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KÄHLER DIFFERENTIALS AND Zp-EXTENSIONS

by

Laurent Berger

Abstract. — Let K be a p-adic field, and let K∞/K be a Galois extension that is almost
totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. We prove
that K∞ is not dense in (B+

dR/Fil2 B+
dR)Gal(K/K∞). Moreover, the restriction of θ to the

closure of K∞ is injective, and its image via θ is the set of vectors of K̂∞ that are C1 with
zero derivative for the action of Gal(K∞/K). The main ingredient for proving these results
is the construction of an explicit lattice of OK∞ that is commensurable with Od=0

K∞
, where

d : OK∞ → ΩOK∞ /OK
is the differential.
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Introduction

Let K be a p-adic field, namely a finite extension ofW (k)[1/p] where k is a perfect field
of characteristic p. Let C be the p-adic completion of an algebraic closure K of K. Let
K∞/K be a Galois extension that is almost totally ramified, and whose Galois group is
a p-adic Lie group of dimension 1. Let BdR(K̂∞) = BdR(C)Gal(K/K∞) be Fontaine’s field
of periods attached to K∞/K, and for n > 1, let Bn(K̂∞) = B+

dR(K̂∞)/Filn B+
dR(K̂∞).

This note is motivated by Ponsinet’s paper [Pon20], in which he relates the study
of universal norms for the extension K∞/K to the question of whether K∞ is dense in
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2 LAURENT BERGER

Bn(K̂∞) for n > 1. The density result holds for n = 1 by the Ax-Sen-Tate theorem. Our
main result is the following.

Theorem A. — The field K∞ is not dense in B2(K̂∞).

By the constructions of Fontaine and Colmez (see [Fon94] and [Col12]), B2(C) is
the completion of K for a topology defined using the Kähler differentials ΩO

K
/OK

. Some
partial results towards theorem A have been proved by Iovita-Zaharescu in [IZ99], by
studying these Kähler differentials. Let ΩOK∞/OK

be the Kähler differentials of OK∞/OK

and let d : OK∞ → ΩOK∞/OK
be the differential. Our main technical result is the con-

struction of a lattice ofOK∞ that is commensurable withOd=0
K∞ . Since the inertia subgroup

of Gal(K∞/K) is a p-adic Lie group of dimension 1, there exists a finite subextension
K0/K of K∞ such that K∞/K0 is a totally ramified Zp-extension. Let Kn be the n-th
layer of this Zp-extension.

Theorem B. — The lattices ∑
n>0 p

nOKn and Od=0
K∞ are commensurable.

In order to prove this, we use Tate’s results on ramification in Zp-extensions. As a
corollary of theorem B, we can say more about the completion ofK∞ in B2(K̂∞). The field
K̂∞ is a Banach representation of the p-adic Lie group Gal(K∞/K). Let θ : B2(C)→ C
be the usual map from p-adic Hodge theory.

Theorem C. — The completion of K∞ in B2(K̂∞) is isomorphic via θ to the set of
vectors of K̂∞ that are C1 with zero derivative for the action of Gal(K∞/K).
This is a field, and it is also the set of y ∈ K̂∞ that can be written as y = ∑

n>0 p
nyn

with yn ∈ Kn and yn → 0.

We also prove that d(OK∞) contains no nontrivial p-divisible element (coro 3.5), and
that d : OK∞ → ΩOK∞/OK

is not surjective (coro 3.6). These two statements are equiv-
alent to theorem A by the results of [IZ99]; using our computations, we give a short
independent proof.

Acknowledgements. I thank Léo Poyeton for his remarks on an earlier version of this
note.

1. Kähler differentials

Let K be a p-adic field. If L/K is a finite extension, let dL/K ⊂ OL denote its different.

Proposition 1.1. — Let K be a p-adic field, and let L/K be an algebraic extension.
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1. If L/K is a finite extension, then ΩOL/OK
= OL/dL/K as OL-modules.

2. If M/L/K are finite extensions, the map ΩOL/OK
→ ΩOM /OK

is injective.
3. If L/K is an algebraic extension, and ω1, ω2 ∈ ΩOL/OK

, then there exists x ∈ OL

such that ω2 = xω1 if and only if Ann(ω1) ⊂ Ann(ω2).

Proof. — See for instance §2 of [Fon82].

Recall (see §2 of [CG96]) that an algebraic extension L/K is deeply ramified if the set
{valp(dF/K)}F is unbounded, as F runs through the set of finite extensions ofK contained
in L. Alternatively (remark 3.3 of [Sch12]), L/K is deeply ramified if and only if L̂ is a
perfectoid field. An extension K∞/K as in the introduction is deeply ramified.

Corollary 1.2. — If L/K is deeply ramified, then ΩOL/OK
= L/OL as OL-modules.

Proposition 1.3. — If L/K is deeply ramified, then d : OL → ΩOL/OK
is surjective if

and only if d(OL) is p-divisible.

Proof. — Since L/K is deeply ramified, ΩOL/OK
is p-divisible. This proves one implica-

tion. Assume now that d(OL) is p-divisible, so that there exists a sequence {αi}i>1 of OL

such that dα1 6= 0 and dαi = p · dαi+1 for all i > 1. If ω ∈ ΩOL/OK
, prop 1.1 implies that

there exists i > 1 and xi ∈ OL such that ω = xi · dαi. Take k > 0 such that d(pkxi) = 0.
We then have ω = xi · dαi = pkxi · dαi+k = d(pkxiαi+k). Hence d is surjective.

Proposition 1.4. — Let L/K be a deeply ramified extension, and let K ′ ⊂ L be a finite
extension of K.

1. d : OL → ΩOL/OK
is surjective if and only if d′ : OL → ΩOL/OK′

is surjective.
2. Od=0

L and Od′=0
L are commensurable.

Proof. — We have an exact sequence of OL-modules, compatible with d and d′

OL ⊗ ΩOK′/OK

f−→ ΩOL/OK

g−→ ΩOL/OK′
→ 0.

Let us prove (1). If d : OL → ΩOL/OK
is surjective, then clearly d′ : OL → ΩOL/OK′

is
surjective. Conversely, there exists r > 0 such that pr · ΩOK′/OK

= {0}. If ω ∈ ΩOL/OK
,

write it as ω = prωr. By hypothesis, there exists αr ∈ OL such that ωr = d′αr in
ΩOL/OK′

. Hence pr(ωr − dαr) = 0 in ΩOL/OK
so that ω = d(prαr). We now prove (2).

The exact sequence above implies that Od=0
L ⊂ Od′=0

L . Conversely, if x ∈ Od′=0
L , then

dx ∈ ker g = im f , so that pr · dx = 0. Hence pr · Od′=0
L ⊂ Od=0

L .

Corollary 1.5. — In order to prove theorem B, we can replace K by any finite subexten-
sion K ′ of K. In particular, we can assume that K∞/K is a totally ramified Zp-extension.
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2. Ramification in Zp-extensions

Let K∞/K be a totally ramified Zp-extension. We recall some of the results of §3.1
of [Tat67] concerning the ramification of K∞/K and the action of Gal(K∞/K) on K∞.
Let Kn be the n-th layer of K∞/K, so that [Kn : K] = pn.

Proposition 2.1. — There are constants a, b such that |valp(dKn/K)− n− b| 6 p−na

for n > 0.

Proof. — See §3.1 of [Tat67].

The notation ∑
n>0 p

nOKn denotes the set of elements of K∞ that are finite sums of
elements of pnOKn .

Corollary 2.2. — There exists n0 > 0 such that ∑
n>0 p

n+n0OKn ⊂ Od=0
K∞ .

Proposition 2.3. — There exists c(K∞/K) > 0 such that for all n, k > 0 and x ∈
OKn+k

, we have valp(NKn+k/Kn(x)/x[Kn+k:Kn] − 1) > c(K∞/K).

Proof. — The result follows from the fact (see 1.2.2 of [Win83]) that the extension
K∞/K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

If n > 0 and x ∈ K∞, then Rn(x) = p−k · TrKn+k/Kn(x) is independent of k � 0 such
that x ∈ Kn+k, and is the normalized trace of x.

Proposition 2.4. — There exists c2 ∈ Z>0 such that valp(Rn(x)) > valp(x)− c2 for all
n > 0 and x ∈ K∞.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172).

In particular, Rn(OK∞) ⊂ p−c2OKn for all n > 0. Let K⊥0 = K0 and for n > 1, let K⊥n
be the kernel of Rn−1 : Kn → Kn−1, let R⊥n = Rn − Rn−1, and R⊥0 = R0. If x ∈ K∞ and
i > 0, then R⊥n (x) = 0 for n� 0, and x = (∑

n>i+1 R
⊥
n (x)) +Ri(x). Prop 2.4 implies that

R⊥n (OK∞) ⊂ p−c2OKn for all n > 0. Let O⊥Kn
= OKn ∩K⊥n .

Corollary 2.5. — For all i > 0, we have OK∞ ⊂ (⊕m>i+1p
−c2O⊥Km

)⊕ p−c2OKi
.

Proof. — If x ∈ OK∞ , write x = ∑
m>i+1 R

⊥
m(x) +Ri(x).

For n > 0, let gn denote a topological generator of Gal(K∞/Kn).

Lemma 2.6. — There exists a constant c3 such that for all n > 1 and x ∈ K⊥n+1, we
have valp(x) > valp((1− gn)(x))− c3.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172).
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3. The lattice Od=0
K∞

We now prove theorem B. Thanks to coro 1.5, we assume that K∞/K is a totally
ramified Zp-extension. Let {ρn}n>0 be a norm compatible sequence of uniformizers of the
Kn. Let mc > 0 be the smallest integer such that pmc · c(K∞/K) > 1/(p− 1).

Proposition 3.1. — We have valp(ρpk
n+1 − ρk

n) > valp(k)−mc.

Proof. — Note that if x, y ∈ C with valp(x− y) > v, then valp(xp− yp) > min(v+ 1, pv).
Let c = c(K∞/K) and m = mc. We have valp(ρp

n+1 − ρn) > c by prop 2.3, so that
valp(ρpj+1

n+1 − ρpj

n ) > pjc for all j such that pj−1c 6 1/(p− 1).
In particular, valp(ρpm+1

n+1 − ρpm

n ) > pmc > 1/(p − 1), so that valp(ρpm+j+1

n+1 − ρpm+j

n ) >

j + 1/(p− 1) if j > 0. This implies the result.

Theorem 3.2. — There exists n1 ∈ Z>0 such that Od=0
K∞ ⊂

∑
m>n1 p

m−n1OKm.

Proof. — Let n1 = da − b + mc + 2e. Take x ∈ Od=0
Kn

and write x = ∑pn−1
i=0 xiρ

i
n with

xi ∈ OK , so that dx = ∑pn−1
i=0 ixiρ

i−1
n · dρn. If dx = 0, then ∑pn−1

i=0 ixiρ
i−1
n ∈ dKn/K so that

by prop 2.1 (and since valp(ρpn

n ) 6 1), for all i we have

valp(xi) > n− a+ b− valp(i)− 1.

For k > 1, let
yk =

∑
p-j
xpk−1jρ

j
n−(k−1) +

∑
`

xpk`(ρp`
n−(k−1) − ρ

`
n−k).

Note that yk ∈ OKn−k+1 . Let us bound valp(yk). We have valp(xpk−1jρ
j
n−(k−1)) > n− a+

b− k. We also have valp(xpk`) > n− a+ b− k − valp(`)− 1, and valp(ρp`
n−(k−1) − ρ`

n−k) >
valp(`) − mc by prop 3.1. Hence valp(yk) > n − a + b − k − 1 − mc and therefore
yk ∈ pn−k+1−n1OKn−k+1 . Finally, we have x = y1 + · · · + yn−n1 + ∑

` xpn−n1 `ρ
`
n1 , and∑

` xpn−n1 `ρ
`
n1 ∈ OKn1

, which implies the result.

Remark 3.3. — Compare with lemma 4.3.2 of [Fou05].

Corollary 3.4. — We have Od=0
K∞ ⊂ (⊕m>n1+1p

m−n1−c2O⊥Km
)⊕ p−c2OKn1

.

Proof. — By theorem 3.2, it is enough to prove that pnOKn ⊂ (⊕m>n1+1p
m−c2O⊥Km

) ⊕
pn1−c2OKn1

for all n > n1. If x ∈ pnOKn , write x = R⊥n (x) +R⊥n−1(x) + · · ·+R⊥n1+1(x) +
Rn1(x). We have R⊥n−k(x) ∈ pn−c2O⊥Kn−k

⊂ p(n−k)−c2O⊥Kn−k
and likewise Rn1(x) ∈

pn−c2OKn1
⊂ pn1−c2OKn1

.

Corollary 3.5. — There are no nontrivial p-divisible elements in d(OK∞).
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Proof. — By props 1.3 and 1.4, we can assume that K∞/K is a totally ramified Zp-
extension. Let {αi}i>1 be a sequence of OK∞ such that dαi = p · dαi+1 for all i > 1.
Write αi = ∑

αi,m with αi,m ∈ p−c2O⊥Km
for m > n1 + 1 and αi,n1 ∈ p−c2OKn1

. Since
pkαk+i−αi ∈ Od=0

K∞ , coro 3.4 implies that pkαk+i,m−αi,m ∈ pm−n1−c2OKm for all m > n1.
Taking k � 0 now implies that αi,m ∈ pm−n1−c2OKm for all m > n1. Coro 2.2 gives
pn0+n1+c2αi ∈ Od=0

K∞ . Taking i = n0 + n1 + c2 + 1 gives dα1 = 0.

Corollary 3.6. — The differential d : OK∞ → ΩOK∞/OK
is not surjective.

Proof. — This follows from coro 3.5 and prop 1.3.

4. The completion of K∞ in B2

We now prove theorems A and C. Since we are concerned with the completion of
K∞, we can once again replace K with a finite subextension of K∞ and assume that
K∞/K is a totally ramified Zp-extension. Let K̂2

∞ denote the completion of K∞ in B2,
so that R = θ(K̂2

∞) is a subring of K̂∞. Let Γ = Gal(K∞/K), and let c : Γ → Zp

be an isomorphism of p-adic Lie groups. Let w2 be the valuation on K∞ defined by
w2(x) = min{n ∈ Z such that pnx ∈ Od=0

K∞}. The restriction of the natural valuation of
B2 to K∞ is w2 (see §1.4 and §1.5 of [Fon94], or theorem 3.1 of [Col12]). The map
θ : B2 → C has the following property (see §1.4 of [Fon94])

Lemma 4.1. — If {xk}k>1 is a sequence of K∞ that converges to x ∈ B2 for w2, then
{xk}k>1 is Cauchy for valp, and θ(x) = limk→+∞ xk for the p-adic topology.

Let M = ⊕n>0p
nO⊥Kn

. Coro 2.2 and theo 3.2 imply that M and Od=0
K∞ are commensu-

rable. Hence K̂2
∞ is the M -adic completion of K∞. Let w′2 be the M -adic valuation on

K∞, so that w′2 and w2 are equivalent.

Lemma 4.2. — If x ∈ K∞, then valp(R⊥n (x)) > w′2(x) + n.

Proof. — Write x = ∑
n>0 R

⊥
n (x). If x ∈ pwM , then R⊥n (x) ∈ pn+wOKn .

Proposition 4.3. — Every element x ∈ K̂2
∞ can be written in one and only one way as∑

n>0 x
⊥
n where x⊥n ∈ K⊥n and p−nx⊥n → 0 for valp.

Proof. — Note that such a series converges for w2. The map R⊥n : K∞ → K⊥n sends
pwM ⊂ K∞ to pw+nO⊥Kn

, so that it is uniformly continuous for the w2-adic topology, and
therefore extends to a continuous map R⊥n : K̂2

∞ → K⊥n .
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Let x ∈ K̂2
∞ be the w2-adic limit of {xk}k>1 with xk ∈ K∞. For a given k, the sequence

{p−nR⊥n (xk)}n>0 ∈
∏

n>0 K
⊥
n has finite support. As k → +∞, these sequences converge

uniformly in ∏
n>0 K

⊥
n to {p−nR⊥n (x)}n>0, so that p−nR⊥n (x) → 0 as n → +∞. Hence∑

n>0 R
⊥
n (x) converges for w2. Since xk = ∑

n>0 R
⊥
n (xk) for all k, we have x = ∑

n>0 R
⊥
n (x).

Finally, if x = ∑
n>0 x

⊥
n with x⊥n ∈ K⊥n and p−nx⊥n → 0 for valp, then x⊥n = R⊥n (x) which

proves unicity.

Corollary 4.4. — The map θ : K̂2
∞ → K̂∞ is injective.

Proof. — If x⊥n ∈ K⊥n and x⊥n → 0 and ∑
n>0 x

⊥
n = 0 in K̂∞, then x⊥n = 0 for all n.

Corollary 4.5. — The ring R is the set of y ∈ K̂∞ that can be written as y = ∑
n>0 p

nyn

with yn ∈ Kn and yn → 0.

Proposition 4.6. — The ring R is a field, and R = {x ∈ K̂∞ such that g(x) − x =
o(c(g)) as g → 1 in Γ}.

Proof. — The fact thatR is a field results from the second statement, since g(1/x)−1/x =
(x − g(x))/(xg(x)). Take y = ∑

n>0 p
nyn with yn ∈ Kn and yn → 0. If m > 1, then

for all k � 0, we have yn ∈ pm+nOKn . We can write y = xk + ∑
n>k p

nyn and then
(g − 1)(y) ∈ pk+mOK∞ if g ∈ Gal(K∞/Kk). This proves one implication.

Conversely, take x ∈ K̂∞ such that g(x) − x = o(c(g)). Write x = ∑
k>0 xk with

x0 = R0(x) ∈ K0 and xk = R⊥k (x) ∈ K⊥k for all k > 1. For n > 0, let gn denote
a topological generator of Gal(K∞/Kn). Take m > 0, and n � 0 such that we have
valp((gn − 1)(x)) > m + n. We have (1− gn)(x) = ∑

k>n+1(1− gn)xk, so that by lemma
2.6 and prop 2.4: valp(xn+1) > valp((1− gn)(xn+1))− c3 > valp((1− gn)(x))− c2 − c3 >

n+m− c2 − c3. This implies the result.

Remark 4.7. — Prop 4.6 says that R is the set of vectors of K̂∞ that are C1 with zero
derivative (flat to order 1) for the action of Γ.

Theorem A follows from coro 4.4 since θ : B2(K̂∞) → K̂∞ is not injective. Finally,
coro 4.4, coro 4.5, and prop 4.6 imply theorem C.
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