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ABSTRACT

The low-brightness dust emission at high Galactic latitudes is of interest with respect to studying the interplay among the physical
processes involved in shaping the structure of the interstellar medium (ISM), as well as in statistical characterizations of the dust
emission as a foreground to the cosmic microwave background (CMB). Progress in this avenue of research has been hampered by the
difficulty related to separating the dust emission from the cosmic infrared background (CIB). We demonstrate that the dust and CIB may
be effectively separated based on their different structure on the sky and we use the separation to characterize the structure of diffuse
dust emission on angular scales, where the CIB is a significant component in terms of power. We used scattering transform statistics,
wavelet phase harmonics (WPH) to perform a statistical component separation using Herschel SPIRE observations. This component
separation is done only from observational data using non-Gaussian properties as a lever arm and is done at a single 250µm frequency.
This method, which we validated on mock data, gives us access to non-Gaussian statistics of the interstellar dust and an output dust map
that is essentially free from CIB contamination. Our statistical modeling characterizes the non-Gaussian structure of the diffuse ISM
down to the smallest scales observed by Herschel. We recovered the power law shape of the dust power spectrum up to k = 2 arcmin−1,
where the dust signal represents 2% of the total power. Going beyond the standard power spectra analysis, we show that the non-
Gaussian properties of the dust emission are not scale-invariant. The output dust map reveals coherent structures at the smallest scales,
which had been hidden by the CIB anisotropies. This aspect opens up new observational perspectives on the formation of structure in
the diffuse ISM, which we discuss here in reference to a previous work. We have succeeded in performing a statistical separation from
the observational data at a single frequency by using non-Gaussian statistics.

Key words. methods: statistical – dust, extinction – infrared: diffuse background

1. Introduction

Thermal emission from interstellar dust and the cosmic infrared
background (CIB) are the two main emission components of
the sky at far-infrared and sub-millimeter wavelengths. The
emission from dust is a tracer of diffuse interstellar matter
imaged for the first time across the sky by the IRAS space
mission (Gautier et al. 1992; Miville-Deschênes et al. 2007).
More recently, the Herschel space mission has provided data
at a higher angular resolution, which are useful in characteriz-
ing the filamentary structure of molecular clouds (André et al.
2010; Miville-Deschênes et al. 2010; Robitaille et al. 2019; Yahia
et al. 2021). The CIB is the diffuse background emission asso-
ciated with the dust emission from galaxies integrated over their
cosmic evolution (Hauser & Dwek 2001). It provides us with
information on galaxy evolution and the large-scale structure of
the universe (Knox et al. 2001; Béthermin et al. 2013; Planck
Collaboration XXX 2014; Maniyar et al. 2018). Power spectra are

the simplest means of analysing far-infrared maps of the sky and
statistically distinguishing dust and CIB anisotropies. At high
Galactic latitudes, the two sources of emission are entwined and
the CIB power spectrum dominates that of the emission from
diffuse interstellar matter on angular scales smaller than about
1◦ (Miville-Deschênes et al. 2002; Lagache et al. 2007; Viero
et al. 2013; Planck Collaboration XXX 2014; Mak et al. 2017).

The separation of the dust emission from CIB anisotropies is
a major difficulty, hampering the analysis of the low-brightness
emission from the diffuse interstellar medium (ISM). Dust
emission at high Galactic latitudes is of specific interest in
studying the interplay between thermal instability, interstellar
turbulence and magnetic fields in shaping the structure of the
ISM (Vázquez-Semadeni et al. 2000; Kritsuk & Norman 2002;
Saury et al. 2014; Hennebelle & Inutsuka 2019), as well as to
statistically characterize dust emission foreground to the cosmic
microwave background (CMB; Jewell 2001; Miville-Deschênes
et al. 2007).
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Several component separation methods were employed to
analyze the Planck sky maps. They were based on combinations
of frequency maps or modeling of the spectral energy distribu-
tion (SED; Planck Collaboration IV 2020). To separate the dust
emission from the CIB, we need to follow a different approach
using the structure on the sky because the two components have
very similar SEDs. The generalized needlet internal linear com-
bination (GNILC) method has led the way in this regard. Planck
Collaboration Int. XLVIII (2016a) produced dust emission maps
that are corrected for a large part of the CIB anisotropies, but at
the expense of losing the structure of the dust emission on small
angular scales, where the CIB is dominant, as well as of keep-
ing residual CIB emission on large angular scales where the dust
is dominant (Chiang & Ménard 2019). The correlation between
dust and H I emission has been extensively used to produce CIB
maps but this method does not yield a dust map independent of
H I (Boulanger et al. 1996; Planck Collaboration XXX 2014;
Lenz et al. 2019).

This paper circumvents these limitations by using scattering
transforms (Mallat 2012; Bruna & Mallat 2013). These statis-
tics are similar to convolution neural networks but are written
in an explicit mathematical form. They combine convolutions of
the input image with wavelets on several oriented scales, with a
non-linear operator to capture interactions between scales as spe-
cific imprints of non-Gaussian textures (Cheng & Ménard 2021).
Based on predefined wavelet filters, these summary statistics
can be used to characterize the non-Gaussian texture of images
without any learning step. We make use of two variants of scat-
tering transforms: the wavelet scattering transform (WST) and
the wavelet phase harmonics (WPH). The WST has been used
to analyze synthetic maps of dust total intensity and polarization
built from MHD simulations of interstellar clouds in Allys et al.
(2019), Régaldo-Saint Blancard et al. (2020), and Saydjari et al.
(2021). Allys et al. (2019) also presented a first application to a
Herschel observation of dust emission. The WPH statistics were
introduced in cosmology to analyze simulations of the large-
scale structure of the Universe by Allys et al. (2020) who showed
that they may be used to synthesize maps reproducing the non-
Gaussian texture of the input image. Régaldo-Saint Blancard
et al. (2021) used this capability to statistically separate dust
emission from data noise in Planck polarization maps, using
their different non-Gaussian properties. This paper extends this
approach to the separation of dust and CIB emission using
Herschel SPIRE observations at a single 250µm wavelength,
performing a statistical component separation relying solely on
observational data. Our scientific motivation is twofold. First, we
want to demonstrate that dust and CIB may be effectively sepa-
rated based on their different structure on the sky. Second, we
want to use the separation to characterize the structure of diffuse
dust emission at high Galactic latitude on angular scales where
the CIB is the dominant component in terms of power.

The paper is organized as follows. We present the observa-
tions we use in Sect. 2. Our component separation method is
introduced in Sect. 3 and validated on mock data in Sect. 4. In
Sect. 5, we present the results of our dust and CIB component
separation based on Herschel SPIRE observations. The output
dust map is used to characterize the non-Gaussian structure of
diffuse dust emission at high Galactic latitude in Sect. 6. The
paper results and perspectives are summarized in Sect. 7. The
paper has five appendices that present a summary of the mathe-
matical notations used in this paper (Appendix A), the specific
set of WPH statistics used in the paper (Appendix B), the H I data
used to build the mock data (Appendix C), the WPH statistics of
dust emission for the mock and Herschel data (Appendix D), and

a brief presentation of the reduced wavelet scattering transform
(RWST, Appendix E).

2. Observations

This study makes use of observations obtained with the Spec-
tral and Photometric Imaging REceiver (SPIRE) on the Herschel
Space Observatory (Griffin et al. 2010). The SPIRE photometer
was used to image the sky emission in three broad spectral bands
centred at 250, 350, and 500µm. We only use the 250µm (corre-
sponding to a frequency of 1200 GHz) images, which provide an
angular resolution of 18′′ (full width at half maximum, FWHM,
of the beam).

We aim to separate the dust and CIB emissions in an obser-
vation of diffuse interstellar matter in the so-called Spider region
at a high Galactic latitude. To characterize the CIB statistics,
we also made use of a SPIRE observation towards the Lockman
Hole (LH), a sky area known to have a small amount of interstel-
lar matter from H I 21 cm observations (Lockman et al. 1986).
The Spider observations are presented in Sect. 2.1 and the LH
one is given in Sect. 2.2.

2.1. Spider region

The Spider field (named for its prominent “legs” emanating from
a central “body,” Marchal & Martin 2023, and references within)
targets diffuse interstellar matter at high Galactic latitudes along
a segment of the North Celestial Pole (NCP) Loop (Heiles 1984,
1989; Meyer & Roth 1991), a conspicuous feature of H I and dust
emission extending over ∼30◦ in the northern sky. The SPIRE
observations of this field were performed in the same way as
described by Miville-Deschênes et al. (2010) for the Polaris field.
The Spider field was observed twice in different directions.

To have two independent maps (one for each scanning direc-
tion) with distinct noise realizations, we use maps from the
Level 2 stage of the data processing. These maps are combined
at the Level 3 stage of the data processing. We checked that
the Level 2 and 3 maps of the Spider region differ only by
a signal compatible with instrumental noise. The maps were
downloaded from The Herschel Archive1. We refer to the start
guide to Herschel-SPIRE2 for the data processing and map
characteristics.

Here, we refer to the two Spider maps as dS1 and dS2. These
maps contain very bright galaxies that have a strong influence
on our statistical analysis. We removed the ∼70 bright sources
whose peak brightness is over 6 MJy/sr by replacing the corre-
sponding pixels by a close similar area of the same map. We
identified these sources directly from the maps, but we have ver-
ified that they are all extragalactic. We also checked that our
results are not particularly sensitive to the way we chose to
remove the sources. Then, we can define:

dS =
dS1 + dS2

2
, dN =

dS1 − dS2

2
. (1)

The mean map, dS, images the total (dust+CIB) noisy infrared
emission. We take the half-difference map, dN, as a statistical
realization of the instrumental noise of dS. We note that this
map does not include instrument systematics that would have
exactly the same imprint in both dS1 and dS2. The two images are
displayed in Fig. 1. These are squares with sides of 1144 pixels

1 The file names are hspirepsw1342231359_20pxmp_1462623735063
and hspirepsw1342231360_20pxmp_1462624580145.
2 https://www.cosmos.esa.int/documents/12133/1035800/
QUICK-START+GUIDE+TO+HERSCHEL-SPIRE
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Fig. 1. Herschel SPIRE maps at 250µm. Left: map of the Spider field, dS. Center: map of the LH field, dL. Right: data noise for the Spider
observations, dN.

corresponding to 1.91 degrees on the sky3. The pixel size of the
images is 6′′.

2.2. LH region

LH is one of the fields targeted by the Herschel Multi-tiered
Extragalactic Survey (HERMES, Oliver et al. 2012). Viero et al.
(2013) have used the data to characterize the structure of the CIB
with the power spectra. Their analysis shows that on this field the
contamination of the extended emission by Galactic dust is much
smaller than in the Spider field. We have used the Level 3 image.

The LH map at 250µm was downloaded from the Herschel
Database in Marseille (HeDaM4, Shirley et al. 2021), where the
field is referred to as LOCKMAN-SWIRE. The image obtained
after cropping the irregular edges and removing the ∼40 galax-
ies whose peak brightness is over 6 MJy sr−1 is called dL and is
presented in Fig. 1. The LH image is also a square with sides of
1144 pixels corresponding to 1.91 degrees on the sky. The pixel
size is 6′′ as for the Spider maps.

2.3. Power spectra

Figure 2 presents the power spectra of the dS, dL, and dN maps.
The figure also includes the power spectrum of a SPIRE obser-
vation of Neptune at 250µm. As in Miville-Deschênes et al.
(2010), we consider Neptune as a point-like source and use this
observation to compute the power spectrum of the point spread
function (PSF).

The noise spectrum is flat for k > 0.2 arcmin−1. The flatten-
ing of the dS and dL spectra to different constant values at high
k indicates that the noise power is one order of magnitude larger
for the Spider observation. The dL spectrum shows the progres-
sive attenuation of the sky emission by the telescope beam for
k > 1 arcmin−1. This attenuation is not apparent for the dS map
because the noise amplitude is higher.

3 To apply our algorithm to non-periodic maps requires to use addi-
tional pixels around their edges, that cannot be used for the subsequent
analysis. In this paper, we only describe the central part of the map on
which the analysis is performed. For instance, the component separa-
tion of the dS map involves a larger map of 1400 × 1400 pixels, but we
describe here only the corresponding 1144 × 1144 central region.
4 https://hedam.lam.fr
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Fig. 2. Power spectra of Herschel SPIRE maps. The power spectra of
the Spider map (dS) and data noise (dN) are compared to those of the
LH field (dL) with the dust contribution, sL, as estimated by Viero et al.
(2013). The spectrum of an observation of Neptune (dPSF), plotted with
an arbitrary normalization, indicates the beam attenuation at high k. The
wavenumber in abscissa is k = 1/θ. These spectra show that the CIB and
noise components dominate the dust signal at the smallest scales in the
dS map.

We checked that the power spectrum for the LH field is con-
sistent with the one presented by Viero et al. (2013). In Fig. 2,
we also show the power spectrum of the dust emission in the LH
field as estimated by Viero et al. (2013). We used their Eqs. (8)
with P0 = 4.5 × 105 Jy2 sr−1 and αc = −3.66. As the dust con-
tribution is small except at the largest scale, the power spectrum
of dL is essentially that of the CIB. The power spectrum of dS
is dust dominated for k < 0.2 arcmin−1. The CIB contribution is
significant for higher k.

3. Component separation method

In this section, we explain the procedure that allows us to
derive a statistical model of the dust emission from the Spider
Herschel observations. We present the mathematical formalism
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of the problem in Sect. 3.1 and our algorithm implementation in
Sect. 3.2.

3.1. Mathematical formalism

We want to separate the dust emission from the CIB and the
Herschel instrumental noise. This problem can be written as
a system of three equations involving the three observational
maps: dS, dL, and dN. The sky maps dS and dL include the dust,
CIB, and noise, while the difference map dN is a noise map that
is free from dust and from the CIB. We thus write:

dS = sS + cS + nS,

dL = sL + cL + nL,

dN = nN,

(2)

where s, c, and n terms represent the dust, CIB, and noise
contributions to each image, respectively.

Our scientific objective is twofold. First, we aim to derive
a statistical model of the dust emission from the Spider obser-
vation expressed in terms of WPH statistics. Second, we aim
to derive an estimate of the Spider dust map sS as one specific
realization of the dust model.

We simplify Eq. (2), neglecting sL with respect to cL and
sS, and nL with respect to nS and cL. These simplifications are
supported by the comparison of the dS, dL, and sL spectra in
Fig. 2. In the following, we also consider that the CIB is a
statistically isotropic signal on the celestial sphere, ignoring its
correlation with the large-scale structure of the universe (Planck
Collaboration XVIII 2014; Serra et al. 2014).

We rewrite Eq. (2) as:{
dS = sS + cS + nS,

c′L ≡ dL + dN = cL + nN,
(3)

where we have introduced the map, c′L, which represents a
hypothetical observation of LH with the data noise statistically
matching that of the Spider observation. We also introduce c′S =
cS + nS to rewrite Eq. (3) in terms of the WPH statistics:{
Φ(dS) = Φ(sS + c′S),
Φ(c′S) = Φ(c′L),

(4)

where Φ(m) are the WPH statistics (see Appendix B) computed
for a map, m. The second equation follows from the isotropy of
the CIB on the celestial sphere.

These equations lead us to consider two statistical processes:
S associated with the dust emission and C′ associated with the
sum of the CIB and the Spider data noise. Hereafter, we refer to
S and C′ as the dust and contamination, respectively. The map
sS is a realization of S , while the maps c′S and c′L are distinct
realizations of C′. From the map, c′L, we can directly compute
the WPH statistics that characterize C′. To characterize S we use
a statistical component separation algorithm explained below.

3.2. Algorithm principle

The framework we used for statistical component sepa-
ration has already been studied through the denoising of
Planck interstellar dust polarization maps on a flat sky
using WPH (Régaldo-Saint Blancard et al. 2021) and on the
sphere, using an implementation of cross-WST on healpix
(Delouis et al. 2022). We followed and extended the work of

Régaldo-Saint Blancard et al. (2021). This method consists
of an iterative minimization in pixel space of a loss function.
We performed an iteration on a dust map, u, to converge to an
estimator s̃S of sS, such that the u + c′S map and the dS map
become “close enough” in terms of WPH statistics.

The quantitative description of the algorithm is described by
the loss function. The expression of our loss function L(u) is:

L(u) = L1(u) + α L2(u), (5)

where

L1(u) = ⟨||Φ(u + c′S,i) − Φ(dS)||2⟩i,

L2(u) = ||Φ(dS − u) − Φ(c′S)||2,
(6)

where || · || stands for the Euclidean norm and ⟨·⟩i stands for the
average over i and α is a real number that will be chosen to bal-
ance the two loss terms. The set {c′S,i}i<N represents N sky maps
generated from the WPH statistics Φ(c′L) (see Appendix B.2).
We use the WPH statistics defined as in Régaldo-Saint Blancard
et al. (2022) and refer to Appendix B.1 for technical details. The
WPH statistics used in this paper are made of 3441 coefficients.
This definition includes a normalization which is done by using
two reference maps, m1 and m2, one for each of the loss terms.

Our loss function, L(u), is composed of two non-orthogonal
terms. The L1 term is the loss function used in Régaldo-
Saint Blancard et al. (2021). It follows directly from the top line
of Eq. (4). It constrains the u map such that if we add an indepen-
dent realization of c′S, the sum has the same WPH statistics as dS.
We averaged over several syntheses of c′S so that the separation
does not depend on the deterministic properties of one specific
realization of C′. The L2 term follows from the bottom line of
Eq. (4). It constrains the dS − u map, which we want to converge
to c′S = dS− sS to have the same WPH statistics as c′S. In Régaldo-
Saint Blancard et al. (2021), the contamination was a piece-wise
Gaussian noise, while in our case, C′ is a non-Gaussian process.
Experimentally, we found that the L2(u) term is necessary to
account for the non-Gaussianity of C′.

Recently, Régaldo-Saint Blancard et al. (2022) introduced
cross-WPH statistics to capture the non-Gaussian correlations
between different maps. They applied it successfully to the build-
ing of multifrequency dust generative models. Simultaneously,
Delouis et al. (2022) developed cross-WST statistics on the
sphere and applied it to the denoising of Planck interstellar dust
polarization full-sky maps. The success of this method lies in the
use of cross-statistics between half-missions maps with distinct
data noises, and the TE dust correlation (Planck Collaboration
Int. XXX 2016b), which makes use of the high signal-to-noise
ratio (S/N) of the dust total intensity map. In our case, the same
CIB sky signal is present in both half-missions maps, but we
could have added a loss term based on the dust-H I correlation.
We did not implement such a term because the H I data (Blagrave
et al. 2017) has a lower angular resolution than the Herschel maps
and a higher noise level.

To implement the algorithm, we need to choose α, the two
reference maps, m1 and m2, used for the loss normalization and
the initial value, u0, of the u map. These choices will be dis-
cussed in the following sections. At the end of the optimization,
we converge to a map s̃S. The WPH statistics of s̃S constitute the
dust statistical model. The model may be used to generate new
realizations where the optimal choice of the initial map depends
on the scientific objective.

The maps generated from the statistical model have structure
on all scales, including those where the power of the contamina-
tion is much larger than that of the dust. Our goal is to reproduce
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Fig. 3. Input and output maps for the component separation applied to the mock data. The three top images show the input dust map sm
S (left), one

example of the input contamination c′ m,i
S (middle), and the mock data dm,i

S (right). The three bottom images show output maps from the component
separation: the dust map s̃m,i

S (left), the contamination c̃′ m,i
S (middle), and the difference sm

S − s̃m,i
S (right).

the non-Gaussian dust statistics even on the scales where we do
not succeed in reproducing deterministically the true dust map
(Régaldo-Saint Blancard et al. 2021; Delouis et al. 2022). Our
approach differs from other attempts to separate the dust and CIB
(Remazeilles et al. 2011) in two main ways: our component sep-
aration is based on non-Gaussian statistics and we do not seek to
minimize the mean squared error in pixel space (see, e.g., Wiener
1949).

4. Validation on mock data

To validate our method, we applied our component separa-
tion algorithm to mock data. The mock data are introduced in
Sect. 4.1. We compare input and output maps in Sect. 4.2. In
Sect. 4.3, we show that the output maps reproduce statistics of
the input mock data, which are used as diagnostics in interstellar
astrophysics.

4.1. Mock data

We present how we built the mock data from observations to be
as close as possible to the real data. We produce a set of mock
maps defined as:

dm,i
S = sm

S + c′ m,i
S , (7)

where m stands for mock data and the i index indicates the dif-
ferent mock maps. Guided by the correlation between dust and
gas in the high latitude sky (Lenz et al. 2019), we use an inte-
grated intensity map, IH I of 21 cm data to build sm

S as a pure

dust map free from the CIB. Specifically, we made use of the DF
dataset, located at (α, δ) = (10h30m,73◦48′) (i.e., centred on the
Spider field) that was part of the DHIGLS5 H I survey (Blagrave
et al. 2017) with the Synthesis Telescope (ST) at the Dominion
Radio Astrophysical Observatory. A detailed description of the
DF dataset is presented in Appendix C, along with the procedure
used to reduce noise in the data using the Gaussian decomposi-
tion algorithm ROHSA (Marchal et al. 2019). The velocity range
of integration is −9.7 < v < 26.5 km s−1. The IH I map is a square
with 312 pixels on each side corresponding to 5.2 degrees on the
sky. The sky region covered by the IH I map includes the one
covered by the dS map.

To obtain sm
S , we scaled the IH I map, so that the power

spectrum of dm,i
S would approximately match that of dS. The sm

S
map is used as a spatial template of clean dust emission at the
Herschel resolution. The mock dust map is presented in the top
left panel of Fig. 3. For the contamination, we use the c′L map
that combines two Herschel maps: the LH CIB map, dL, and the
noise map, dN, of the Spider observation. Since the sm

S map has
only 312 × 312 pixels, we cut the 1144 × 1144 contamination
map, c′L, into nine independent patches of equal areas of 312 ×
312 pixels. These patches allowed us to take into account the spa-
tial variations of the CIB statistics over the LH region. They were
combined into 72 independent pairs; for each pair, we used the
first patch to produce the mock data and the second one as input
to learn the statistics of the contamination. The mock dm,i

S were

5 DRAO H I Intermediate Galactic Latitude Survey: https://www.
cita.utoronto.ca/DHIGLS/
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thus constructed as the sum of c′ m,i
S and sm

S . One pair of maps
{c′ m,i

S , dm,i
S } is plotted next to the sm

S map in Fig. 3.
We used the set to run our separation algorithm on these 72

different cases. The mean and the standard deviation of these
results allow to verify that the algorithm does not produce a sig-
nificant bias on the statistics of the dust map. Unfortunately, our
validation is based on a small sample because the 72 cases are
not independent. However, we are confident that this method,
which allows us to take into account the non-Gaussianity of the
CIB encoded in the observations, gives a satisfactory check of
the significance of any potential bias. Using WPH syntheses
(Appendix B.2), we could have generated more non-Gaussian
realizations of the contamination to better sample the chance
correlation with the dust mock map, but this possibility was
constrained by the required computation time. It is important to
take into account the variance of the CIB statistics to verify the
algorithm ability to determine the dust statistics when there are
small differences between the statistics of the patch, c′ m, j

L , used
to model the contamination, with respect to those of the con-
tamination in dm,i

S . This is only indicative because the variance
between the contamination patches is not necessarily commen-
surate with the CIB variance on the sky between the LH and
Spider fields.

4.2. Implementation of the component separation and results

Here, we describe the implementation of the component separa-
tion algorithm before presenting the output images. To apply the
algorithm, we made the following choices for the initial map, u0,
the maps used for the loss normalizations, m1 and m2, and the
inter-loss weight, α (Sect. 3.2).

As in Régaldo-Saint Blancard et al. (2021), we chose u0 =

dm,i
S to obtain an output dust map reproducing the observed map

on scales where the dust emission dominates. The m1 and m2
maps are used to normalize the WPH statistics versus scale inL1
and L2. The simplest normalization would be to use the mock
observation dm,i

S for m1 and a contamination map c′ m,i
L for m2.

Régaldo-Saint Blancard et al. (2021) showed that this choice for
m1 is not optimal to reproduce the dust WPH statistics on the
smallest scales, where the contamination is dominant. Ideally,
we would need to know beforehand the dust power spectrum to
give the appropriate weight to the dust WPH statistics. In prac-
tice, we ran the algorithm in two steps. First, with m1 = dm,i

S
to converge to a first dust map, s̃m,i

S,0, which does not reproduce
the non-Gaussian statistics well, but has the proper dust power
spectrum. For this first run, we only used the first loss term, L1,
computed on a subset of WPH statistics that only contain power
spectrum-like terms.

Second, we ran the algorithm with the two loss terms with
m1 = s̃m,i

S,0 and m2 = c′ m,i
L . We choose α to give more weight to

L1 than to L2 at the start of the gradient descent because we
want the first loss to dominate at this point. This is because the
second loss term is initially applied to an identically zero map,
since u0 = dS, and thus contains no information. We expect L2
to help dS − u to converge to the statistics of the contamination in
a second stage. We set α such that L1(u0) ∼ 10α L2(u0) and find
that the result of the separation is only weakly dependent on this
specific choice. For the validation algorithm, a run takes about
2 h on a 32 GB GPU.

The WPH statistics of dm,i
S , sm

S , c′ m,i
S , s̃m,i

S , and c̃′ m,i
S are pre-

sented in Fig. D.1 and discussed in Appendix D. The figure
shows that our specific choice of {u0,m1,m2, α} allows us to
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Fig. 4. Power spectra of the input and output maps of the component
separation applied to the mock data. The figure shows the power spectra
of dm,i

S , sm
S , c′ m,i

S , s̃m,i
S , c̃′ m,i

S , and sm
S − s̃m,i

S as well as the cross spectrum
between sm

S and s̃m,i
S . The notation ⟨·⟩i represents the mean of the spec-

tra computed over the 72 separation runs. The colored bands represent
±1σ error-bars, computed as the standard deviation of these spectra.
The component separation allows to recover the power spectra of the
input maps within statistical uncertainties.

recover the WPH statistics of dust within error bars at all scales.
This validates our algorithm with respect to our primary goal,
which is to properly recover the non-Gaussian statistics of dust
emission. Figure 3 presents the output maps of our separation
algorithm applied on dm,i

S . Comparing by eye s̃m,i
S with sm

S , we
see that we have efficiently removed the contamination without
losing the non-Gaussian structure of the dust emission down to
the smallest scales. The comparison of c̃′ m,i

S and c′ m,i
S is equally

satisfactory. The standard deviation of sm
S , c′ m,i

S , dm,i
S , s̃m,i

S , c̃′ m,i
S ,

and sm,i
S − s̃m,i

S are 2.39, 1.17, 2.61, 2.34, 1.17, and 0.64, respec-
tively. The dm,i

S mock map does not exactly resemble the Herschel
dS one because the first covers a much larger sky area than
the second. The sky region covered by the dS map corresponds
approximately to the quarter at the bottom left of dm,i

S .
In Fig. 4, we present the power spectra of the six maps shown

in Fig. 3, plus the cross spectrum between sm
S and s̃m,i

S . These
spectra have been computed on apodized maps and binned in
order to lower the statistical variance at large values of k. Given
the power spectra of sm

S and s̃m,i
S are very close at all scales,

the separation is able to recover the power spectrum of the dust
map more than one order of magnitude under the contamina-
tion. The power spectra of c′ m,i

S and c̃′ m,i
S are also very close,

which could be expected since its directly constrained by the L2
loss term. It shows the ability of our method to extract a realistic
contamination from the components mixture.

The cross spectrum ⟨sm
S × s̃m,i

S ⟩i shows the transition from
a deterministic to a statistical separation at the scale of k =
0.7 arcmin−1, where the dust power becomes lower than that of
the contamination. This transition is similar to that reported by
Régaldo-Saint Blancard et al. (2021) and Delouis et al. (2022) for
the denoising of Planck dust polarization maps. On the smallest
scales, sm

S and s̃m,i
S are two independent realizations of the dust

statistics. This explains the factor of 2 difference between the
power spectrum of sm

S − s̃m,i
S and those of sm

S and s̃m,i
S . Indeed, we

see coherent features distributed at small scales in the difference
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Fig. 5. PDFs of the dust intensity for the input and output maps of the
component separation applied to the mock data. The PDFs of dm,i

S , sm
S ,

s̃m,i
S , c′ m,i

S , and c̃′ m,i
S are compared. The color bands represent ±1σ error-

bars.

map at the bottom right corner of Fig. 3, which testify to the
displacement of structures from sm

S to s̃m,i
S .

4.3. Non-Gaussian diagnostic for dust astrophysics

We show that the dust output maps reproduce statistics used as
diagnostics to characterize the non-Gaussianity of interstellar
imaging observations. We considered the probability distribu-
tion functions (PDFs) of the intensity and its spatial increments
and the reduced wavelet scattering transform (RWST, Allys et al.
2019). The notation ⟨·⟩i represents the mean of the statistics com-
puted over our set of 72 separations (Sect. 4.1), whereas the error
bar is the standard deviation.

Figure 5 presents the PDFs of the dust intensity, which is
commonly used as a diagnostic of the structure of molecular
clouds (Burkhart 2021; Lombardi et al. 2015). The PDF of dm,i

S is
clearly biased towards low and high values by the contamination.
After the component separation we recover very well, within sta-
tistical uncertainties, the PDF of the dust map sm

S . The PDF of the
contamination map c′ m,i

S is also well recovered.
Figure 6 shows PDFs of the increments of the dust emission

for three lags. The increment at a position x for a lag l in pixels is
the set of differences δIl(x) = I(x) − I(x + l) with l < |l| < l + 1.
Such PDFs have been computed on velocity maps (Hily-Blant
et al. 2008) and polarization maps (Régaldo-Saint Blancard et al.
2021) to characterize the intermittence of turbulence in the ISM.
The PDF of dm,i

S is far more Gaussian than that of sm
S , especially

for small pixel lags where the impact of the contamination is
the largest. For the three lags, the PDF of s̃m,i

S matches the one
of sm

S within statistical uncertainties over at least three orders of
magnitude.

The RWST statistics are low-dimensional non-Gaussian
interpretable statistics that has found many applications in astro-
physics (Allys et al. 2019; Régaldo-Saint Blancard et al. 2020;
Saydjari et al. 2021). They are briefly presented in Appendix E.
We use here the S iso

1 , S aniso
1 , S iso,1

2 , and S iso,2
2 coefficients.

Figure 7 presents those RWST statistics for dm,i
S , sm

S and s̃m,i
S .The

S iso
1 and S aniso

1 characterize the amplitude as well as the level of
anisotropy as a function of scales, respectively. The S iso,1

2 char-
acterize the couplings between different scales, while the S iso,2

2

describe their isotropic angular modulation (Allys et al. 2019).
The RWST statistics of dm,i

S are strongly biased by the contami-
nation. We can also notice that the RWST statistics of sm

S and s̃m,i
S

are very close with respect to that of dm,i
S at most of the scales,

but we can notice small discrepancies at the smallest scales.
In the three examples presented in Figs. 5–7 we see that these

non-Gaussian statistics of sm
S are very well recovered through our

component separation method. This result illustrates the pos-
sibility of using the WPH model to determine non-Gaussian
statistics that are not directly constrained in the component sep-
aration. It demonstrates the relevance of the WPH statistics
for astrophysics. We point out the large difference between the
statistics of dm,i

S and those of sm
S , which shows that the compo-

nent separation step is essential to build a precise non-Gaussian
statistical model of the dust emission.

5. Application to Herschel SPIRE observations

We applied our component separation method to the Herschel
observation of the Spider field, dS (Sect. 5.1). The power spec-
trum of the output map is presented and analyzed in Sect. 5.2. In
Sect. 5.3, we present images that highlight a main non-Gaussian
feature of the dust maps: the correlation between structures
across scales.

5.1. Herschel separation results

Our algorithm is applied to the dS map as described in Sect. 4.2.
We increased the pixel size of the image from 6′′ to 12′′ because
the dust emission is highly attenuated by the beam on those
scales (more than five orders of magnitude at 6′′). This resam-
pling is done using a low-pass filter in Fourier space with kmax =
2.5 arcmin−1 equal to the Nyquist frequency for 12′′ pixels. This
filtering does not induce ringing in the map because the beam
attenuation on the signal power at k = 2.5 arcmin−1 is large
(about a factor 65). Furthermore, for the purposes of normal-
ization, it allows us to keep the exact same procedure from the
validation on mock data to this case.

The component separation algorithm was applied according
to the steps given in Sect. 4.2 for the mock data. We choose u0 =
dS for the initial map. First, we run the algorithm using only the
L1 loss term, computed on a subset of WPH statistics that only
contain power spectrum-like terms, with m1 = dS to produce an
intermediate dust map s̃S,0. Second, we run the algorithm using
the two loss terms with m1 = s̃S,0 and m2 = c′L. We set α such
that L1(u0) ∼ 10α L2(u0). In this case, a run of the algorithm
takes about 8 h on a 32 GB GPU.

In Fig. 8, we present the output maps of our separation algo-
rithm applied on the Spider Herschel observation. From a visual
point of view, the results are very satisfactory: it indeed seems
that most of the CIB contamination has been identified as such.
It is notably the case of all galaxies that are individually resolved,
which is not surprising because they have an extremely clear
non-Gaussian signature, both in terms of frequency and spa-
tial location. Conversely, it does not seem that structures related
to Galactic dust have leaked to the reconstructed contamination
above the scales where it begins to dominate. This is impres-
sive for results that have been obtained from three observational
patches only. It should be noted, however, that the CIB recon-
struction has visual defects at the position of the very bright
horizontal Galactic dust structure at the top of the image. We
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Fig. 6. PDFs of increments of the dust intensity for the input and output maps of the component separation applied to the mock data. The PDFs of
dm,i

S , sm
S and s̃m,i

S are compared for three lag values: 2 pixels (left), 8 (middle), and 32 (right). The PDFs are plotted as a function of δI/σl, where σl
is the standard deviation of the increments of sm

S at lag l. The colored bands represent ±1σ error-bars.
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Fig. 8. Input and output maps for the component separation applied to Herschel SPIRE maps at 250µm. Left: map of the Spider field dS. Center:
output dust map s̃S. Right: output contamination map c̃′S. The dS map is separated into two components: the dust, s̃S, and the CIB+noise contami-
nation, c̃′S.
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believe that this is due to the limitation of considering the dust
emission as a statistically homogeneous signal6.

The WPH statistics of the output and input Spider maps s̃S
and dS are discussed in Appendix D and compared in Fig. D.2.
The WPH statistics of s̃S constitute our statistical model of the
dust emission. Figure D.2 also presents the statistics of c′L and
c̃′S. The main scientific results of the component separation algo-
rithm are the statistics of the dust emission and, in particular, its
WPH statistics. They are obtained from the s̃S map, which is a
realization of the estimated WPH statistical model of the dust
emission, conditioned by its large scales, where the dust power
is dominant. The s̃S map is then highly correlated at large scales
with the dS map, up to a scale where there is a transition from
a deterministic to a statistical behavior (Régaldo-Saint Blancard
et al. 2021; Delouis et al. 2022).

From the WPH statistical model, we can generate diverse
dust maps depending on the specific choice of the initial map,
u0, and the scientific goal. For example, we can use an H I map
as initial condition to ensure that it is decorrelated from the CIB.
For other statistical applications, it is useful to have multiple
realizations of the dust emission. In terms of this ability to gen-
erate various dust maps, our method differs from deterministic
component separations.

Once we ran the component separation algorithm on the
Herschel observation, we obtained a dust map that provides
us with an estimate of the non-Gaussian statistics of the dust
emission, which are not biased by the CIB and noise. We then
estimated the error bars on these dust statistics as follows. We
did not use the error bars determined on the mock data because
the statistics of the mock dust map only approximate the true
statistics of the dust emission, in particular, because it is based
on an H I observation with a lower resolution than the one of the
Herschel observations. First, we used the WPH synthesis method
(described in Appendix B.2) to synthesize ten new realizations
of the dust from our separated dust map, s̃S, and ten new real-
izations of the contamination from the contamination map c′L.
Summing these new dust and contamination maps, we obtain
ten mock mixture maps, to which we apply the component sep-
aration algorithm to obtain ten new separated dust maps. The
standard deviations of the statistics computed over these ten dust
maps are then taken as error bars. We note that in this proce-
dure, we cannot use patches of the LH and noise maps to define
different contamination samples because the Spider image is as
large as them. Unfortunately, this does not allow us to take into
account the spatial variations of the contamination statistics in
our estimate of the error bars.

5.2. Power spectra

Figure 9 presents the beam-corrected power spectrum of dS,
the beam-corrected power spectrum of s̃S, and its power-law
fit. These spectra have been computed on apodized maps and
binned in order to lower the statistical variance at large k. At
k = 2 arcmin−1, the power of s̃S is two orders of magnitude lower
than that of dS.

Figure 9 shows that the power spectrum of s̃S is very close
to a power-law after beam correction. To estimate the spectral
index of the power-law and its uncertainty, we need to add to
the component separation uncertainty the cosmic variance. We
must do this because we characterize a statistical process using

6 A solution to this problem is to impose multiple constraints dur-
ing the component separations by using different local masks, as done
in Delouis et al. (2022). However, we did not implement this approach
due to the lack of a sufficient number of pixels.
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Fig. 9. Power spectra of the input and output maps for the component
separation applied to Herschel SPIRE maps at 250µm. Top: beam-
corrected power spectrum of dS, beam-corrected power spectrum of s̃S
and its power-law fit. Bottom: ratio with the power-law fit. The colored
bands represent ±1σ error-bars. The component separation extends the
scale range where the dust power spectrum is found to have a power-law
shape by a factor of 6.

an observation (one realization of the process) of finite sky area
A. The standard deviation of the dust power spectrum computed
at wavenumber k is:

σk =

√
2

Nk
P(k), (8)

where Nk is the number of modes at wavenumber k. This leads
to

σk =

√
4π
A

√
1

4π2k∆k
P(k), (9)

where the wavenumber k and the bin size ∆k are expressed in
rad−1 (Scott et al. 1994; Knox 1995). We compute the total uncer-
tainty as the quadratic sum of σk and the component separation
uncertainty and perform a power-law fit of the beam-corrected
power spectrum of s̃S in log scale. The bottom panel of Fig. 9
presents the beam-corrected power spectra of dS and s̃S divided
by the power-law fit7. We can see that the power-law fits well
the beam-corrected power spectrum of s̃S until k = 2 arcmin−1.
This result is satisfactory because it indicates that the compo-
nent separation algorithm did not filter out the small scales up
to a k value, where the power of s̃S is about 2% of that of dS.
The maximum wavenumber up to which the power-law shape is
measured is thus increased by almost a decade by the component
separation.

The slope of the spectrum is −2.95 ± 0.04. We compare this
fit result with values measured for the Polaris Flare, a brighter
field observed by Herschel (Miville-Deschênes et al. 2010), as
well as for a diffuse cloud using Planck, WISE and optical data
(Miville-Deschênes et al. 2016). In both cases, the CIB is sub-
dominant and is neglected. The power spectrum of the dust maps

7 The peak appearing in the dust power spectra at k = 0.1 arcmin−1

corresponds, in Fourier space, to bright spots on an hexagonal pattern.
We believe that it reflects the pattern of the SPIRE array of bolometers.

A1, page 9 of 17



Auclair, C., et al.: A&A, 681, A1 (2024)

dS increments at θ = 0.4 arcmin dS increments at θ = 0.8 arcmin dS increments at θ = 1.6 arcmin

s̃S increments at θ = 0.4 arcmin s̃S increments at θ = 0.8 arcmin s̃S increments at θ = 1.6 arcmin

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Fig. 10. Maps of increments for the component separation applied to Herschel Spider observations. The Neperian logarithm of the absolute value
of the increments computed at θ = 0.4, 0.8, and 1.6 arcmin lags are compared for the input (dS, top row) and output (s̃S, bottom row) maps. We
substracted the log of the standard deviation of each map. Zooming in on these maps allows for a review of the smallest scales.

is a power-law in both fields, but the slope in log scale goes from
−2.65 in Polaris to −2.9± 0.1 for the diffuse cloud. The slope we
find is consistent with the latter value.

5.3. Coherent structures

The component separation allows us to identify coherent struc-
tures that are hidden by the CIB in the SPIRE maps. To illustrate
this result, we computed the maps with increments for different
lags, presented in this work. Computed on a map I at a lag l,
the pixel at the position x of the increment map is the mean of
{I(x)− I(x′), |x− x′| = l}. In the following, the dust statistics are
computed at 0.4, 0.8, and 1.6 arcmin. These scales corresponds
to wavenumbers 2.5, 1.25, and 0.625 arcmin−1.

Figure 10 shows the increment maps of dS and s̃S. One can
identify coherent structures on both sets of increments maps,
with a much improved contrast for s̃S. The component separa-
tion also highlights the correlation between coherent structures
at different scales. This result extends earlier results obtained
with wavelet convolution of IRAS sky maps (Abergel et al. 1996;
Jewell 2001; Miville-Deschênes et al. 2007) and with Herschel
observations on brighter clouds (Robitaille et al. 2019) to smaller
angular scales.

6. Non-Gaussian statistics of the diffuse dust
emission

Here, we quantify the non-Gaussian statistics of diffuse dust
emission in the Spider field and compare our results with earlier
studies.

6.1. Coherent structures across scales

The RWST statistics (see Appendix E) provide statistical insights
into the multiscale filamentary structure of the cold neutral
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Fig. 11. RWST statistics of the output dust map for the component sep-
aration applied to Herschel SPIRE maps at 250µm. The S iso,1

2 (left) and
S iso,2

2 (right) coefficients of s̃S and s̃G
S are compared. These coefficients

correspond respectively to the couplings between dyadic scales and their
angular modulation. They are normalized with respect to the S iso

1 and are
plotted as a function of j2 − j1 for j1 ∈ [0, J − 1] and j2 ∈ [ j1 + 1, J − 1].
Each curve corresponds to a given j1. The j2 − j1 differences on the
bottom axes correspond to ratio of angular scales θ2/θ1 on the top axes.
The colored bands represent ±1σ error-bars. These coefficients testify
of the not-scale invariance and the filamentary structure of the output
dust map s̃S.

medium. The dust and CIB separation allows us to expand on
the analysis of Herschel and H I data presented by Allys et al.
(2019) and Lei & Clark (2023).

Figure 11 presents two RWST coefficients that characterize
correlations between scales (Allys et al. 2019). Both are plotted
versus the scale ratio ( j2 − j1). In each plot, the s̃S statistics are
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Fig. 12. Increment PDFs of the input and output dust maps for the component separation applied to Herschel SPIRE maps at 250µm. The increment
δI of dS, s̃S, and s̃G

S are compared at θ = 0.4, 0.8, and 1.6 arcmin lags. The PDFs are displayed as a function of δI/σθ, where σθ is the standard
deviation of the increments of s̃S at lag θ. The colored bands represent ±1σ error-bars.
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Fig. 13. Wavelet coefficents of the input and output dust maps for the component separation applied on the Herschel Spider map. The PDFs of the
real part of the wavelet coefficients of dS, s̃S, and s̃G

S are compared at scales θ = 0.4, 0.8, and 1.6′. They are displayed as a function of I ∗ ψθ/σθ

where ψθ is the wavelet at scale θ and σθ is the standard deviation of the wavelet coefficients. We employed the same oriented wavelets as those
used to calculate WPH statistics. The PDFs are computed over all the pixels of the eight convolution maps obtained using the wavelets of different
orientations. The colored bands represent ±1σ error-bars.

compared to those of the map s̃G
S obtained by randomizing the

phase of the Fourier transform of s̃S. This comparison highlights
deviations from Gaussianity. Unlike the Gaussian field, the S iso,1

2
of s̃S do not depend solely on j2 − j1. This result shows that the
dust emission is not statistically scale-invariant. The S iso,2

2 coeffi-
cients quantify the angular modulation of the coupling between
scales. The angle dependence relates to the filamentary struc-
ture of the diffuse ISM because it measures how the coupling
between two scales varies between the aligned and orthogonal
orientations. The non-vanishing values of S iso,2

2 of s̃S at large
j2 − j1 testify of the presence of long filaments.

6.2. Signatures of turbulence intermittency

Statistics of velocity increments derived from CO observations
results have been theoretically interpreted as a signature of inter-
mittency of interstellar turbulence (Falgarone et al. 2015). The
same result is theoretically expected for the dust polarization and
the gas column density (Momferratos 2015).

Figure 12 presents the PDFs of the increment images of
s̃S shown in Fig. 10. The PDFs are roughly scale-invariant.
They display non-Gaussian wings with no clear trend with the
lag. This result contrasts with what has been reported for other

observables. Indeed, the PDFs of increments computed for the
gas velocity from spectroscopic CO observations (Hily-Blant
et al. 2008) and for the dust polarization from Planck data
(Régaldo-Saint Blancard et al. 2021) show non-Gaussian wings
that become increasingly prominent for decreasing lag.

6.3. Structure formation in the diffuse ISM

The formation of structure in the cold interstellar medium is
thought to be driven by the interplay between the turbulent
gas dynamics and thermal instability (Kritsuk & Norman 2002;
Saury et al. 2014). The statistics of dust maps provide observa-
tional insight. Miville-Deschênes et al. (2007) presented PDFs
of wavelet convolutions of IRAS dust images. They have on all
scales a pronounced skewness, which they relate to the non-
linearity of the dynamical processes driving the formation of
structures. The Herschel data and the dust and CIB separation
allow us to extend this analysis to smaller angular scales.

Figure 13 shows PDFs of wavelet convolutions on angular
scales from 0.4′ to 1.6′, well below the IRAS 5′ resolution. The
wavelets are those used for the WPH data analysis. The PDFs
of s̃S exhibits non-Gaussian wings, but smaller skewness than
that of dS. Table 1 contains the skewness and kurtosis of wavelet
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Table 1. Skewness and kurtosis of the wavelet convolutions of the dust
map at 0.4′, 0.8′, 1.6′, 3.2′, 6.4′ , and 12.8′.

Scale Skewness Kurtosis

0.4′ 0.84 ± 0.08 29.97 ± 1.66
0.8′ 1.43 ± 0.08 28.24 ± 1.79
1.6′ 1.25 ± 0.08 18.21 ± 2.18
3.2′ 1.20 ± 0.11 13.16 ± 2.06
6.4′ 0.95 ± 0.09 7.34 ± 0.57
12.8′ 1.22 ± 0.08 7.39 ± 0.43

convolutions at scales from 0.4′ to 12.8′. These values describe
the shape of the PDFs. Our values are not directly comparable
to those computed by Miville-Deschênes et al. (2007) on IRAS
maps because we use directional wavelets instead of isotropic
wavelets.

7. Conclusion

We have made use of the distinct textures of the CIB and the dust
emission on the sky to develop and apply a component separation
method on Herschel observations at a single frequency. The main
results of our work are as follows.

The component separation problem on Herschel data involve
three components: the dust, the CIB, and the data noise. We
reduce this problem to a single inverse problem in terms of WPH
statistics and present an algorithm to solve it. The results of this
algorithm are a WPH generative model of the dust emission and
an output map which is a realization of the model correlated with
the input map.

We build a set of realistic mock data using an H I map as a
template of CIB-free dust emission map. These data are used
to validate the method. We show that we are able to retrieve
the WPH statistics of the dust emission as well as non-Gaussian
statistics used in astrophysics to characterize interstellar imaging
data. Unlike methods that minimize the mean squared error in
pixel space, we reproduce the power spectrum of the input map
down to the smallest angular scales.

The method is applied to a Herschel SPIRE observation of
diffuse interstellar matter at 250µm. We succeed in performing a
statistical separation from observational data only at a single fre-
quency by using non-Gaussian statistics. The power spectrum of
the output map is well fitted by a power-law up to k = 2 arcmin−1,
where the dust signal represents 2% of the total power. The
obtained slope is −2.95 ± 0.04.

We analyzed the non-Gaussian properties of the Spider dust
emission on scales where the CIB signal is dominant. The
component separation step is essential for characterizing the
non-Gaussianity of the dust emission. Going beyond a standard
power spectra analysis, we show that the non-Gaussian proper-
ties of the dust emission are not scale-invariant. The separated
dust map reveals coherent structures at the smallest scales. This
work offers several perspectives for future work:

– We underline that we use in this paper only one of the three
wavelengths of Herschel SPIRE. Thanks to the recent devel-
opment of cross-WPH statistics (Régaldo-Saint Blancard
et al. 2022), our method could be extended to a multi-channel
component separation of the dust and CIB on Herschel data
with an aim to statistically characterize the dust SED;

– We could use external templates as an H I observation for
the dust;

– It would also be useful to compare the gas and dust to test
whether these two interstellar components are coupled on
small angular scales for the cold and warm phases. This work
could also be extended to other fields mapped with SPIRE;

– Our statistical component separation could also be used on
Planck data to separate the dust and CIB up to larger angular
scales on the sphere.
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Appendix A: Mathematical notations

Notation Description
Herschel SPIRE observations (Sect. 2)

dL Map of the Lockman Hole (LH) field
dPSF Map of the Herschel point spread function
dN Noise map of the Spider field
dS1, dS2 Two independent maps of the Spider field
dS Mean of dS1 and dS2

Validation of the dust and CIB sep. on mock data (Sect. 4)
c′ m,i

S Set of contamination maps: CIB + Spider data noise
c̃′ m,i

S Set of output estimates of c′ m,i
S from comp. sep.

dm,i
S Set of data maps obtained adding c′ m,i

S to sm
S

sm
S Input dust map built from H I observation

s̃m,i
S Set of output estimates of sm

S from comp. sep.
Comp. sep. on Herschel SPIRE Spider field (Sects. 5 and 6)

c′L Contamination map: LH map + Spider data noise
c′S Spider contamination map
c̃′S Output estimate of c′S from component separation
s̃S Output dust map from component separation
s̃G

S Gaussian realization of s̃S after phase rand.
Table A.1. Summary of the main mathematical notations.

Appendix B: WPH statistics

We present our construction of the WPH statistics and explain
how it can be used as a generative model. This brief overview is
directly inspired by Régaldo-Saint Blancard et al. (2021).

Appendix B.1: Definition

The construction of the WPH statistics follows two main steps:
i) a multi-scale decomposition of the process under study into
its different components and ii) the characterization of the
interaction between its different scales.

The first step consists of performing a multi-scale decompo-
sition using a wavelet transform. The wavelets we use are bump
steerable wavelets (Zhang & Mallat 2019). These wavelets ψ j,l(x)
are indexed by two integers, j ∈ [0, J − 1] and l ∈ [0, L − 1],
which define the oriented scale they characterize: ψ j,l(x) is the
wavelet used to probe the 2 j characteristic scale at an angle l 2π

L
from the reference axis. The wavelet transform of a process ρ(x)
is defined as the set of its convolutions ρ ∗ ψ j,l(x) with wavelets
at all oriented scales. It performs a multi-scale decomposition of
ρ, decomposing its structures on the different scales probed by
the wavelets: indeed, by convolving an image with a wavelet, we
make a local filtering on the wavelet band-pass. This decomposi-
tion is illustrated in Fig. B.1, which shows the modulus and phase
of convolutions of the dS map with several wavelets. For a given
wavelet ψ j,l, the modulus of the convolution dS ∗ ψ j,l highlights
the structures of dS for a scale of 2 j and orientation of l 2π

L .
The second step of this transform is to characterise the inter-

action between the different scales of the process, ρ, under study.
A natural way to characterize such an interaction is to compute
the covariances between the different ρ ∗ ψ j,l(x) terms of the
wavelet transform. However, such covariances are not able to
characterize non-Gaussian features. Indeed, we can show (see,

Modulus

Phase

Fig. B.1. Modulus and phase of the convolutions of dS with ψ3,0,
ψ4,0, ψ5,0, ψ5,1, and ψ5,2. In this example, we set L = 4.

e.g., Allys et al. (2020)) that:

Cov(ρ ∗ ψ1, ρ ∗ ψ2) =
∫

S (k) ψ̂1(k) ψ̂2(k) dk, (B.1)

where S (k) is the power spectrum of ρ, which only characterize
each wavenumber, k, independently. This shows that in order to
characterize coupling between scales, it is necessary to introduce
non-linearities.

The second step to construct WPH statistics thus consists
in introducing non-linearities in order to characterize interac-
tions between scales. Indeed, if we want to get an information
from the covariance between two fields, they must have common
frequencies. We can take the modulus of the different wavelet
convolutions, but also use a non-linear operator to capture infor-
mation about phase alignement between different scales. This
operator is the Phase Harmonics operator, which is defined as:

∀z ∈ C, ∀p ∈ N, [z]p = |z| ei arg(z)×p. (B.2)

For p , 0, this operator multiplies the complex phase of a field
by a constant integer, computing the harmonics of its phase.
This operator makes the phase of the two filtered images vary at
the same spatial frequency in order to characterize the statistical
phase alignment by means of a covariance.

We can now construct different "WPH moments," by com-
puting covariance of phase harmonics of wavelet convolutions
which share common frequencies, namely, whose spectral sup-
ports overlap. The WPH moments depend on a translation vector,
τ, that allows us to increase the spectral resolution. The general
expression of WPH moments is:

C j1,l1,p1, j2,l2,p2 (τ) = Cov([ρ ∗ ψ j1,l1 ]p1 (x), [ρ ∗ ψ j2,l2 ]p2 (x + τ)).
(B.3)

The number of translation vectors considered is 1 + 8∆n. We
note that due to the choice of the harmonics p1 and p2, there
are different ways to couple a pair of scale.

The summary statistics we will use are WPH statistics, which
are built from a set of WPH moments. In this work, we take a
set of moments defined in Régaldo-Saint Blancard et al. (2022).
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This is a small modification of Allys et al. (2020), in which
the set of moments has been chosen to construct a generative
model of the large-scale structure matter density field (Allys
et al. 2020). With J = 7, L = 4, and ∆n = 2, it gives a set of
3441 moments. To describe these moments, we will follow the
notations of this paper and define several types of moments: if
the two scales are equal, we use the letter S , and if not, we use a
C; the type of moment is identified by their respective harmonics
p1 and p2.

The harmonics, p, multiply the frequency of a signal by
a factor, p. As we want similar frequencies in order to have
meaningful moments, several choices of harmonics are possible
for a given pair of scales. First, we can take (p1, p2) = (0, 0),
which will lead to common frequencies even if the scales are
different. We can also take (p1, p2) = (0, 1) which will lead to
common frequencies if j2 > j1. Finally, if we want to keep the
phases and to take different scales, we have to choose p1 and p2
such that j1 p1 ∼ j2 p2, and the simplest choice is then to take
(p1, p2) = (1, j1

j2
). For j1 = j2, it boils down to (p1, p2) = (1, 1)

which leads to the power spectrum-like moments, which we refer
to the S 11 moments (see Eq. B.1). For each type of moments, the
particular moment is then labelled by the characteristic spatial
frequencies probed (one for S term, two for C terms), indexed by
their couple ( j, l). For example, C01

j1,l1, j2,l2
is the moment whose

expression is Cov(|ρ ∗ ψ j1,l1 |(x), (ρ ∗ ψ j2,l2 )(x)).

We will use six types of moments: S 11, S 00, S 01, Cphase, C00,
and C01, whose expressions are as follows:

S 11
j,l (τ) = Cov((ρ ∗ ψ j,l)(x), (ρ ∗ ψ j,l)(x + τ)),

S 00
j,l (τ) = Cov(|ρ ∗ ψ j,l|(x), |ρ ∗ ψ j,l|(x + τ)),

S 01
j,l (τ) = Cov(|ρ ∗ ψ j,l|(x), (ρ ∗ ψ j,l)(x + τ)),

Cphase
j1,l1, j2,l2

(τ) = Cov((ρ ∗ ψ j1,l1 )(x), [ρ ∗ ψ j2,l2 ] j1/ j2 (x + τ)),

C00
j1,l1, j2,l2 (τ) = Cov(|ρ ∗ ψ j1,l1 |(x), |ρ ∗ ψ j2,l2 |(x + τ)),

C01
j1,l1, j2,l2 (τ) = Cov(|ρ ∗ ψ j1,l1 |(x), (ρ ∗ ψ j2,l2 )(x + τ)).

(B.4)

All these moments depend on the amplitude of the image power
spectrum, but we want to have coefficients describing the non-
Gaussian features only. Using Eq. B.1, we can show that the
power spectrum information is contained in the S 11 moments.
Then, by normalizing all the moments by the S 11 and the S 00

ones, we get coefficients that describe non-Gaussianity indepen-
dently of the power spectrum. For example, the expressions of

the normalized C01 moments are C01
j1,l1, j2,l2

/
√

S 00
j1,l1

S 11
j2,l2

.

Appendix B.2: WPH generative model

Generative models can be constructed from the WPH statistics
of a given process. Here, this was done within the framework of
maximum entropy models, in a microcanonical approach, which
boils down to constructing the most general probability distri-
bution under the WPH constraints (Bruna & Mallat 2019). For
a given statistical process, X, the WPH statistics allow to obtain
new realizations, Xi, from a distribution estimated on an obser-
vation, X0. Starting from a white noise, we perform a gradient
descent in pixel space in order to reproduce the WPH statistics
of X0. Hereafter, we call this process a synthesis.

Many physical processes having power spectrum that vary
over several orders of magnitude, their WPH statistics have very
different values from one scale to another. This is a problem

for the gradient descent because it gives an important weight
to some scales, whereas others could be very little constrained.
To prevent this problem, we normalize the WPH operator such
that each WPH coefficient, which characterizes the coupling
between two scales, is divided by the square root of the prod-
uct of the power spectra of X0 at the corresponding scales. The
reference map, m (defined in Sect. 3.2) is then set in this case to
X0.

On a practical level, a synthesis is done using a gradient
descent on a map u (where u0 is a white noise) to minimize the
loss Lsyn(u) = ||Φ(u) − Φ(X0)||2, where Φ is the WPH operator.
The result of the optimization is a new realization of the unkown
process X estimated on X0, fully independent of X0. Allys et al.
(2020) showed that the WPH generative model reproduces usual
non-Gaussian statistics in cosmology up to 1-10%. The ability
to build a non-Gaussian generative model is necessary for our
component separation algorithm.

Appendix C: H I map

The angular resolution of the ST interferometric data used as a
spatial template of Galactic emission uncontaminated by the CIB
is 0.91′and the pixel size is 18′′. The DHIGLS DF product has
the full range of spatial frequencies, obtained by a rigorous com-
bination of the ST interferometric and GBT single dish data (see
Section 5 in Blagrave et al. 2017). At small scales, IH I is highly
affected by noise, resulting in an increase of power at high k
(Blagrave et al. 2017, see their Fig. 22). The statistical properties
of this noise is complex and can potentially alter the quality of
the separation performed as a validation test. Because IH I is only
used as a template to generate a CIB-free SPIRE mock obser-
vation, we performed a denoising of the H I data cube prior
integration along the velocity axis (from -9.7 to 26.5 km/s) to
obtain a map of IH I in the Spider region with reduced data noise.

This was accomplished using the ROHSA algorithm (Mar-
chal et al. 2019). While earlier applications were dedicated to
phase separation (e.g., Marchal et al. 2021; Marchal & Miville-
Deschênes 2021; Taank et al. 2022), here we make use of the
spatial regularization of ROHSA to obtain a spatially coherent
model of the data, which concurrently reduces noise. We first
experimented with the decomposition of the DF dataset pre-
sented in Marchal & Martin (2023) that provides a full encoding
of the data with N = 6 Gaussians and the hyper-parameters
λa = λµ = λσ = λσ′ = 10, which control the strength of the
regularization. Upon inspecting the resulting model, we found
that the spatially correlated noise still dominates the signal on
small scales in the IH I map. To overcome this limitation, we
performed a new decomposition using higher hyper-parameters
λa = λµ = λσ = λσ′ = 1000 to control the spatial regulariza-
tion and intentionally reduce the noise even further. The resulting
model does not encode the signal fully (due to the strong regu-
larization), which translates into a chi-square map that is not as
uniform as the original decomposition. We emphasize that the
goal of this procedure is solely to generate a realistic mock obser-
vation of Galactic dust based on existing high-resolution H I data
of the Spider, but IH I is not a component of our wavelet-phase
harmonic-based method.

Appendix D: WPH statistics of the separation
results on mock and Herschel data

Here, we explain how to read the WPH statistics plots and we
present the WPH statistics of the component separation results
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both on mock data (Fig. D.1) and on Herschel observations
(Fig. D.2). These figures present the WPH statistics computed
with ∆n = 0 (no translation). The values of S 11, S 00, and S 01,
which characterize a dyadic scale and an angle, are averaged
over the angles and plotted as a function of the scale, j1, that
they characterize. The Cphase values, characterized by two scales
and an angle, are averaged over the angles and plotted in lex-
icographic order as a function of j1 and j2. The C00 and C01

values, which are characterized by two scales and two angles,
are averaged over the two angles at constant difference and
plotted in lexicographic order as a function of j1 ∈ [0, J − 1],
j2 ∈ [ j1 + 1, J − 1] and ∆l ∈ [0, L − 1] as the angle difference.
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Fig. D.1. WPH statistics of the input and output maps for the
component separation applied on the mock data. The WPH
statistics of dm,i

S , sm
S , c′ m,i

S , s̃m,i
S and c̃′ m,i

S are compared. The ⟨·⟩i
notes the mean of the WPH statistics computed over the 9 sep-
arations done using different sub-maps (see Sect. 4.1 for mock
data construction). The colored bands represent ±1σ error-bars,
computed as the standard deviation of these statistics.
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Fig. D.2. Same as Fig. D.1 but for the Herschel SPIRE maps at
250µm. The WPH statistics of dS, s̃S, c′L, and c̃′S are compared.
The colored bands represent ±1σ error-bars.

Appendix E: (R)WST statistics

The reduced wavelet scattering transform (RWST) statistics
are interpretable non-Gaussian statistics defined in Allys et al.

(2019). They are a reduced form of the wavelet scattering trans-
form (WST) statistics, first introduced in the field of data science
(Mallat 2012). This brief overview is directly inspired by Allys
et al. (2019).

Appendix E.1: WST statistics

The WST statistics are statistical descriptors that give a non-
Gaussian description of a field. This is done by quantifying
the level of coupling between scales. The WST are built by
successive convolutions of the field with band-pass wavelets fol-
lowed by the application of the modulus operator. Each of these
summary statistics is then labeled by the scales they characterize.

We consider a two-dimensional field named ρ(x). As for
the WPH statistics, the set of computed coefficients depends
on two integers J and Θ, characterizing, respectively, the num-
ber of dyadic scales and angles considered. The integer scales j
are labelled from 0 to J − 1 and correspond to 2 j pixel scales,
whereas the angles ϑ are labelled by integers θ ∈ [1,Θ], such
that ϑ = (θ − 1)π/Θ. The set of wavelets is then {ψ j,θ(x), j ∈
[0, J − 1], θ ∈ [1,Θ]}.

The WST coefficients are computed in three layers labelled
by the integer m going from 0 to 2. The only coefficient of the
m = 0 layer characterizes the average of the field:

S 0 =
1
µ0

∫
ρ(x)d2x, (E.1)

where µ0 is the surface of integration. The coefficients S 1( j1, θ1)
of the m = 1 layer depend on a single oriented scale ( j1, θ1) and
are defined as:

S 1( j1, θ1) =
1
µ1

∫
|ρ ∗ ψ j1,θ1 |(x)d2x, (E.2)

where µ1 is the impulse response

µ1 =

∫
|δ ∗ ψ j1,θ1 |(x)d2x, (E.3)

with δ the Dirac delta function. Finally, the coefficients
S 2( j1, θ1, j2, θ2) of the m = 2 layer depend on two oriented scales
( j1, θ1) and ( j2, θ2), and are defined as:

S 2( j1, θ1, j2, θ2) =
1
µ2

∫
||ρ ∗ ψ j1,θ1 | ∗ ψ j2,θ2 |(x)d2x, (E.4)

where µ2 is defined in the same way as µ1. These coefficients
are then normalized to separate the dependencies of the different
layers. To this end, the coefficients of each layer are normalized
by those of the previous layer. The normalized coefficients are
denoted S̄ and defined as:

S̄ 1( j1, θ1) = S 1( j1, θ1)/S 0, (E.5)

and

S̄ 2( j1, θ1, j2, θ2) = S 2( j1, θ1, j2, θ2)/S 1( j1, θ1), (E.6)

whereas S̄ 0 = S 0. These coefficients provide a rich non-
Gaussian statistical description of non-Gaussian fields.
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Appendix E.2: RWST statistics

The regularity of certain physical fields leads to possible sim-
plifications of the WST statistics. The RWST allows for the
information contained in the WST to be concentrated into fewer
coefficients, that are also more interpretable. This is done by
fitting the angular dependencies of the logarithm of the WST
coefficients with terms describing low-harmonics angular mod-
ulations.

The only angular dependency of the m = 1 layer coefficients
is on θ1. The log2 [S 1] coefficients are then written as:

log2

[
S̄ 1( j1, l1)

]
=Ŝ iso

1 ( j1)+

Ŝ aniso
1 ( j1) × cos

(
2π
Θ

[
θ1 − θ

ref,1( j1)
])
,

(E.7)

where θref,1( j1) is a reference angle describing the global
anisotropy direction of the field. The m = 2 layer is written using
four terms and another reference angle:

log2

[
S̄ 2( j1, θ1, j2, θ2)

]
= Ŝ iso,1

2 ( j1, j2)

+ Ŝ iso,2
2 ( j1, j2) × cos

(
2π
Θ

[θ1 − θ2]
)

+ Ŝ aniso,1
2 ( j1, j2) × cos

(
2π
Θ

[
θ1 − θ

ref,2( j1, j2)
])

+ Ŝ aniso,2
2 ( j1, j2) × cos

(
2π
Θ

[
θ2 − θ

ref,2( j1, j2)
])
.

(E.8)

We refer to Allys et al. (2019) for an additional discussion on the
interpretation of these coefficients.
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