the bandwidth). This expression makes it easy to calculate the Fourier transform of g (demonstration
given in appendix 6), which is

G(f) =

√
πAT

2
[e−π2T 2(f−f0)

2

e−2iπft0+iφ + e−π2T 2(f+f0)
2

e−2iπft0−iφ] (4)

An analytical signal y(t) is a signal for which the spectrum Y (f) is equal to zero for negative frequencies (Ville
1948; Rihaczek 1996). We can associate to any signal y(t) an associated analytical signal which is defined by ya(t) =
y(t) + iσ(t) where σ(t) is the Hilbert transform of y. In view of the expression of the Fourier transform of the Gabor
wavelet real (equation 4), the spectrum is not zero for negative frequencies, especially when f is close to −f0 and
is roughly the sum of two Gaussian peaks, one centered at f0 and te other at −f0. Nevertheless, in the case where
π2T 2f2

0 is large compared to 1 (case of polycyclic clicks), we can consider that these two peaks are well separated and

that, for example, e−π2T 2(f+f0)
2 ≃ 0 when f is positive. This is the case of coastal dolphins recorded in the Puyuhuapi

channel and more generally in the studies available on the three coastal dolphin species (Rojas-Mena 2009; Götz et al.
2010; Kyhn et al. 2010; Reyes Reyes et al. 2018). Indeed, f0 is of the order of 100 kHz and T more than 10 µs for these

signals, which gives π2T 2f2
0 & 10 and therefore e−π2T 2f2

0 < 5.10−5. In this case, one can consider that the analytical
signal associated with the real Gabor wavelet is the complex Gabor wavelet (Rihaczek 1996).



Table 1: List of computed parameters for Gabor Wavelets

signal symbol Complex Gabor wavelet Real Gabor wavelet

Signal s(t) g(t) = Ae
−

(t−t0)2

T2 e2iπf0(t−t0)+iφ g(t) = Ae
−

(t−t0)2

T2 cos(2πf0(t − t0) + φ)

Fourier transform S(f) G(t) =
√

πATe−π2T2(f−f0)2e−2iπft0+iφ G(t) =

√
πAT
2

e−2iπft0 [e−π2T2(f−f0)2eiφ + e−π2T2(f+f0)2e−iφ]

Energy E
√

π
2

A2T
√

π
2

A2T [1 + cos(2φ)e−2π2f0
2T2

] ≃
√

π
2

A2T

Average date tc t0 t0 − πf0T2 sin(2φ)

cos(2φ)+e2π
2f0

2T2 ≃ t0

Duration at -10dB ∆t−10dB
√

2ln(10) T ≃ 2.15 T
√

2ln(10) T ≃ 2.15 T

Duration at -20dB ∆t−20dB
√

4ln(10) T ≃ 3.03 T
√

4ln(10) T ≃ 3.03 T

Duration ’rms’ ∆t 1
2

T 1
2

T
1+cos(2φ)e−2π2f0

2T2
(1−8πf0

2T2)

1+cos(2φ)e−2π2f0
2T2 ≃ 1

2
T

Peak frequency fp f0 ≃ f0 ou −f0

Centröıd frequency fc f0 0

Bandwidth at -3dB ∆f−3dB

√

2ln(2)
π

1
T

≃ 0.37 1
T

≃

√

2ln(2)
π

1
T

≃ 0.37 1
T

Bandwidth at -10dB ∆f−10dB

√

2ln(10)
π

1
T

≃ 0.68 1
T

≃

√

2ln(10)
π

1
T

≃ 0.68 1
T

Bandwidth ’rms’ ∆f 1
2π

1
T

≃ 0.16 1
T

≃ 1
2π

1
T

≃ 0.16 1
T

Quality factor at -3dB Q−3dB
π

√

2ln(2)
f0T ≃ 2.67 f0T ≃ π

√

2ln(2)
f0T ≃ 2.67 f0T

Quality factor ’rms’ Qrms 2πf0T ≃ 6.28 f0T ≃ 2πf0T ≃ 6.28 f0T

’rms’ duration-bandwidth product Pincert
1
4π

≃ 1
4π

or uncertainty product

Autocorrelation function C(r)
√

π
2

A2T e
− r2

2T2 e−2iπf0r ≃ 1
2

√

π
2

A2T e
− r2

2T2 cos(2πf0r)

2.2.2 Computation of parameters for Gabor wavelets and remarks

The parameters of complex and real Gabor wavelets are presented in table 1 and their calculation is detailed in
appendix 6. A series of remarks can be made on the calculations presented in this table.

� If we consider that the clicks studied are ”polycyclic” (i.e. π2f0
2T 2 >> 1), which is the case for dolphins coastal,

then the parameters for complex and real Gabor wavelets are very close. This is due to the fact, noted above,
that in this case the analytical signal associated with the real Gabor wavelet is very close to the complex Gabor
wavelet.

� The frequencies fp and fc are close to f0 and therefore are good indicators of this value. We can also notice that
the centroid frequency of the real signal is zero, by symmetry of the spectrum.

� The durations presented in table 1 are all proportional to the single parameter T , which means that they are
very redundant to measure the signal or to classify the clicks if we assume that the clicks are close to Gabor
wavelets. In the same way, the bandwidths presented in table 1 are all proportional to the single parameter 1

T ,
which means that they are very redundant for measuring the signal. They are therefore also redundant with the
durations presented. A statistical correlation table between the parameters is presented in (Rojas-Mena 2009) :
in this table, we find the correlations or anti-correlations highlighted above, between fp and fc but also between
all bandwidths and durations. Overall, if we are in presence of a signal close to a Gabor wavelet, this table
shows that a lot of these parameters are highly correlated and that it is surely wise to keep only a few of them
for classification.

� The two quality factors presented are proportional to the product f0T = T
T0

and are therefore also proportional
the number of oscillations that we see in the signal: the greater the quality factor, the more we are in the case
of a polycyclic signal.

� The uncertainty product of a Gabor wavelet is 1
4π . One can prove (Gabor 1946), that uncertainty product is

always greater than 1
4π for any signal, the minimum being precisely reached for the Gabor wavelets. Several

articles thus measure how the real signals approach this limit for different species (Kamminga et al. 1986, 1993).



From all these remarks and from the fact that the measured clicks are close to Gabor wavelets, it is indicated, for
the purpose of precise characterization of the signal and classification, to retain only a few parameters among those of
table 1. In the following sections, we will present the theoretical estimate and practical frequency, duration and signal
bandwidth parameters for signals similar to the recorded dolphin clicks.

3 Theoretical study of the practical estimation of the parameters of a

click

In this section, we review different methods to estimate, in practice, the parameters of a click presented above as well
as some problems encountered. A numerical estimate of these methods is provided in section 4.

3.1 Estimation of the frequency of a click

Click frequency is not something easy to define or measure. One can estimate fc , fp by calculating the spectrum,
by autocorrelation or by the number of sign changes of the waveform or if we compare the signal to a Gabor wavelet,
estimate which f0 gives the best fit.

3.1.1 Frequency estimation using the spectrum

The estimation of fp or fc is classically done by the (approximate) calculation of the spectrum of the signal, in general
by a fast Fourier transform (FFT). fp is then the frequency corresponding to the maximum energy of the spectrum
and fc is the average of the energy-weighted frequencies in each of these frequencies. But, in practice, this method
comes up against several difficulties, which we will analyze in the next paragraphs.

Spectrums with several modes The spectra of the clicks recorded at Puyuhuapi are diverse (see figure 3) and
can present various more or less strong peaks. They are thus quite different from a Gabor wavelet. The estimate of
fc, which is an average value of the frequencies present in the spectrum is thus difficult for a multimodal spectrum
and can have a large uncertainty. There seems to be a whole range of spectra with peak frequencies around of 130
kHz and a whole range with peak frequencies around 170 kHz and, for these clicks, there is a hole in the spectrum
around 150 kHz.

The problem of replicas Another important problem for the measurement of the parameters described previously
is the very frequent presence of signal replicas, after a few µs. Figure 4 shows two clicks of dolphins recorded in the
Puyuhuapi channel in May 2021, where replicas clearly appear i.e. a signal close to a Gabor wavelet that repeats,
sometimes attenuated, after a time τ . It is not very clear if these replicas come from two separate emissions from
the animal, propagative bounces in its head or whether they come from bounces signals on the surface of the water,
the bottom of the fjord or on the device. The ’time delay of arrival’ (TDOA) are the order of a few µs between the
signal and its replica, which gives course differences of a few centimeters, which which is compatible with internal or
external rebounds. The presence of internal bounces or double production of clicks may be a way of improving the
signal produced in certain species of dolphins (Lammers and Castellote 2009; de Bruin and Kamminga 2001). A lot
of clicks recorded in the Puyuhuapi channel contain one or more replicas.

In this case, we can modelize the signal containing a replica as x(t) = g(t) + a g(t− τ) where τ is the delay time
of the replica, a is a real coefficient between -1 et 1 representing an attenuation and g is a Gabor wavelet.

We saw in section 2.2.2 that the indicators fp (peak frequency) and fc (centroid frequency) are good indicators of
the frequency f0 of the Gabor wavelet. But in the case of the presence of one or more aftershocks, we will see that
these two indicators are strongly degraded. The Fourier transform of x is X(f) = G(f) × (1 + ae−2iπfτ ) where G is
the Fourier transform of the Gabor wavelet g. The modulus of the coefficient 1 + ae−2iπfτ is a function of period
1
τ and therefore, in the spectrum, oscillations of period 1

τ appear. An example is given in Figure 5 where the replica
arrives 200 µs after the signal, which corresponds to a path difference of approximately 30 cm between the signal and
its replica and gives an oscillation of the spectrum at 5 kHz.

In the case of figure 5, it is difficult to accurately measure the peak frequency thanks to the spectrum because
of the presence of the replica. And typically, we will have an uncertainty of the order of 1

τ for the estimation of the
frequency peak (Wiersma 1982). For the centroid frequency of a Gabor wavelet with replica, a similar phenomenon
appears. It can be shown that:



0 100 200

250
200
150
100
50

time (ms)
0 100 200

250
200
150
100
50

time (ms)
0 5 10 15

250
200
150
100
50

time (ms)

0 0.2
-1

-0.5

0

0.5

1

time (ms)

N
or

m
. a

m
pl

itu
de

0 0.2

time (ms)
0 0.2

time (ms)

0 100 200

0

-20

-40

-60

frequency (kHz)

in
te

ns
ity

 (
dB

)

0 100 200
frequency (kHz)

0 100 200
frequency (kHz)

Figure 3: Three clicks from the Puyuhuapi data set. Left : On the left, a typical click of the data set with a frequency
peak around 135 kHz. In the center, a click at higher frequency, around 180 kHz. On the right, a click from of a
buzz. Top: Top: spectrogram of the signal with an FFT on 210 points (with the exception of the spectrogram right,
27 points), blackman window, 50% overlap. Middle : zoom on the normalized waveform of the click located in the
center of the spectrogram. Bottom : spectrum of the top click with normalized intensity (FFT of 29 = 512 points i.e.
1 ms of the signal), centered on the detection.

Figure 4: Two waveform dolphin clicks. The left click clearly shows a replica 100 µs after the first sign. The right
click seems to present several replicas, possibly two, a few µs after the first signal. We can also note the presence of
very weak and diffuse replicas after the first well marked aftershocks

fc = f0 −
aτ
πT 2 e

−τ2/2T 2

sin(2πτf0)

1 + a2 + 2a e−τ2/2T 2 cos(2πτf0)

Proof is given in annex 6. In this case, fc is not necessarily an unbiased estimator of f0 and figure 6 presents the
relative errors between these estimators and the value of f0 for Gabor wavelets.

We note, however, that the centroid frequency fc is always a better approximation of f0 than the peak frequency
fp. In particular, as soon as τ

T is greater than 3, which corresponds to a very clear separation between the first signal
and the replica, the centroid frequency is a good approximation of f0.
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Figure 5: Top : Waveform of a signal composed of a Gabor wavelet type click and a replica separated by τ = 200µs.
Bottom : The spectrum is composed of the Gaussian centered at f0 and periodic variations which are superimposed,
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Figure 6: Estimation of the relative error between f0 and the values fc (green) and fp (blue) for a Gabor wavelet

followed by a replica after a time τ : x(t) = g(t)+a g(t− τ) with g(t) = A e−
(t−t0)2

T2 cos(2πf0(t− t0)+φ). In abscissa,
we put the ratio τ

T .

3.1.2 Frequency estimation by means of an autocorrelation of the signal

Another way to calculate the fundamental frequency of a periodic signal is to do an autocorrelation of this one

(Mellinger and Clark 1997; Malige et al. 2020): C(r) = limT→+∞
1
T

∫ T/2

−T/2
s(t)s∗(t + r)dt where s∗ is the complex

conjugate of s. A Gabor wavelet is not a periodic signal but in the case of âpolycyclicâ signals, with a high quality
factor, i.e. where the oscillation of period T0 = 1/f0 is well marked, which is the case for the clicks of coastal dolphins

present in Chile, we can use Cs(r) = limT→+∞
∫ T/2

−T/2
s(t)s∗(t+ r)dt. The theoretical calculation of this function, for

a Gabor wavelet g is given in appendix 6 :



Cg(r) =
1

2

√

π

2
A2T e−

r2

2T2 [cos(2πf0r) + cos(2φ)e−2π2f0
2T 2

] ≃ 1

2

√

π

2
A2T e−

r2

2T2 cos(2πf0r)

Therefore, the first strictly positive maximum of the autocorrelation function is for r ≃ 1
f0

which allows us to

estimate f0. Thus, for each click, we can calculate a discrete version of this autocorrelation function Cg,Tseñal,Ts
(r) =

∑⌊Tseñal/Ts⌋
n=0 s(nTs)s(nTs+ r) where Tseñal is the signal duration time and Ts is the sampling time (Ts =

1
fs

where fs is

the sampling frequency (fs = 512 kHz for the Puyuhuapi experiment). The first maximum of this function after zero
gives us an estimate of 1

f0
. However, the sampling frequency is too low here, the discretization in time too coarse, for

this method to give us good results, as we will see in section 4. Anyway, even if we had a good sampling frequency,
the replicas of the signal can also degrade the estimation of f0. The autocorrelation function Cx(r) of the signal x(t)
(Gabor wavelet with replica) is:

Cx(r) = (1 + |a|2)Cg(r) + aCg(r + τ) + aCg(r − τ)

The new autocorrelation function therefore consists of the curve of Cg to which are added the same curved but
shifted by ±τ (the delay time of the replica) and attenuated. If τ is large compared to T , these three curves will be
quite distinct and the first maximum after zero will still be a good estimator of 1/f0. But if τ is low these three curves
can be superimposed and we then have a problem when calculating the maximum of this function, which is no longer
a good estimator of 1/f0.

3.1.3 Frequency estimation thanks to the changes of signs of the waveform

A third way to estimate the frequency f0 is to count the number of pseudo-periods of the waveform for a given time.
Practically, f0 is calculated as the number of sign changes of the signal during a given time divided by twice the
given time. This method is implemented in the C-POD device, without the code used is public (Tregenza 2014). This
method seems good when there is little noise but changes in signs from the noise can complicate the estimation.

3.1.4 Frequency estimation by fitting a wavelet or several wavelets

Finally, a last way to calculate f0 is to fit a Gabor wavelet to our signal. This can be done, for example, by a method
of the Levenberg-Marquardt non-linear regression type (âleasqrâ function in OCTAVE language) that fits a type of
function to a data set (Kamminga et al. 1996). This adjustment, for each click allows us to find the values of t0, A, T, f0
and φ. The precision of these adjustments is studied thanks to to the numerical tests of section 4.

3.2 Estimation of ∆t and ∆f

The values of ∆t and ∆f are computed by the formulas of section 1.2.

3.2.1 Problem of the estimation of ∆t and ∆f in the case of a replica

In the case of the presence of a replica (or several), the values of ∆t and ∆f are modified, as well as the uncertainty
product, which is no longer equal to 1

4π (de Bruin and Kamminga 2001). We can calculate the following formulas (to
simplify the calculations, we took t0 = 0, which does not change the values of ∆t and ∆f) :

(∆t)2 =
t2c +

T 2

4 + a2((tc − τ)2) + (2t2c − 2tcτ + τ2/2)a cos(2πf0τ)e
− τ2

2T2

(1 + a2) + 2a cos(2πf0τ)e
− τ2

2T2

wheretc ≃ τ a2+a cos(2πf0τ)e
− τ2

2T2

1+a2+2a cos(2πf0τ)e
− τ2

2T2

(∆f)2 = (f0 − fc)
2 +

1

4π2T 2
− aτ

πT

cos(2πf0)
τ

π2T 3 + 2sin(2πf0)
f0−fc

T

1 + a2 + 2acos(2πf0τ)

It should be noted that these formulas are not very easy to simplify and depend in a complicated way on the
parameters t0, T , a, τ .



3.2.2 Uncertainty product in the case of a replica

In the case of a replica, using the formulas given in the previous paragraph, we calculated the uncertainty product
depending on the ratio τ/T . We see that, in this curve, very similar to the curve presented in de Bruin and Kamminga
(2001), the uncertainty product is no longer equal to 1/4π but exhibits oscillations when τ/T is the order of 1 to 3.
For a juvenile harbor porpoise (Phocoena phocoena), de Bruin and Kamminga (2001) estimate that the value of τ/T
coincides with the first local minimum (in our figure, around τ/T = 1.2). They attribute the response to an internal
reflection of the sound in the animal.
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Figure 7: Uncertainty product (multiplied by 4π) in term of τ/T .

For the clicks that we have recorded, we will try to measure the product of uncertainty and also see to what point
on the curve (minimum or not) does this correspond to.

4 Numerical tests

4.1 Numerical tests for a noisy Gabor wavelet

The five ways to estimate the peak frequency presented in section 3.1 have been tested on simulated clicks numerically,
using a dedicated OCTAVE program: we have generated many noisy Gabor wavelets (N = 100000) then we measured
the frequency f0 of the Gabor wavelet in various ways, which we compare with the exact value of f0 . The noisy
wavelets are of the form

x(t) = A e−
(t−t0)2

T2 cos(2πf0(t− t0) + φ) + n(t) (5)

The parameters chosen were the following: A = 0.8 + 0.4X[0;1] where X[0;1] is the random variable of distribution
continuous uniform on the interval [0; 1]. Similarly, the wavelet frequency is f0 = 125000kHz × (0.98 + 0.04X[0;1]),
the average date of the wavelet is t0 = 0.00025 + 0.0002X[0;1] (in seconds), the characteristic time of duration is
T = 0.00004 + 0.00002X[0;1] (in seconds), phase shift φ = 2πX[0;1]. We then added a noise Gaussian n(t) to this
signal with various intensities. The created function is then sampled at 512 kHz. The signal typical that we obtain is
represented in figure 8. The results of the estimations are presented in figure 9.

4.1.1 Frequency estimation

For each of the signals of the form of figure 8, the frequency f0 of this signal was measured by various methods,
as presented in section 3.1 : the peak frequency of the spectrum, the centroid frequency, the autocorrelation of the
signal, the number of sign changes of the waveform and the adjustment of a Gabor wavelet. The signal-to-noise ratio
(SNR ≃ 10 log(

Esignal

Ebruit
)) was also estimated for each of the signals. Then we represented the error, in percentage,

made during the estimation of fo by each of the methods, as a function of the SNR.
We clearly see, in the figure 9, that the estimate of f0 is not at all correct by an autocorrelation method, essentially

because of the low sampling frequency, compared to the frequency f0. The methods by maximum or average of the
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Figure 8: Example of a noisy Gabor wavelet, with the parameters given in the text above. The Gaussian noise has a
standard deviation of 0.05.
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Figure 9: Percentage of error on parameter f0 as a function of signal to noise (in dB). In black, the errors, in percentage,
on the estimate of f0 for the 10000 synthesized clicks (estimate with the maximum fp of the FFT, with the centroid
frequency fc using the FFT, with an autocorrelation of the signal, with the changes of sign, with the adjustment of
a Gabor wavelet). In red, the average value for each noise level. The bottom right figure compares the means of the
figures in the left and center columns.

FFT (frequency peak or centroid) are not very good either and reach a level, independent of the noise, around 1%, as
can also be seen in figure 6. The change of sign method is not very good in a noisy context. C-PODs, which use this
method are therefore probably not very robust to estimate the frequency in a noisy context. seems to be the fit by a
Gabor wavelet.



4.1.2 Duration estimation

Similarly, we measured the various values of the duration of a click (duration -10dB, duration -20dB, rms duration,
adjustment by Gabor wavelet) and we compared it to the theoretical value of the Gabor wavelet. In this case, the
duration ’rms’ seems very sensitive to noise and generally gives poor results. The estimation of the parameter T seems
again better by fitting a Gabor wavelet.
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Figure 10: Percentage of error on the estimation of the parameter T according to the signal to noise (in dB). In black,
the errors, in percentage, on the estimate of T for 10000 synthesized clicks (estimate with duration -10dB, duration
-20dB, rms duration, Gabor wavelet adjustment). In red, the average value for each noise level. The figures at the
bottom center and right compare the means of the other 4 figures.

4.1.3 Bandwidth estimation

Similarly, we measured the various values of the frequency band of a click (∆f−3 dB -3dB, ∆f−10 dB , ∆frms and the
value of T by Gabor wavelet adjustment) and we compared these values with the theoretical value (which depends
of T ). In this case, the ’rms’ frequency band seems very sensitive to noise and generally gives poor results. The
estimation of the parameter T seems there still better by fitting a Gabor wavelet.

0

10

20

30

40

0 10 20 30 40 50

Percentage of error in estimation of Delta F 3 dB vs snr

raw data

averaged data

0

10

20

30

40

0 10 20 30 40 50

Percentage of error in estimation of Delta F 10 dB vs snr

raw data

averaged data

0

10

20

30

40

0 10 20 30 40 50

Percentage of error in estimation of Delta F rms vs snr

raw data

averaged data

0

10

20

30

40

0 10 20 30 40 50

Percentage of error in estimation of Delta F by fitting a gabor wavelet vs snr

raw data

averaged data

0

10

20

30

40

0 10 20 30 40 50

Percentage of error in estimation of delta F by 4 methods vs snr

Delta F 3 dB

Delta F 10 dB

Delta F rms

GABOR FITTING simple

Figure 11: Percentage of error on the estimation of the parameter T through the frequency bands in as a function of
signal to noise (in dB). In black, the errors, in percentage, on the estimate of T for 10000 clicks synthesized (estimate
with -10dB duration, -20dB duration, rms duration, Gabor wavelet adjustment). In red, the average value for each
noise level. Figures at bottom center and right compare means of the other 4 figures.



4.2 Other numerical tests

It is quite normal that fitting a Gabor wavelet to a noisy Gabor wavelet gives good results. We therefore tried to
make the same measurements for three other categories of signal, more or less distant of a Gabor wavelet: - A cosine
multiplied by a rectangular gate (function Π[t0−T ;t0+T ] which equals 1 in this interval and zero elsewhere).

x(t) = A cos(2πf0(t− t0) + φ)×Π[t0−T ;t0+T ] + n(t) (6)

- distorted and noisy Gabor wavelets (we multiply the Gabor wavelet by an affine function equal to 1 in t0 ).

x(t) = A e−
(t−t0)2

T2 cos(2πf0(t− t0) + φ)× (1 +
t− t0
T

) + n(t) (7)

- Gabor wavelet with replica :

x(t) = A e−
(t−t0)2

T2 cos(2πf0(t− t0) + φ) + a A e−
(t−t0−τ)2

T2 cos(2πf0(t− t0 − τ) + φ) + n(t) (8)

In the latter case, the delay τ and the attenuation a follow the following laws: τ = 0.00005 + 0.0002X[0;1] (in
seconds) and a = 0.6+0.4X[0;1]. The results are presented in figure 12. We see that for the first three types of signals,
we have similar error estimates, which seems to indicate the robustness of the estimate of these errors, for signals
that can be quite different. It should be noted that the centroid frequency is not very good in case 2 (sine multiplied
by a gate). This type of signal presents high frequencies (due to the discontinuity of the ”gate” function) which can
perhaps distort the estimation of the frequency by an average. In the case of a wavelet with replica, the errors are
globally larger.
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Figure 12: Percentage of error as a function of signal to noise (in dB) for different types of signals: Up to left, for a
Gabor wavelet. Top right for a sine multiplied by a gate. Bottom left, for a distorted Gabor wavelet (multiplied by
an affine function). Bottom left for a Gabor wavelet with reply.

4.3 Sampling influence

We also measured the influence of sampling on the previous measurements. Indeed, a sampling at 512 kHz is quite ’low’,
as we have seen for example for autocorrelation measurements. A sampling different will not change the properties of
the spectrum (Patris et al. 2019) but on the other hand it can have an influence on the adjustment of a Gabor wavelet.
To measure this influence, we measured the frequency of 20000 synthetic clicks (noisy Gabor wavelets) in 5 different
ways : by the peak frequency, by the centroid frequency, by the adjustment of a gaborette to the signal sampled at
512 kHz, by the adjustment of a gaborette to the same signal theoretical with a sampling at 2048 kHz, by adjusting
a gaborette to the signal at 512 kHz to which we apply the interp function under Octave to digitally oversample it by
a factor of 4. The results are in the figure 13. The best methods of measuring the frequency f0 are that of adjusting
a Gabor wavelet to the signal or to a signal with a higher sampling of the theoretical signal (inaccessible in practice).
These methods seem better than oversampling our signal using Octave, which gives results similar to measurements
by the peak frequency and the centroid frequency.

5 Conclusions

The ”frequency” of a click is a concept that can have several meanings. In a classification context, it is important
to choose a definition that will allow us to separate the species and therefore to have the lowest uncertainty in the
measurments. The measurement of the âfrequencyâ of a dolphin click by change of signs and by autocorrelation does
not seem very interesting (especially in the case of sampling at 512 kHz and in a noisy context). Fitting a Gabor
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Figure 13: Percentage error as a function of signal to noise (in dB) for different ways of measuring f0 : by the peak
frequency (black), by the centroid frequency (blue), by the adjustment of a gaborette to the sampled signal at 512
kHz (red), by adjusting a gaborette to the same theoretical signal with a sampling at 2048 kHz (pink), by adjusting
a gaborette to the 512 kHz signal to which the interp function is applied under Octave to digitally oversample it by a
factor of 4 (green)

wavelet seems to be more accurate than calculating a peak or average frequency. We therefore proposes to adjust a
Gabor wavelet to the recorded clicks.

6 Annex : Proofs

6.1 General formulas

We give the following form (without proofs), containing classical integrals. Note that, in these formulas, a is homogeneous to a squared
frequency.

∫∞
−∞ e−at2dt =

√

π
a

∫∞
−∞ te−at2dt = 0 (by parity)

∫∞
−∞ t2e−at2dt = 1

2a

√

π
a

∫∞
−∞ cos(2πf0t) e−at2dt =

√

π
a

e−
π2f2

0
a

∫∞
−∞ sin(2πf0t) e−at2dt = 0 (by parity)

∫∞
−∞ t sin(2πf0t) e−at2dt = πf0

a

√

π
a

e−
π2f2

0
a

∫∞
−∞ t2 cos(2πf0t) e−at2dt = 1

2a

√

π
a

e−
π2f2

0
a (1− 4πf2

0
a

)

Remark : in the polycyclic case and for a = T 2 , the last 4 integrals will be considered as close to zero because the term e−π2T2f2
0 is

very small.

6.2 Proofs

We use the formulas above in many calculations, without necessarily recalling them.

6.2.1 Complex Gabor wavelet

In this section, we present the results of table 1, for the column of the complex Gabor wavelet g(t) = Ae
− (t−t0)2

T2 e2iπf0(t−t0)+iφ.

Fourier transform The Fourier transform of the complexe Gabor wavelet g(t) = Ae
− (t−t0)2

T2 e2iπf0(t−t0)+iφ is G(f) =
∫∞
−∞ g(t)e−2iπftdt.

Therefore, G(f) =
∫∞
−∞ Ae

− (t−t0)2

T2 e2iπf0(t−t0)+iφe−2iπftdt = Aeiφ
∫∞
−∞ e

− u2

T2 e2iπf0ue−2iπf(u+t0)du =



= Aeiφe−2iπft0
∫∞
−∞ e

− u2

T2 +2iπ(f0−f)u
du = Aeiφe−2iπft0

∫∞
−∞ e

− 1
T2 (u2+2iπT2(f−f0)u)du

= Aeiφe−2iπft0
∫∞
−∞ e

− 1
T2 ((u+iπT2(f−f0))

2+π2T4(f−f0)
2)
du

= Aeiφe−2iπft0e−π2T2(f−f0)
2 ∫∞

−∞ e
− 1

T2 ((u+iπT2(f−f0))
2

du

= Aeiφe−2iπft0e−π2T2(f−f0)
2 ∫∞

−∞ e
− u2

T2 du (Residue theorem)

= AT
√
π e−2iπft0+iφe−π2T2(f−f0)

2

Energy E =
∫∞
−∞ |g(t)|2dt = A2

∫∞
−∞ e

− 2(t−t0)2

T2 dt = A2
∫∞
−∞ e

− 2u2

T2 du = A2T
√

π
2

Average date The average date tc is computed as the moment of order 1 of time considering |g(t)|2 as a probability density.

tc =

∫∞
−∞ t|g(t)|2dt
∫∞
−∞ |g(t)|2dt = 1

E

∫∞
−∞ tA2e

− 2(t−t0)2

T2 dt = A2

E

∫∞
−∞(u+ t0)e

− 2u2

T2 du = A2

E

∫∞
−∞ t0 e

− 2u2

T2 du (by parity)

= A2

E
t0

∫∞
−∞ e

− 2u2

T2 du = t0

Duration at -10dB and -20 dB The duration at -10 dB, denoted ∆t−10 dB , is calculated as the duration during which the

envelope of g (t) is greater than the maximum value of g minus -10 dB. This translates to 20 log(
envelope of g(t)
maximum of g(t) ) > −10

Thus log(
|A| e

−
(t−t0)2

T2

|A| ) > − 1
2

Thus − (t−t0)
2

T2 > − ln(10)
2

Thus |t− t0| <
√

ln(10)
2

T

Thus ∆t−10 dB =
√

2ln(10)T

similarly, ∆t−20 dB =
√

4ln(10)T

Duration ’rms’ The duration ’rms’, denoted ∆t is the moment of order 2 of the temporal density and is equal to (∆t)2 =
∫+∞
−∞ (t−tc)

2|g(t)|2dt
∫+∞
−∞ |g(t)|2dt

Thus (∆t)2 = 1
E

∫+∞
−∞ (t− t0)2|g(t)|2dt = A2

E

∫+∞
−∞ (t− t0)2e

− 2(t−t0)2

T2 dt = A2

E

∫+∞
−∞ u2e

− 2u2

T2 du = A2

E

√

πT2

2
T2

4
= T2

4

and then ∆t = T
2

Peak frequency The peak frequency is the frequency for which the modulus of the Fourier transform is maximal. In the case of a

complex Gabor wavelet, |G(f)| = AT
√
πe−π2T2(f−f0)

2
and its maximum is reached for fp = f0.

Centröıde frequency The centroid frequency is calculated as the moment of order 1 of the frequencies, considering |G(f)|2 as a
density.

fc =

∫∞
−∞ f |G(f)|2df
∫∞
−∞ |G(f)|2df = 1

E

∫∞
−∞ fA2T 2πe−2π2T2(f−f0)

2
df (Parseval theorem)

= A2T2π
E

∫∞
−∞(u+ f0)e−2π2T2u2

du (changing the variable f = u+ f0)

= f0
A2T2π

E

∫∞
−∞ e−2π2T2u2

du (by parity)

= f0
A2T2π

E

√

π
2π2T2 = f0

A2T
√
π√

2E
= f0

Bandwidth at -3 dB and -10 dB The bandwidth at -3 dB, denoted ∆f−3 dB , is calculated as the length of the frequency range
over which the envelope of underbarG(f) is greater than the maximum value of S minus -3 dB, which is an approximation of the fact

that
envelope ofunderbarG(f)

max G(f)
> 1√

2

Thus AT
√
π e−π2T2(f−f0)2

AT
√
π

> 1√
2

Thus −π2T 2(f − f0)2 > ln( 1√
2
)

Thus π2T 2(f − f0)2 <
ln(2)

2

Thus |f − f0| < 1
πT

√

ln(2)
2

Thus ∆f−3 dB = 1
πT

√

2ln(2)

Similarly, ∆t−10 dB =

√
2ln(10)

πT

Bandwidth ’rms’ The rms bandwidth is the second moment associated with the frequency distribution and is equal to ∆f =
√

∫+∞
−∞ (f−fc)2|G(f)|2df

∫+∞
−∞ |G(f)|2df

Thus (∆f)2 = 1
E

∫+∞
−∞ (f − f0)2|G(f)|2df = 1

E

∫+∞
−∞ (f − f0)2A2T 2π e−2π2T2(f−f0)

2
df = A2T2π

E

∫+∞
−∞ u2 e−2π2T2u2

du

= A2T2π
E

1
4π2T2

√

π
2π2T2 = 1

4π2T2

Then ∆f = 1
2πT



Quality factor at -3dB Quality factor at -3dB is Q (3dB) =
fc

∆f (−3dB)
= πf0T√

2ln(2)

Quality factor ’rms’ Quality factor ’rms’ is Qrms = fc
∆f

= 2πf0T .

Uncertainty product The uncertainty product or duration-bandwidth product is equal to Pincert = ∆t × ∆f . Then Pincert =
T
2

1
2πT

= 1
4π

Autocorrelation function The autocorrelation function is defined by Cs(r) =
∫+∞
−∞ s(t)s∗(t+ r)dt

Then, for a complex Gabor wavelet : Cg(r) = A2
∫+∞
−∞ e

− (t−t0)2

T2 e2iπf0(t−t0)+iφe
− (t+r−t0)2

T2 e−2iπf0(t+r−t0)−iφdt

= A2
∫+∞
−∞ e

− (t−t0)2

T2 e
− (t+r−t0)2

T2 e−2iπf0rdt = A2e−2iπf0r
∫+∞
−∞ e

−u2−(u+r)2

T2 du = A2e−2iπf0r
∫+∞
−∞ e

− 1
T2 (2u2+2ur+r2)

du

= A2e−2iπf0r
∫+∞
−∞ e

− 2
T2 ((u+ r

2
)2+ r2

4
)
du = A2e−2iπf0re

− r2

2T2
∫+∞
−∞ e

−
2(u+ r

2
)2

T2 du = A2e−2iπf0re
− r2

2T2
∫+∞
−∞ e

− 2v2

T2 dv

= A2e−2iπf0re
− r2

2T2

√

π
2
T

6.2.2 Real Gabor wavelet

In this section, we present the calculations of table 1, for the column of the real Gabor wavelet. For these calculations, and for the sake of
simplification, we will place ourselves in the case of a “polycyclic” Gabor wavelet, which is the model we use to approximate the clicks of

coastal dolphins, c is to say in the case where π2f2
0T

2 is large and therefore e−π2f2
0T2 ≃ 0.

Fourier transform We want to computeG(f) =
∫∞
−∞ g(t)e−2iπftdt where g is the real Gabor wavelet : g(t) = Ae

− (t−t0)2

T2 cos(2πf0(t−
t0) + φ)

Thus, G(f) =
∫∞
−∞ Ae

− (t−t0)2

T2 cos(2πf0(t− t0) + φ)e−2iπftdt = A
∫∞
−∞ e

− u2

T2 cos(2πf0u+ φ)e−2iπf(u+t0)du

= A
2
e−2iπft0

∫∞
−∞ e

− u2

T2 [e2iπf0u+iφ + e−2iπf0u−iφ]e−2iπfudu

= A
2
e−2iπft0 [eiφ

∫∞
−∞ e

− u2

T2 e−2iπ(f−f0)udu+ e−iφ
∫∞
−∞ e

− u2

T2 e−2iπ(f+f0)udu]
Similarly to the complex case :

G(f) = AT
√
π

2
e−2iπft0 [eiφe−π2T2(f−f0)

2
+ e−iφe−π2T2(f+f0)

2
]

Energy E =
∫∞
−∞ |g(t)|2dt = A2

∫∞
−∞ e

− 2(t−t0)2

T2 cos2(2πf0(t− t0) + φ)dt = A2
∫∞
−∞ e

− 2u2

T2 cos2(2πf0u+ φ)du

= A2

2

∫∞
−∞ e

− 2u2

T2 [1 + cos(4πf0u+ 2φ)]du = A2

2

∫∞
−∞ e

− 2u2

T2 du+ A2

2
cos(2φ)

∫∞
−∞ e

− 2u2

T2 cos(4πf0u)du

= A2

2

√

π
2
[T + cos(2φ)e−2π2f2

0T2
] ≃ A2

2

√

π
2
T because e−2π2f2

0T2 ≃ 0

Average date The average time tc is calculated as the moment of order 1 of the time, considering |g(t)|2 as a density.

tc =

∫∞
−∞ t|g(t)|2dt
∫∞
−∞ |g(t)|2dt = 1

E

∫∞
−∞ tA2e

− 2(t−t0)2

T2 cos2(2πf0(t− t0) + φ)dt = A2

2E

∫∞
−∞(u+ t0)e

− 2u2

T2 [1 + cos(4πf0u+ 2φ)]du

= A2

2E

∫∞
−∞(u+ t0)e

− 2u2

T2 [1 + cos(4πf0u)cos(2φ)− sin(4πf0u)sin(φ)]du

= A2

2E

∫∞
−∞[t0e

− 2u2

T2 (1 + cos(4πf0u)cos(2φ))− ue
− 2u2

T2 sin(4πf0u)sin(φ)]du

= A2

2E
[t0

√

π
2
T + t0 cos(2φ)

√

π
2
Te−2π2f2

0T2 − sin(2φ)πf0T 2
√

π
2
Te−2π2f2

0T2
]

= t0 + (t0 cos(2φ)− πsin(2φ)f0T 2)e−2π2f2
0T2 ≃ t0 car e−2π2f2

0T2 ≃ 0

Duration at -10dB and -20 dB The duration at -10 dB, denoted ∆t−10 dB , is calculated as the duration during which the
envelope of g(t) is greater than the maximum value of g minus -10 dB. However, if we consider that we are in the polycyclic case, the
frequency f0 is large enough to be considered the carrier of the signal and the envelope is the m ême in the real case where complex. We
therefore have the same values for the durations at -10dB and -20 dB in the real or complex case.

Duration ’rms’ The duration ’rms’, denoted ∆t is the moment of order 2 of the temporal density and is equal to (∆t)2 =

frac
∫+∞
−∞ (t− tc)2|g(t)|2dt

∫+∞
−∞ |g(t)|2dt. We will assume here that tc = t0, in accordance with the calculation and approximation above.

Then (∆t)2 = 1
E

∫+∞
−∞ (t− t0)2|s(t)|2dt = A2

E

∫+∞
−∞ (t− t0)2e

− 2(t−t0)2

T2 (cos(2πf0(t− t0) + φ))2dt =

= A2

E

∫+∞
−∞ u2e

− 2u2

T2 (cos(2πf0u+ φ))2du = A2

2E

∫+∞
−∞ u2e

− 2u2

T2 (1 + cos(4πf0u+ 2φ))du =

= A2

2E
[
∫+∞
−∞ u2e

− 2u2

T2 du+
∫+∞
−∞ u2e

− 2u2

T2 cos(4πf0u+ 2φ)du = A2

2E
[T

3

4

√

π
2
+ cos(2φ)T

3

4

√

π
2
e−2π2f2

0T2/2(1− 8πf2
0T

2)]

= T2

4
1+cos(2φ)e−2π2f0

2T2
(1−8πf0

2T2)

1+cos(2φ)e−2π2f0
2T2

Using the approximation e−2π2f2
0T2 ≃ 0, we obtain (∆t)2 ≃ T2

4

Then ∆t ≃ T
2
.



Peak frequency The peak frequency is the frequency for which the modulus of the Fourier transform is maximal. In the case of a

complex Gabor wavelet, G(f) = AT
2

e−2iπft0 [eiφe−π2T2(f−f0)
2
+e−iφe−π2T2(f+f0)

2
] and its maximum, in frṕositive sequences, is reached

for fp = f0.

Centroid frequency, bandwidth at -3 dB and at -10 dB, bandwidth rms, quality factor at -3dB, quality
factor “rms ”, uncertainty product The centroid frequency is calculated as the moment of order 1 of the frequencies,
considering |G(f)|2 as a density. As the function |G(f)|2 is even then fc = 0. But if we want to make sense of the centroid frequency
then we can use the analytical signal associated with s. In this case, and in the polycyclic approximation, we have fc ≃ f0, as in the case
of a complex Gabor wavelet. Similarly, the other parameters calculated in the previous section (bandwidth at -3 dB and at -10 dB, rms
bandwidth, quality factor e at -3dB, “rms” quality factor, uncertainty product), based on the spectrum of g are equal, if we consider that
we are in the polycyclic case.

Autocorrelation function The autocorrelation function is defined by Cs(r) =
∫+∞
−∞ s(t)s∗(t+ r)dt. And so, for a complex Gabor

wavelet:

Cg(r) = A2
∫+∞
−∞ e

− (t−t0)2

T2 cos(2πf0(t− t0) + φ) e
− (t+r−t0)2

T2 cos(2πf0(t+ r − t0) + φ)dt

Cg(r) = A2
∫+∞
−∞ e

− u2

T2 cos(2πf0u+ φ) e
− (u+r)2

T2 cos(2πf0(u+ r) + φ)du changing the variable u = t− t0

Cg(r) =
A2

2

∫+∞
−∞ e

− 2u2+2ur+r2

T2 [cos(4πf0u+ πf0r + 2φ) + cos(2πf0r)]du

Cg(r) =
A2

2

∫+∞
−∞ e

− 2(u+r/2)2+r2/2

T2 [cos(4πf0(u+ r/2) + 2φ) + cos(2πf0r)]du

Cg(r) =
A2

2
e

−r2

2T2
∫+∞
−∞ e

− 2(u+r/2)2

T2 [cos(4πf0(u+ r/2) + 2φ) + cos(2πf0r)]du

Cg(r) =
A2

2
e

−r2

2T2
∫+∞
−∞ e

− 2v2

T2 [cos(4πf0v + 2φ) + cos(2πf0r)]dv changing the variable v = u+ r/2

Cg(r) =
A2

2
e

−r2

2T2 [T
√

π
2
e−2π2f2

0T2
cos(2φ) + T

√

π
2
cos(2πf0r)] by parity

Cg(r) =
A2T
2

√

π
2

e
−r2

2T2 [cos(2πf0r) + e−2π2f2
0T2

cos(2φ)]

Finaly : Cg(r) ≃ A2T
2

√

π
2

e
−r2

2T2 cos(2πf0r)

6.2.3 Real Gabor wavelet with replica

We note x(t) = g(t) + ag(t− τ) where a is a real number measuring the attenuation of the replica and tau > 0 is the delay between the

first gaborette and its replica. We recall that g(t) = Ae
− (t−t0)2

T2 cos(2πf0(t− t0) + φ)

Fourier transform The Fourier transform of a signal with replica is
X(f) = G(f) + a

∫+∞
−∞ g(t− τ)e−2iπftdt = G(f) + a

∫+∞
−∞ g(u)e−2iπf(u+τ)du = G(f) + ae−2iπfτ

∫+∞
−∞ g(u)e−2iπfudu

Then X(f) = G(f) + ae−2iπfτG(f) = G(f)[1 + ae−2iπfτ ]

Energy E =
∫∞
−∞ |x(t)|2dt =

∫∞
−∞ |X(f)|2df

Thus E =
∫∞
−∞ |G(f)|2|1 + ae−2iπfτ |2df

We have G(f) = AT
√
π

2
e−2iπft0 [eiφe−π2T2(f−f0)

2
+ e−iφe−π2T2(f+f0)

2
]

In the polycyclic case |G(f)|2 ≃ A2T2π
4

(e−2π2T2(f−f0)
2
+ e−2π2T2(f+f0)

2
)

Thus E ≃ A2T2π
4

∫∞
−∞(e−2π2T2(f−f0)

2
+ e−2π2T2(f+f0)

2
)|1 + ae−2iπfτ |2df

Thus E ≃ A2T2π
4

∫∞
−∞(e−2π2T2(f−f0)

2
+ e−2π2T2(f+f0)

2
)[1 + a2 + 2a cos(2πfτ)]df

E ≃ A2T2π
2

[(1 + a2)
∫∞
−∞ e−2π2T2u2

du+ a
∫∞
−∞(e−2π2T2(f−f0)

2
+ e−2π2T2(f+f0)

2
)cos(2πfτ)df ]

E ≃ A2T2π
2

[(1 + a2)
√

π
2π2T2 + a

∫∞
−∞ e−2π2T2u2

[cos(2π(u+ f0)τ) + cos(2π(u− f0)τ)]du]

E ≃ A2T2π
2

[(1 + a2)
√

π
2π2T2 + 2a

∫∞
−∞ e−2π2T2u2

[cos(2πuτ)cos(2πf0τ)]du]

E ≃ A2T2π
2

[(1 + a2)
√

π
2π2T2 + 2a cos(2πf0τ)

∫∞
−∞ e−2π2T2u2

[cos(2πuτ)]du]

E ≃ A2T2π
2

[(1 + a2)
√

π
2π2T2 + 2a cos(2πf0τ)

√

π
2π2T2 e

− π2τ2

2π2T2 ]

E ≃ A2T
√
π

2
√
2

[(1 + a2) + 2a cos(2πf0τ)e
− τ2

2T2 ]

Remark : The energy depends in a non-obvious way on the values of τ and a. We can however note that when τ becomes large
compared to T then the energy of the signal is the addition of the energy of two Gabor wavelets, one of which is attenuated ’ee of a relative
to the other.

Average date the average time tc is calculated as the moment of order 1 of the time, considering |x(t)|2 as a density.

tc =

∫∞
−∞ t|x(t)|2dt
∫∞
−∞ |x(t)|2dt = 1

E

∫∞
−∞ t(g(t) + ag(t− τ))2dt = 1

E
[
∫∞
−∞ t(g(t))2dt+ a2

∫∞
−∞ t(g(t− τ))2dt+ 2a

∫∞
−∞ tg(t)g(t− τ)dt]

Etc ≃ t0
A2T

√
π

2
√
2

+ a2
∫∞
−∞(u+ τ)(g(u))2du+ 2aA2

∫∞
−∞ te

− (t−t0)2

T2 cos(2πf0(t− t0) + φ)e
− (t−τ−t0)2

T2 cos(2πf0(t− τ − t0) + φ)dt



Etc ≃ A2T
√
π

2
√
2

(t0 + a2t0 + a2τ) + 2aA2
∫∞
−∞(u+ t0)e

−u2+(u−τ)2

T2 cos(2πf0u+ φ) cos(2πf0(u− τ) + φ)du

Etc ≃ A2T
√
π

2
√
2

(t0 + a2t0 + a2τ) + aA2
∫∞
−∞(u+ t0)e

−2
(u−τ/2)2+τ2/4

T2 [cos(4πf0u− 2πf0τ + 2φ) + cos(2πf0τ)]du

Etc ≃ A2T
√
π

2
√
2

(t0 + a2t0 + a2τ) + aA2e
− τ2

2T2
∫∞
−∞(v + τ/2 + t0)e

− 2v2

T2 [cos(4πf0v + 2φ) + cos(2πf0τ)]dv

Etc ≃ A2T
√
π

2
√
2

(t0 + a2t0 + a2τ) + aA2e
− τ2

2T2 cos(2πf0τ)
∫∞
−∞(v + τ/2 + t0)e

− 2v2

T2 dv

Etc ≃ A2T
√
π

2
√
2

(t0 + a2t0 + a2τ) + aA2e
− τ2

2T2 cos(2πf0τ)(τ/2 + t0)
T
√
π√
2

(by parity)

Etc ≃ A2T
√
π

2
√
2

(t0 + a2t0 + a2τ + 2ae
− τ2

2T2 cos(2πf0τ)(τ/2 + t0))

tc ≃ t0+a2t0+a2τ+2a cos(2πf0τ)e
− τ2

2T2 (t0+τ/2)

(1+a2)+2a cos(2πf0τ)e
− τ2

2T2

Remark : When τ is large in front of T , the average date tc ≃ t0+a2(t0+τ)

1+a2 is the average (weight ’ee by the energy) of the dates of the

two gaborettes.

Duration at -10dB and -20 dB The duration at -10 dB, denoted ∆t−10 dB , is calculated as the duration during which the

envelope of s(t) is greater than the maximum value of s minus -10 dB. This translates to 20 log(
envelope of x(t)
maximum of x(t)

) > −10. In the case of a

wave with a replica, this calculation is difficult to carry out but we see that this duration will be of the order of a multiple of T . We prefer
to use the “rms” duration that we calculate in the next paragraph.

Duration ’rms’ The duration ’rms’, denoted ∆t is the moment of order 2 of the temporal density and is equal to (∆t)2 =

frac
∫+∞
−∞ (t− tc)2|x(t)|2dt

∫+∞
−∞ |x(t)|2dt.

In order to facilitate the calculations, and as the duration ’rms’ is independent of the date, we will set t0 = 0. In this case, tc ≃

τ
a2+a cos(2πf0τ)e

− τ2

2T2

1+a2+2a cos(2πf0τ)e
− τ2

2T2

(∆t)2 = 1
E

∫+∞
−∞ (t2 − 2t tc + t2c)[(g(t))

2 + 2ag(t)g(t− τ) + a2(g(t− τ))2]dt

By expanding, we get :

E(∆t)2 =
∫+∞
−∞ t2(g(t))2dt+ 2a

∫+∞
−∞ t2g(t)g(t− τ)dt+ a2

∫+∞
−∞ t2(g(t− τ))2

−2tc
∫+∞
−∞ t(g(t))2dt− 4atc

∫+∞
−∞ tg(t)g(t− τ)dt− 2a2tc

∫+∞
−∞ t(g(t− τ))2

+t2c
∫+∞
−∞ (g(t))2dt+ 2at2c

∫+∞
−∞ g(t)g(t− τ)dt+ a2t2c

∫+∞
−∞ (g(t− τ))2

By making changes of variables, we get:

E(∆t)2 =
∫+∞
−∞ t2(g(t))2dt+ 2a

∫+∞
−∞ t2g(t)g(t− τ)dt+ a2

∫+∞
−∞ (t+ τ)2(g(t))2

−2tc
∫+∞
−∞ t(g(t))2dt− 4atc

∫+∞
−∞ tg(t)g(t− τ)dt− 2a2tc

∫+∞
−∞ (t+ τ)(g(t))2

+t2c
∫+∞
−∞ (g(t))2dt+ 2at2c

∫+∞
−∞ g(t)g(t− τ)dt+ a2t2c

∫+∞
−∞ (g(t))2

by rearranging:

E(∆t)2 = [t2c + a2t2c + a2τ2 − 2a2tcτ ]
∫+∞
−∞ (g(t))2dt+ [−2tc + 2a2τ − 2a2tc]

∫+∞
−∞ t(g(t))2dt+ [1 + a2]

∫+∞
−∞ t2(g(t))2dt

+[2at2c ]
∫+∞
−∞ g(t)g(t− τ)dt+ [−4atc]

∫+∞
−∞ tg(t)g(t− τ)dt+ [2a]

∫+∞
−∞ t2g(t)g(t− τ)dt

E(∆t)2 = A2

2

√

π
2
T [(1 + a2)t2c + a2τ2 − 2a2tcτ + (1 + a2)T 2/4 + (2at2c − 2atcτ + aτ2/2 + aT 2/2)cos(2πf0τ)e

− τ2

2T2 ]

(∆t)2 =
t2c+(1+a2)T2

4
+a2((tc−τ)2) +(2t2c−2tcτ+τ2/2+T2/2)a cos(2πf0τ)e

− τ2

2T2

(1+a2)+2a cos(2πf0τ)e
− τ2

2T2

(∆t)2 =
t2c+

T2

4
+a2((tc−τ)2) +(2t2c−2tcτ+τ2/2)a cos(2πf0τ)e

− τ2

2T2

(1+a2)+2a cos(2πf0τ)e
− τ2

2T2

Remark : When a becomes close to zero (very weak replica), we indeed find (∆t)2 ≃ T2

4
.

Reminder : The following formulas have already been demonstrated above (and simplified in the case t0 = 0) :
∫+∞
−∞ (g(t))2dt ≃ A2

2

√

π
2
T

∫+∞
−∞ t(g(t))2dt ≃ A2

2

√

π
2
Tt0 ≃ 0

∫+∞
−∞ t2(g(t))2dt ≃ A2

2

√

π
2
T [(t0)2 + T 2/4] ≃ A2

2

√

π
2
T T2

4

∫+∞
−∞ g(t)g(t− τ)dt ≃ A2

2

√

π
2
Tcos(2πf0τ)e

− τ2

2T2

∫+∞
−∞ tg(t)g(t− τ)dt ≃ A2

2

√

π
2
Tcos(2πf0τ)e

− τ2

2T2 (t0 + τ/2) ≃ A2

2

√

π
2
Tcos(2πf0τ)e

− τ2

2T2 τ/2

∫+∞
−∞ t2g(t)g(t− τ)dt ≃ A2

2

√

π
2
Tcos(2πf0τ)e

− τ2

2T2 (t20 + τ2/4 + T 2/4) ≃ A2

2

√

π
2
Tcos(2πf0τ)e

− τ2

2T2 (τ2/4 + T 2/4)



Peak frequency The peak frequency is the frequency for which the modulus of the Fourier transform is maximal. In the case of a

complex Gabor wavelet, |X(f)| ≃ AT
√

π/2 e−π2T2(f−f0)
2 |1 + ae−2iπfτ |

|X(f)| ≃ AT
√

π/2 e−π2T2(f−f0)
2 √

1 + a2 + 2acos(2πfτ)

This maximum will occur for the value of the frequency close to f0 for which f is a multiple of 1
τ
. If τ is large then the maximum will

be very close to f0. If τ is low The maximum can be relatively far from f0, by an order of magnitude of 5 to 10% (see figure ??).

Centröıde frequency The centroid frequency is calculated as the moment of order 1 of the frequencies, considering |S(f)|2 as a
density.

fc =

∫∞
−∞ f |X(f)|2df
∫∞
−∞ |X(f)|2df = 1

E

∫∞
−∞ fA2T 2πe−2π2T2(f−f0)

2
(1 + a2 + 2acos(2πfτ)df

Efc = A2T 2π
∫∞
−∞(f + f0)e−2π2T2f2

(1 + a2 + 2acos(2π(f + f0)τ)df

Efc = A2T 2π[(1 + a2)f0
∫∞
−∞ e−2π2T2f2

+ 2a
∫∞
−∞(f + f0)(cos(2πfτ)cos(2πf0τ)− sin(2πfτ)sin(2πf0τ)e−2π2T2f2

df ]

Efc = A2T
√

π
2
(1+a2)f0 +2A2T 2πaf0 cos(2πf0τ)

∫∞
−∞ cos(2πfτ)e−2π2T2f2

df − 2A2T 2πa sin(2πf0τ)
∫∞
−∞ fsin(2πfτ)e−2π2T2f2

df ]

Efc = A2T
√

π
2
[(1 + a2)f0 + 2af0 cos(2πf0τ)e

− τ2

2T2 − aτ
πT2 sin(2πf0τ)e

− τ2

2T2 ]

fc = f0 −
aτ

πT2 e−τ2/2T2
sin(2πτf0)

1+a2+2a e−τ2/2T2
cos(2πτf0)

Bandwidth at -3 dB and -10 dB and quality factor at -3 dB The bandwidth at -3 dB, denoted ∆f−3 dB , is calculated
as the length of the frequency range during which the envelope of X(f) is greater than the maximum value of X minus -3 dB, which

is an approximation of the fact that This translates to
envelope of(f)

maximum of X(f)
> 1√

2
. As for the durations, the calculation of these values is

complicated, essentially due to the oscillation of the spectrum of period 1
τ

and we pr éfẁill calculate the ’rms’ bandwidth.

Bandwidth ’rms’ The rms bandwidth is the second moment associated with the frequency distribution and is equal to ∆f =
√

∫+∞
−∞ (f−fc)2|X(f)|2df

∫+∞
−∞ |X(f)|2df

Then E(∆f)2 = A2T 2π
∫+∞
−∞ (f − fc)2e−2π2T2(f−f0)

2
(1 + a2 + 2acos(2πfτ)df

E(∆f)2 = A2T 2π
∫+∞
−∞ (f + f0 − fc)2e−2π2T2f2

(1 + a2 + 2acos(2π(f + f0)τ)df

E(∆f)2 = A2T 2π
∫+∞
−∞ (f2 + (f0 − fc)2 + 2f(f0 − fc))e−2π2T2f2

(1 + a2 + 2acos(2πf0τ)cos(2πfτ)− 2asin(2πf0τ)sin(2πfτ))df

E(∆f)2 = A2T 2π[
∫+∞
−∞ (f2+(f0−fc)2)e−2π2T2f2

(1+a2+2acos(2πf0τ)cos(2πfτ))df−4asin(2πf0)(f0−fc)
∫+∞
−∞ fe−2π2T2f2

sin(2πfτ))df ]

E(∆f)2 = A2T 2π[(f0 − fc)2(1 + a2) 1√
2πT

+ (1 + a2)
∫+∞
−∞ f2e−2π2T2f2

df + 2a(f0 − fc)2 cos(2πf0τ)
∫+∞
−∞ e−2π2T2f2

cos(2πfτ)df

+2a cos(2πf0τ)
∫+∞
−∞ f2e−2π22f2

cos(2πfτ)df − 4asin(2πf0τ)(f0 − fc)
1√
2πT

τ
2πT2 e

−τ2/2T2
]

E(∆f)2 = A2T 2π[(f0 − fc)2(1 + a2) 1√
2πT

+ (1 + a2) 1√
2πT

1
4π2T2 + 2a(f0 − fc)2 cos(2πf0)

1√
2πT

e−τ2/2T2

+2a cos(2πf0)
1√
2πT

1
4π2T2 e

−τ2/2T2
(1− 2τ2

πT2 )− 4asin(2πf0)(f0 − fc)
1√
2πT

τ
2πT2 e

−τ2/2T2
]

E(∆f)2 = A2T
√

π
2
[(1+a2+2acos(2πf0τ)e−τ2/2T2

)((f0−fc)2+
1

4π2T2 )−a cos(2πf0)
τ2

π3T4 e
−τ2/2T2−4asin(2πf0)(f0−fc)

τ
2πT2 e

−τ2/2T2
]

(∆f)2 = (f0 − fc)2 + 1
4π2T2 − aτ

πT

cos(2πf0)
τ

π2T3 +2sin(2πf0)
f0−fc

T

1+a2+2acos(2πf0τ)

Quality factor ’rms’ The ’rms’ quality factor is Qrms = fc
∆f

= and can therefore be calculated explicitly using the above formulas.

Uncertainty product The uncertainty product or duration-bandwidth product ’rms’ equals Pincert = ∆t×∆f and can therefore
be calculated explicitly.

Autocorrelation function The autocorrelation function is defined by CS(r) =
∫+∞
−∞ s(t)s∗(t + r)dt And so, for a real Gabor

wavelet with replica, Cx(r) =
∫+∞
−∞ [g(t) + ag(t− τ)][g∗(t+ r) + ag∗(t+ r − τ)]dt

Cx(r) =
∫+∞
−∞ g(t)g∗(t+ r)dt+ a

∫+∞
−∞ g(t)g∗(t+ r − τ)dt+ a

∫+∞
−∞ g(t− τ)g∗(t+ r)dt+ a2

∫+∞
−∞ g(t− τ)g∗(t+ r − τ)dt

Cx(r) = Cg(r) + aCg(r − τ) + a
∫+∞
−∞ g(u)g∗(u+ τ + r)du+ a2

∫+∞
−∞ g(u)g∗(u+ r)du

Cx(r) = (1 + a2)Cg(r) + aCg(r − τ) + aCg(r + τ)

The figures and calculations of this report have been made in OCTAVE (Eaton et al. 2009).
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