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KAHLER DIFFERENTIALS AND Z,-EXTENSIONS

by

Laurent Berger

Abstract. — Let K be a p-adic field, and let K,/K be a Galois extension that is almost
totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. We prove
that K. is not dense in (Bl /Fil> Bj)%2(5/Kx<)  Moreover, the restriction of § to the
closure of K, is injective, and its image via 6 is the set of vectors of IA(OO that are C! with
zero derivative for the action of Gal(K . /K). The main ingredient for proving these results
is the construction of an explicit lattice of Ok _ that is commensurable with O;l(:og, where
d: Ok, — Qox_ /oy is the differential.
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Introduction

Let K be a p-adic field, namely a finite extension of W (k)[1/p] where k is a perfect field
of characteristic p. Let C be the p-adic completion of an algebraic closure K of K. Let
K /K be a Galois extension that is almost totally ramified, and whose Galois group is
a p-adic Lie group of dimension 1. Let Bap(Ks) = Bar(C)%E/EK=) he Fontaine’s field
of periods attached to K. /K, and for n > 1, let B, (Ku) = B (Ks)/ Fil" Bl (Kx).

This note is motivated by Ponsinet’s paper [Pon20], in which he relates the study

of universal norms for the extension K., /K to the question of whether K, is dense in
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2 LAURENT BERGER

Bn([A(OO) for n > 1. The density result holds for n = 1 by the Ax-Sen-Tate theorem. Our

main result is the following.

—

Theorem A. — The field K, is not dense in Bo(K).

By the constructions of Fontaine and Colmez (see [Fon94] and [Col12]), By(C) is
the completion of K for a topology defined using the Kéhler differentials QO?/OK. Some
partial results towards theorem A have been proved by lovita-Zaharescu in [IZ99], by
studying these Kéhler differentials. Let Qo,_ 0, be the Kéhler differentials of Ok, /O
and let d : Ok, — Qo,_ /o, be the differential. Our main technical result is the con-
struction of a lattice of Ok__ that is commensurable with O¢=". Since the inertia subgroup
of Gal(K/K) is a p-adic Lie group of dimension 1, there exists a finite subextension
Ko/K of K such that K. /Ky is a totally ramified Z,-extension. Let K, be the n-th

layer of this Z,-extension.
Theorem B. — The lattices Y_,~op" Ok, and O?{:OS are commensurable.

In order to prove this, we use Tate’s results on ramification in Z,-extensions. As a
corollary of theorem B, we can say more about the completion of K, in Bg(k\ ~)- The field

K is a Banach representation of the p-adic Lie group Gal(K/K). Let 6 : Bo(C) — C
be the usual map from p-adic Hodge theory.

—

Theorem C. — The completion of K in Bo(K) is isomorphic via 0 to the set of
vectors of Ks that are C* with zero derivative for the action of Gal(K. /K).

This is a field, and it is also the set of y € Ko that can be written as Y= n>0P"Yn
with y, € K, and y, — 0.

We also prove that d(Ok,, ) contains no nontrivial p-divisible element (coro 3.5), and
that d : Ok, — Qo,_ /o, is not surjective (coro 3.6). These two statements are equiv-
alent to theorem A by the results of [IZ99]; using our computations, we give a short

independent proof.

Acknowledgements. I thank Léo Poyeton for his remarks on an earlier version of this

note.

1. Kéahler differentials
Let K be a p-adic field. If L/K is a finite extension, let 9;,x C O, denote its different.

Proposition 1.1. — Let K be a p-adic field, and let L/ K be an algebraic extension.
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1. If L/K s a finite extension, then Qo, /0, = Or/0r/k as Op-modules.
2. If M/L/K are finite extensions, the map Qo, j0, — Qo,, /0, 5 injective.
3. If L/K is an algebraic extension, and wi,ws € Qo, 0., then there exists x € Oy,

such that wy = xwy if and only if Ann(w;) C Ann(ws).
Proof. — See for instance §2 of [Fon82]. O

Recall (see §2 of [CG96]) that an algebraic extension L/K is deeply ramified if the set
{val,(dp/K)}r is unbounded, as F' runs through the set of finite extensions of K contained
in L. Alternatively (remark 3.3 of [Sch12]), L/K is deeply ramified if and only if L is a
perfectoid field. An extension K, /K as in the introduction is deeply ramified.

Corollary 1.2. — If L/K is deeply ramified, then Qo, j0,, = L/Or as Or-modules.

Proposition 1.3. — If L/K is deeply ramified, then d : O — Qo, 0, is surjective if
and only if d(Or) is p-divisible.

Proof. — Since L/K is deeply ramified, Qp, /o, is p-divisible. This proves one implica-
tion. Assume now that d(Qp) is p-divisible, so that there exists a sequence {a; };>1 of O
such that da; # 0 and da; = p - dagyy forall 7 > 1. If w € Qo, jo,, prop 1.1 implies that
there exists i > 1 and x; € Of, such that w = x; - doy. Take k > 0 such that d(p*z;) = 0.

We then have w = z; - doy = p*x; - doy o = d(p*z;0441). Hence d is surjective. O

Proposition 1.4. — Let L/K be a deeply ramified extension, and let K' C L be a finite
extension of K.
1. d:Op — Qo, 0, is surjective if and only if d' : Op — Qo, jo,., is surjective.

— !,
2. 00 and OF=° are commensurable.

Proof. — We have an exact sequence of Op-modules, compatible with d and d’
O ® QOK//OK i> QOL/OK EN QOL/OK/ — 0.

Let us prove (1). If d : Op — Qo, 0, is surjective, then clearly d' : Op — Qo, 0, is
surjective. Conversely, there exists r > 0 such that p" - Qo /0, = {0}. f w € Qo, jo,
write it as w = p"w,. By hypothesis, there exists a, € O such that w, = d'«, in
Qo, /0, Hence p"(w, — da,) = 0 in Qo, j0,, so that w = d(p"a,). We now prove (2).
The exact sequence above implies that O¢=" c O¢=°. Conversely, if + € O¢=°, then
dx € ker g = im f, so that p” - dz = 0. Hence p" - O¢=0 c 0¢=0. H

Corollary 1.5. — In order to prove theorem B, we can replace K by any finite subexten-

sion K' of K. In particular, we can assume that K. /K is a totally ramified Z,-extension.
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2. Ramification in Z,-extensions

Let K /K be a totally ramified Z,-extension. We recall some of the results of §3.1
of [Tat67] concerning the ramification of K.,/K and the action of Gal(Kw/K) on K.
Let K, be the n-th layer of K, /K, so that [K,, : K| = p™.

Proposition 2.1. — There are constants a,b such that |val,(0x,/xk) —n —b < p~"a
forn > 0.
Proof. — See §3.1 of [Tat67]. O

The notation },-0p"Ok, denotes the set of elements of K., that are finite sums of

elements of p" Ok, .
Corollary 2.2. — There exists ng > 0 such that 3,50 p" T Ok, C OFL.

Proposition 2.3. — There exists ¢(Ko/K) > 0 such that for all n,k > 0 and x €
Ok, ,r» we have val,(Ng, i, () /atEneiBal — 1) > o( Ko/ K).

n+k?’

Proof. — The result follows from the fact (see 1.2.2 of [Win83|) that the extension
K /K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83]. O

Ifn>0and x € K, then R,(z) = p~*- Trk,,,/k, () is independent of k£ > 0 such

that © € K, &, and is the normalized trace of x.

Proposition 2.4. — There exists co € Zx( such that val,(R,(z)) = val,(z) — co for all
n>0andx € K.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172). O

In particular, R,(Ok..) C p~Ok, for all n > 0. Let Ki- = Ky and for n > 1, let K-
be the kernel of R, _; : K,, = K,_1, let RX = R, — R,_1, and Ré =Ry. If x € K and
i >0, then R:(z) =0 for n > 0, and x = (¥,,5,41 R (z))+ Ri(x). Prop 2.4 implies that
Ry (Ok.) Cp 20k, for all n > 0. Let O = Ok, N K.

Corollary 2.5. — For alli > 0, we have Ok C (Bmzip1p”20%, ) ®p 2Ok, .
Proof. — If x € Ok_, write © = 35511 R (z) + Ri(z). O
For n > 0, let g, denote a topological generator of Gal(K/K,,).

Lemma 2.6. — There exists a constant c3 such that for allm > 1 and x € Knﬁrl, we

have val,(z) > val,((1 — g,)(x)) — cs.

Proof. — See §3.1 of [Tat67] (including the remark at the bottom of page 172). O
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3. The lattice OF°

We now prove theorem B. Thanks to coro 1.5, we assume that K /K is a totally
ramified Z,-extension. Let {p, },>0 be a norm compatible sequence of uniformizers of the
K,. Let m, > 0 be the smallest integer such that p" - ¢(K,/K) > 1/(p —1).

Proposition 3.1. — We have val, (02", — pF) = val,(k) — m,.

Proof. — Note that if z,y € C with val,(x —y) > v, then val,(2? —y”) > min(v+ 1, pv).

Let ¢ = ¢(Kx/K) and m = m.. We have val,(ph ., — p,) = ¢ by prop 2.3, so that
valp(pﬁjfll — p”) > ple for all j such that p/~'e < 1/(p — 1).

m+1

In particular, val,(ph ., mtt1

— ") = pre = 1/(p— 1), so that val, (o, — pi") =
j+1/(p—1)if j = 0. This implies the result. O

Theorem 3.2. — There exists ny € Zo such that O C Y, P " Ok,

Proof. — Let ny = [a —b —i— me. +2]. Take x € O%° and write x = YV " 29l with
x; € Ok, so that dv = Zp 0 lepn L. dp,. If dv =0, then Zfio_l ix;pl !t € 0k, /i so that
by prop 2.1 (and since val,(p2") < 1), for all i we have

val,(z;) 2 n—a+b—val,(i) — 1
For k > 1, let

yk—zxklﬂan (k— 1)"‘255’“6 Z( 1)_/)5;%)-
pli

Note that y, € Ok, _,,,. Let us bound val,(yx). We have Valp(xpkfljpi_(k_l)) >n—a+
b — k. We also have val,(xyr,) > n—a+b—k—val,(f) — 1, and Valp(pfb{(kfl) —ph )=
val,(¢) — m. by prop 3.1. Hence val,(yx) > n —a+b—k —1— m. and therefore
Yr € p”*kH*mOKn_kH. Finally, we have x = y; + -+ + Yn—n, + 2¢ xpnfnlgpfll, and
S Tpn—nieph, € Ok, , which implies the result. O

Remark 3.3. — Compare with lemma 4.3.2 of [Fou05].
Corollary 3.4. — We have 057" C (@pmzn, 410" ™ 0%, ) ® p~ Ok, .

Proof. — By theorem 3.2, it is enough to prove that p"Og, C (@m>m+1p"“62(9L ) @

P20k, foralln>mny. If € p"Ok,, write 2 = R, (x) + Ry ((x) +---+ Ry (2) +
R, (z). We have Rt ,(z) € p" 20k  C pH-e0%  and likewise R, (z) €
pnfcg OKnl C pnlfcz OKnl . D

Corollary 3.5. — There are no nontrivial p-divisible elements in d(Ok_,).
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Proof. — By props 1.3 and 1.4, we can assume that K. /K is a totally ramified Z,-
extension. Let {a;};>1 be a sequence of Ok such that do; = p - da;yq for all i > 1.
Write a; = > vy, With oy, € p‘cQOIL(m for m =2 ny + 1 and o, € p~“?0k,, . Since
prag — oy € (9}1(:03, coro 3.4 implies that pkakﬂ-’m —Qm € P20, for all m = n;.

Taking k& > 0 now implies that a;,, € p™ ™ 20k, for all m > n;. Coro 2.2 gives

protmitey, e OFY. Taking i = ng +ny + o + 1 gives doy = 0. O
Corollary 3.6. — The differential d : O, — Qoy__ /0, is not surjective.
Proof. — This follows from coro 3.5 and prop 1.3. m

4. The completion of K, in B,

We now prove theorems A and C. Since we are concerned with the completion of
K, we can once again replace K with a finite subextension of K., and assume that
Ko /K is a totally ramified Z,-extension. Let K 2 denote the completion of K, in By,
so that R = 0(K2) is a subring of K. Let I' = Gal(Ky/K), and let ¢ : ' — Z,
be an isomorphism of p-adic Lie groups. Let ws be the valuation on K., defined by
ws(x) = min{n € Z such that p"z € OF=}. The restriction of the natural valuation of
B, to Ko is wy (see §1.4 and §1.5 of [Fon94], or theorem 3.1 of [Col12]). The map
0 : B, — C has the following property (see §1.4 of [Fon94))

Lemma 4.1. — If {xp}i>1 is a sequence of Ko, that converges to x € By for ws, then

{zk }i=1 @5 Cauchy for val,, and 0(x) = limy_, 1o xx for the p-adic topology.

Let M = @,50p"Oy, . Coro 2.2 and theo 3.2 imply that M and O% are commensu-
rable. Hence K. 2 is the M-adic completion of K.,. Let w) be the M-adic valuation on

K, so that wj and ws are equivalent.
Lemma 4.2. — If x € Ky, then val,(R;(z)) = wh(z) + n.
Proof. — Write © = Y, R (). If @ € p“ M, then Ri(z) € p"™ Ok, O

Proposition 4.3. — Fvery element x € f(\go can be written in one and only one way as

S0 Ty where zi € K+ and p~"xy — 0 for val,.

Proof. — Note that such a series converges for w,. The map R, : K, — K, sends
p*M C K to pw+n(’)}<n, so that it is uniformly continuous for the ws-adic topology, and

therefore extends to a continuous map R : K2 — K.
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Let z € f(\fo be the wy-adic limit of {xy }r>1 with z € K. For a given k, the sequence
{p™" R (xx) }nz0 € [lns0 K- has finite support. As k — 400, these sequences converge
uniformly in 1,50 K& to {p™"R; () }n>0, so that p™"R:(z) — 0 as n — +oo. Hence
S ns0 Rib(x) converges for wy. Since xy = 32,50 Rk (@) for all k, we have x = 32, Rt ().
Finally, if * = ¥, 75 with 7 € K- and p~"x;; — 0 for val,, then z;- = R;-(x) which

proves unicity. O
Corollary 4.4. — The map 0 : Efo — Ko is injective.
Proof. — If z- € K;f and x;; — 0 and 3,502 = 0 in Koo, then zr =0 for all n. [

Corollary 4.5. — The ring R is the set of y € Eoo that can be written asy = > 2,50 P"Yn
with y, € K, and y, — 0.

Proposition 4.6. — The ring R is a field, and R = {x € Ko such that g(z) — x =
o(e(g)) as g — 1 inT'}.

Proof. — The fact that R is a field results from the second statement, since g(1/x)—1/z =
(x — g(2))/(xg(x)). Take y = ¥,50 0"y, with y, € K, and y,, — 0. If m > 1, then
for all k& > 0, we have y,, € p"™Of,. We can write y = x5 + >, P"yn and then
(g —1)(y) € p""™Ok,, if g € Gal(K.,/K}). This proves one implication.

Conversely, take © € Ky such that g(z) — 2 = o(c(g)). Write z = > k=0 Tk With
19 = Ro(z) € Ko and 2, = Ri(z) € Ki- for all k > 1. For n > 0, let g, denote
a topological generator of Gal(K,/K,). Take m > 0, and n > 0 such that we have
val,((gn — 1)(z)) = m +n. We have (1 — ¢,)(2) = YXgons1(l — gn)xk, so that by lemma
2.6 and prop 2.4: val,(zp41) = val,((1 — gn)(@ns1)) — c3 = val,((1 — gn)(x)) — 2 — 3 =
n +m — co — c3. This implies the result. O

Remark 4.7 — Prop 4.6 says that R is the set of vectors of .7(\00 that are C! with zero

derivative (flat to order 1) for the action of T".

Theorem A follows from coro 4.4 since 6 : BQ(IA(OO) — [A(oo is not injective. Finally,

coro 4.4, coro 4.5, and prop 4.6 imply theorem C.
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