

K'ahler differentials and Z_p-extensions

Laurent Berger

▶ To cite this version:

Laurent Berger. K'ahler differentials and ${\bf Z}_p$ -extensions. Journal de Théorie des Nombres de Bordeaux, In press. hal-04126190

HAL Id: hal-04126190 https://hal.science/hal-04126190

Submitted on 13 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

KÄHLER DIFFERENTIALS AND Z_p -EXTENSIONS

by

Laurent Berger

Abstract. — Let K be a p-adic field, and let K_{∞}/K be a Galois extension that is almost totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. We prove that K_{∞} is not dense in $(\mathbf{B}_{dR}^+/\operatorname{Fil}^2 \mathbf{B}_{dR}^+)^{\operatorname{Gal}(\overline{K}/K_{\infty})}$. Moreover, the restriction of θ to the closure of K_{∞} is injective, and its image via θ is the set of vectors of \widehat{K}_{∞} that are C^1 with zero derivative for the action of $\operatorname{Gal}(K_{\infty}/K)$. The main ingredient for proving these results is the construction of an explicit lattice of $\mathcal{O}_{K_{\infty}}$ that is commensurable with $\mathcal{O}_{K_{\infty}}^{d=0}$, where $d: \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ is the differential.

Contents

Introduction	1
1. Kähler differentials	2
2. Ramification in \mathbf{Z}_p -extensions	4
3. The lattice $\mathcal{O}_{K_{\infty}}^{d=0}$	5
4. The completion of K_{∞} in \mathbf{B}_2	6
References	7

Introduction

Let K be a p-adic field, namely a finite extension of W(k)[1/p] where k is a perfect field of characteristic p. Let **C** be the p-adic completion of an algebraic closure \overline{K} of K. Let K_{∞}/K be a Galois extension that is almost totally ramified, and whose Galois group is a p-adic Lie group of dimension 1. Let $\mathbf{B}_{\mathrm{dR}}(\widehat{K}_{\infty}) = \mathbf{B}_{\mathrm{dR}}(\mathbf{C})^{\mathrm{Gal}(\overline{K}/K_{\infty})}$ be Fontaine's field of periods attached to K_{∞}/K , and for $n \ge 1$, let $\mathbf{B}_n(\widehat{K}_{\infty}) = \mathbf{B}_{\mathrm{dR}}^+(\widehat{K}_{\infty})/\mathrm{Fil}^n \mathbf{B}_{\mathrm{dR}}^+(\widehat{K}_{\infty})$.

This note is motivated by Ponsinet's paper [**Pon20**], in which he relates the study of universal norms for the extension K_{∞}/K to the question of whether K_{∞} is dense in

2020 Mathematics Subject Classification. — 11S15; 11S20; 13N05.

 $\mathbf{B}_n(\widehat{K}_\infty)$ for $n \ge 1$. The density result holds for n = 1 by the Ax-Sen-Tate theorem. Our main result is the following.

Theorem A. — The field K_{∞} is not dense in $\mathbf{B}_2(\widehat{K}_{\infty})$.

By the constructions of Fontaine and Colmez (see [Fon94] and [Col12]), $\mathbf{B}_2(\mathbf{C})$ is the completion of \overline{K} for a topology defined using the Kähler differentials $\Omega_{\mathcal{O}_{\overline{K}}/\mathcal{O}_{K}}$. Some partial results towards theorem A have been proved by Iovita-Zaharescu in [IZ99], by studying these Kähler differentials. Let $\Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ be the Kähler differentials of $\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}$ and let $d: \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ be the differential. Our main technical result is the construction of a lattice of $\mathcal{O}_{K_{\infty}}$ that is commensurable with $\mathcal{O}_{K_{\infty}}^{d=0}$. Since the inertia subgroup of $\operatorname{Gal}(K_{\infty}/K)$ is a *p*-adic Lie group of dimension 1, there exists a finite subextension K_0/K of K_{∞} such that K_{∞}/K_0 is a totally ramified \mathbf{Z}_p -extension. Let K_n be the *n*-th layer of this \mathbf{Z}_p -extension.

Theorem B. — The lattices $\sum_{n \ge 0} p^n \mathcal{O}_{K_n}$ and $\mathcal{O}_{K_\infty}^{d=0}$ are commensurable.

In order to prove this, we use Tate's results on ramification in \mathbf{Z}_p -extensions. As a corollary of theorem B, we can say more about the completion of K_{∞} in $\mathbf{B}_2(\widehat{K}_{\infty})$. The field \widehat{K}_{∞} is a Banach representation of the *p*-adic Lie group $\operatorname{Gal}(K_{\infty}/K)$. Let $\theta : \mathbf{B}_2(\mathbf{C}) \to \mathbf{C}$ be the usual map from *p*-adic Hodge theory.

Theorem C. — The completion of K_{∞} in $\mathbf{B}_2(\widehat{K}_{\infty})$ is isomorphic via θ to the set of vectors of \widehat{K}_{∞} that are C^1 with zero derivative for the action of $\operatorname{Gal}(K_{\infty}/K)$.

This is a field, and it is also the set of $y \in \widehat{K}_{\infty}$ that can be written as $y = \sum_{n \ge 0} p^n y_n$ with $y_n \in K_n$ and $y_n \to 0$.

We also prove that $d(\mathcal{O}_{K_{\infty}})$ contains no nontrivial *p*-divisible element (coro 3.5), and that $d: \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ is not surjective (coro 3.6). These two statements are equivalent to theorem A by the results of **[IZ99**]; using our computations, we give a short independent proof.

Acknowledgements. I thank Léo Poyeton for his remarks on an earlier version of this note.

1. Kähler differentials

Let K be a p-adic field. If L/K is a finite extension, let $\mathfrak{d}_{L/K} \subset \mathcal{O}_L$ denote its different.

Proposition 1.1. — Let K be a p-adic field, and let L/K be an algebraic extension.

- 1. If L/K is a finite extension, then $\Omega_{\mathcal{O}_L/\mathcal{O}_K} = \mathcal{O}_L/\mathfrak{d}_{L/K}$ as \mathcal{O}_L -modules.
- 2. If M/L/K are finite extensions, the map $\Omega_{\mathcal{O}_L/\mathcal{O}_K} \to \Omega_{\mathcal{O}_M/\mathcal{O}_K}$ is injective.
- 3. If L/K is an algebraic extension, and $\omega_1, \omega_2 \in \Omega_{\mathcal{O}_L/\mathcal{O}_K}$, then there exists $x \in \mathcal{O}_L$ such that $\omega_2 = x\omega_1$ if and only if $\operatorname{Ann}(\omega_1) \subset \operatorname{Ann}(\omega_2)$.

Proof. — See for instance \$2 of [Fon82].

Recall (see §2 of [CG96]) that an algebraic extension L/K is deeply ramified if the set $\{\operatorname{val}_p(\mathfrak{d}_{F/K})\}_F$ is unbounded, as F runs through the set of finite extensions of K contained in L. Alternatively (remark 3.3 of [Sch12]), L/K is deeply ramified if and only if \hat{L} is a perfectoid field. An extension K_{∞}/K as in the introduction is deeply ramified.

Corollary 1.2. — If L/K is deeply ramified, then $\Omega_{\mathcal{O}_L/\mathcal{O}_K} = L/\mathcal{O}_L$ as \mathcal{O}_L -modules.

Proposition 1.3. — If L/K is deeply ramified, then $d : \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is surjective if and only if $d(\mathcal{O}_L)$ is p-divisible.

Proof. — Since L/K is deeply ramified, $\Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is *p*-divisible. This proves one implication. Assume now that $d(\mathcal{O}_L)$ is *p*-divisible, so that there exists a sequence $\{\alpha_i\}_{i\geq 1}$ of \mathcal{O}_L such that $d\alpha_1 \neq 0$ and $d\alpha_i = p \cdot d\alpha_{i+1}$ for all $i \geq 1$. If $\omega \in \Omega_{\mathcal{O}_L/\mathcal{O}_K}$, prop 1.1 implies that there exists $i \geq 1$ and $x_i \in \mathcal{O}_L$ such that $\omega = x_i \cdot d\alpha_i$. Take $k \geq 0$ such that $d(p^k x_i) = 0$. We then have $\omega = x_i \cdot d\alpha_i = p^k x_i \cdot d\alpha_{i+k} = d(p^k x_i \alpha_{i+k})$. Hence *d* is surjective. \Box

Proposition 1.4. — Let L/K be a deeply ramified extension, and let $K' \subset L$ be a finite extension of K.

- 1. $d: \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is surjective if and only if $d': \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_{K'}}$ is surjective.
- 2. $\mathcal{O}_L^{d=0}$ and $\mathcal{O}_L^{d'=0}$ are commensurable.

Proof. — We have an exact sequence of \mathcal{O}_L -modules, compatible with d and d'

$$\mathcal{O}_L \otimes \Omega_{\mathcal{O}_{K'}/\mathcal{O}_K} \xrightarrow{f} \Omega_{\mathcal{O}_L/\mathcal{O}_K} \xrightarrow{g} \Omega_{\mathcal{O}_L/\mathcal{O}_{K'}} \to 0.$$

Let us prove (1). If $d : \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_K}$ is surjective, then clearly $d' : \mathcal{O}_L \to \Omega_{\mathcal{O}_L/\mathcal{O}_{K'}}$ is surjective. Conversely, there exists $r \ge 0$ such that $p^r \cdot \Omega_{\mathcal{O}_{K'}/\mathcal{O}_K} = \{0\}$. If $\omega \in \Omega_{\mathcal{O}_L/\mathcal{O}_K}$, write it as $\omega = p^r \omega_r$. By hypothesis, there exists $\alpha_r \in \mathcal{O}_L$ such that $\omega_r = d' \alpha_r$ in $\Omega_{\mathcal{O}_L/\mathcal{O}_{K'}}$. Hence $p^r(\omega_r - d\alpha_r) = 0$ in $\Omega_{\mathcal{O}_L/\mathcal{O}_K}$ so that $\omega = d(p^r \alpha_r)$. We now prove (2). The exact sequence above implies that $\mathcal{O}_L^{d=0} \subset \mathcal{O}_L^{d'=0}$. Conversely, if $x \in \mathcal{O}_L^{d'=0}$, then $dx \in \ker g = \operatorname{im} f$, so that $p^r \cdot dx = 0$. Hence $p^r \cdot \mathcal{O}_L^{d=0} \subset \mathcal{O}_L^{d=0}$.

Corollary 1.5. — In order to prove theorem B, we can replace K by any finite subextension K' of K. In particular, we can assume that K_{∞}/K is a totally ramified \mathbf{Z}_p -extension.

LAURENT BERGER

2. Ramification in Z_p -extensions

Let K_{∞}/K be a totally ramified \mathbb{Z}_p -extension. We recall some of the results of §3.1 of [**Tat67**] concerning the ramification of K_{∞}/K and the action of $\text{Gal}(K_{\infty}/K)$ on K_{∞} . Let K_n be the *n*-th layer of K_{∞}/K , so that $[K_n : K] = p^n$.

Proposition 2.1. — There are constants a, b such that $|val_p(\mathfrak{d}_{K_n/K}) - n - b| \leq p^{-n}a$ for $n \geq 0$.

Proof. — See §3.1 of [**Tat67**].

The notation $\sum_{n\geq 0} p^n \mathcal{O}_{K_n}$ denotes the set of elements of K_{∞} that are finite sums of elements of $p^n \mathcal{O}_{K_n}$.

Corollary 2.2. — There exists $n_0 \ge 0$ such that $\sum_{n\ge 0} p^{n+n_0} \mathcal{O}_{K_n} \subset \mathcal{O}_{K_\infty}^{d=0}$.

Proposition 2.3. — There exists $c(K_{\infty}/K) > 0$ such that for all $n, k \ge 0$ and $x \in \mathcal{O}_{K_{n+k}}$, we have $\operatorname{val}_p(N_{K_{n+k}/K_n}(x)/x^{[K_{n+k}:K_n]}-1) \ge c(K_{\infty}/K)$.

Proof. — The result follows from the fact (see 1.2.2 of [Win83]) that the extension K_{∞}/K is strictly APF. One can then apply 1.2.1, 4.2.2 and 1.2.3 of [Win83].

If $n \ge 0$ and $x \in K_{\infty}$, then $R_n(x) = p^{-k} \cdot \operatorname{Tr}_{K_{n+k}/K_n}(x)$ is independent of $k \gg 0$ such that $x \in K_{n+k}$, and is the normalized trace of x.

Proposition 2.4. — There exists $c_2 \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{val}_p(R_n(x)) \geq \operatorname{val}_p(x) - c_2$ for all $n \geq 0$ and $x \in K_{\infty}$.

Proof. — See §3.1 of [**Tat67**] (including the remark at the bottom of page 172). \Box

In particular, $R_n(\mathcal{O}_{K_{\infty}}) \subset p^{-c_2}\mathcal{O}_{K_n}$ for all $n \ge 0$. Let $K_0^{\perp} = K_0$ and for $n \ge 1$, let K_n^{\perp} be the kernel of $R_{n-1}: K_n \to K_{n-1}$, let $R_n^{\perp} = R_n - R_{n-1}$, and $R_0^{\perp} = R_0$. If $x \in K_{\infty}$ and $i \ge 0$, then $R_n^{\perp}(x) = 0$ for $n \gg 0$, and $x = (\sum_{n \ge i+1} R_n^{\perp}(x)) + R_i(x)$. Prop 2.4 implies that $R_n^{\perp}(\mathcal{O}_{K_{\infty}}) \subset p^{-c_2}\mathcal{O}_{K_n}$ for all $n \ge 0$. Let $\mathcal{O}_{K_n}^{\perp} = \mathcal{O}_{K_n} \cap K_n^{\perp}$.

Corollary 2.5. — For all $i \ge 0$, we have $\mathcal{O}_{K_{\infty}} \subset (\bigoplus_{m \ge i+1} p^{-c_2} \mathcal{O}_{K_m}^{\perp}) \oplus p^{-c_2} \mathcal{O}_{K_i}$.

Proof. — If $x \in \mathcal{O}_{K_{\infty}}$, write $x = \sum_{m \ge i+1} R_m^{\perp}(x) + R_i(x)$.

For $n \ge 0$, let g_n denote a topological generator of $\operatorname{Gal}(K_{\infty}/K_n)$.

Lemma 2.6. — There exists a constant c_3 such that for all $n \ge 1$ and $x \in K_{n+1}^{\perp}$, we have $\operatorname{val}_p(x) \ge \operatorname{val}_p((1-g_n)(x)) - c_3$.

Proof. — See §3.1 of [**Tat67**] (including the remark at the bottom of page 172). \Box

3. The lattice $\mathcal{O}_{K_{\infty}}^{d=0}$

We now prove theorem B. Thanks to coro 1.5, we assume that K_{∞}/K is a totally ramified \mathbb{Z}_p -extension. Let $\{\rho_n\}_{n\geq 0}$ be a norm compatible sequence of uniformizers of the K_n . Let $m_c \geq 0$ be the smallest integer such that $p^{m_c} \cdot c(K_{\infty}/K) \geq 1/(p-1)$.

Proposition 3.1. — We have $\operatorname{val}_p(\rho_{n+1}^{pk} - \rho_n^k) \ge \operatorname{val}_p(k) - m_c$.

Proof. — Note that if $x, y \in \mathbf{C}$ with $\operatorname{val}_p(x-y) \ge v$, then $\operatorname{val}_p(x^p-y^p) \ge \min(v+1, pv)$. Let $c = c(K_{\infty}/K)$ and $m = m_c$. We have $\operatorname{val}_p(\rho_{n+1}^p - \rho_n) \ge c$ by prop 2.3, so that $\operatorname{val}_p(\rho_{n+1}^{p^{j+1}} - \rho_n^{p^j}) \ge p^j c$ for all j such that $p^{j-1}c \le 1/(p-1)$.

In particular, $\operatorname{val}_p(\rho_{n+1}^{p^{m+1}} - \rho_n^{p^m}) \ge p^m c \ge 1/(p-1)$, so that $\operatorname{val}_p(\rho_{n+1}^{p^{m+j+1}} - \rho_n^{p^{m+j}}) \ge j+1/(p-1)$ if $j \ge 0$. This implies the result.

Theorem 3.2. — There exists $n_1 \in \mathbb{Z}_{\geq 0}$ such that $\mathcal{O}_{K_{\infty}}^{d=0} \subset \sum_{m \geq n_1} p^{m-n_1} \mathcal{O}_{K_m}$.

Proof. — Let $n_1 = \lceil a - b + m_c + 2 \rceil$. Take $x \in \mathcal{O}_{K_n}^{d=0}$ and write $x = \sum_{i=0}^{p^n-1} x_i \rho_n^i$ with $x_i \in \mathcal{O}_K$, so that $dx = \sum_{i=0}^{p^n-1} ix_i \rho_n^{i-1} \cdot d\rho_n$. If dx = 0, then $\sum_{i=0}^{p^n-1} ix_i \rho_n^{i-1} \in \mathfrak{d}_{K_n/K}$ so that by prop 2.1 (and since $\operatorname{val}_p(\rho_n^{p^n}) \leq 1$), for all i we have

$$\operatorname{val}_p(x_i) \ge n - a + b - \operatorname{val}_p(i) - 1.$$

For $k \ge 1$, let

$$y_k = \sum_{p \nmid j} x_{p^{k-1}j} \rho_{n-(k-1)}^j + \sum_{\ell} x_{p^k \ell} (\rho_{n-(k-1)}^{p\ell} - \rho_{n-k}^{\ell}).$$

Note that $y_k \in \mathcal{O}_{K_{n-k+1}}$. Let us bound $\operatorname{val}_p(y_k)$. We have $\operatorname{val}_p(x_{p^{k-1}j}\rho_{n-(k-1)}^j) \ge n-a+b-k$. We also have $\operatorname{val}_p(x_{p^{k}\ell}) \ge n-a+b-k-\operatorname{val}_p(\ell)-1$, and $\operatorname{val}_p(\rho_{n-(k-1)}^{p\ell}-\rho_{n-k}^{\ell}) \ge \operatorname{val}_p(\ell) - m_c$ by prop 3.1. Hence $\operatorname{val}_p(y_k) \ge n-a+b-k-1-m_c$ and therefore $y_k \in p^{n-k+1-n_1}\mathcal{O}_{K_{n-k+1}}$. Finally, we have $x = y_1 + \cdots + y_{n-n_1} + \sum_{\ell} x_{p^{n-n_1}\ell}\rho_{n_1}^{\ell}$, and $\sum_{\ell} x_{p^{n-n_1}\ell}\rho_{n_1}^{\ell} \in \mathcal{O}_{K_{n_1}}$, which implies the result.

Remark 3.3. — Compare with lemma 4.3.2 of [Fou05].

Corollary 3.4. — We have $\mathcal{O}_{K_{\infty}}^{d=0} \subset (\bigoplus_{m \ge n_1+1} p^{m-n_1-c_2} \mathcal{O}_{K_m}^{\perp}) \oplus p^{-c_2} \mathcal{O}_{K_{n_1}}$.

Proof. — By theorem 3.2, it is enough to prove that $p^n \mathcal{O}_{K_n} \subset (\bigoplus_{m \ge n_1+1} p^{m-c_2} \mathcal{O}_{K_m}^{\perp}) \oplus p^{n_1-c_2} \mathcal{O}_{K_{n_1}}$ for all $n \ge n_1$. If $x \in p^n \mathcal{O}_{K_n}$, write $x = R_n^{\perp}(x) + R_{n-1}^{\perp}(x) + \cdots + R_{n_1+1}^{\perp}(x) + R_{n_1}(x)$. We have $R_{n-k}^{\perp}(x) \in p^{n-c_2} \mathcal{O}_{K_{n-k}}^{\perp} \subset p^{(n-k)-c_2} \mathcal{O}_{K_{n-k}}^{\perp}$ and likewise $R_{n_1}(x) \in p^{n-c_2} \mathcal{O}_{K_{n_1}} \subset p^{n_1-c_2} \mathcal{O}_{K_{n_1}}$.

Corollary 3.5. — There are no nontrivial p-divisible elements in $d(\mathcal{O}_{K_{\infty}})$.

LAURENT BERGER

Proof. — By props 1.3 and 1.4, we can assume that K_{∞}/K is a totally ramified \mathbb{Z}_{p} extension. Let $\{\alpha_i\}_{i\geq 1}$ be a sequence of $\mathcal{O}_{K_{\infty}}$ such that $d\alpha_i = p \cdot d\alpha_{i+1}$ for all $i \geq 1$. Write $\alpha_i = \sum \alpha_{i,m}$ with $\alpha_{i,m} \in p^{-c_2} \mathcal{O}_{K_m}^{\perp}$ for $m \geq n_1 + 1$ and $\alpha_{i,n_1} \in p^{-c_2} \mathcal{O}_{K_{n_1}}$. Since $p^k \alpha_{k+i} - \alpha_i \in \mathcal{O}_{K_{\infty}}^{d=0}$, coro 3.4 implies that $p^k \alpha_{k+i,m} - \alpha_{i,m} \in p^{m-n_1-c_2} \mathcal{O}_{K_m}$ for all $m \geq n_1$. Taking $k \gg 0$ now implies that $\alpha_{i,m} \in p^{m-n_1-c_2} \mathcal{O}_{K_m}$ for all $m \geq n_1$. Coro 2.2 gives $p^{n_0+n_1+c_2}\alpha_i \in \mathcal{O}_{K_{\infty}}^{d=0}$. Taking $i = n_0 + n_1 + c_2 + 1$ gives $d\alpha_1 = 0$.

Corollary 3.6. — The differential $d : \mathcal{O}_{K_{\infty}} \to \Omega_{\mathcal{O}_{K_{\infty}}/\mathcal{O}_{K}}$ is not surjective.

Proof. — This follows from coro 3.5 and prop 1.3.

4. The completion of K_{∞} in \mathbf{B}_2

We now prove theorems A and C. Since we are concerned with the completion of K_{∞} , we can once again replace K with a finite subextension of K_{∞} and assume that K_{∞}/K is a totally ramified \mathbf{Z}_p -extension. Let \widehat{K}_{∞}^2 denote the completion of K_{∞} in \mathbf{B}_2 , so that $R = \theta(\widehat{K}_{\infty}^2)$ is a subring of \widehat{K}_{∞} . Let $\Gamma = \operatorname{Gal}(K_{\infty}/K)$, and let $c : \Gamma \to \mathbf{Z}_p$ be an isomorphism of p-adic Lie groups. Let w_2 be the valuation on K_{∞} defined by $w_2(x) = \min\{n \in \mathbf{Z} \text{ such that } p^n x \in \mathcal{O}_{K_{\infty}}^{d=0}\}$. The restriction of the natural valuation of \mathbf{B}_2 to K_{∞} is w_2 (see §1.4 and §1.5 of [Fon94], or theorem 3.1 of [Col12]). The map $\theta : \mathbf{B}_2 \to \mathbf{C}$ has the following property (see §1.4 of [Fon94])

Lemma 4.1. — If $\{x_k\}_{k\geq 1}$ is a sequence of K_{∞} that converges to $x \in \mathbf{B}_2$ for w_2 , then $\{x_k\}_{k\geq 1}$ is Cauchy for val_p , and $\theta(x) = \lim_{k \to +\infty} x_k$ for the p-adic topology.

Let $M = \bigoplus_{n \ge 0} p^n \mathcal{O}_{K_n}^{\perp}$. Coro 2.2 and theo 3.2 imply that M and $\mathcal{O}_{K_\infty}^{d=0}$ are commensurable. Hence \widehat{K}_{∞}^2 is the M-adic completion of K_{∞} . Let w'_2 be the M-adic valuation on K_{∞} , so that w'_2 and w_2 are equivalent.

Lemma 4.2. — If $x \in K_{\infty}$, then $\operatorname{val}_p(R_n^{\perp}(x)) \ge w'_2(x) + n$.

Proof. — Write
$$x = \sum_{n \ge 0} R_n^{\perp}(x)$$
. If $x \in p^w M$, then $R_n^{\perp}(x) \in p^{n+w} \mathcal{O}_{K_n}$.

Proposition 4.3. — Every element $x \in \widehat{K}^2_{\infty}$ can be written in one and only one way as $\sum_{n\geq 0} x_n^{\perp}$ where $x_n^{\perp} \in K_n^{\perp}$ and $p^{-n} x_n^{\perp} \to 0$ for val_p.

Proof. — Note that such a series converges for w_2 . The map $R_n^{\perp} : K_{\infty} \to K_n^{\perp}$ sends $p^w M \subset K_{\infty}$ to $p^{w+n} \mathcal{O}_{K_n}^{\perp}$, so that it is uniformly continuous for the w_2 -adic topology, and therefore extends to a continuous map $R_n^{\perp} : \widehat{K}_{\infty}^2 \to K_n^{\perp}$.

Let $x \in \widehat{K}_{\infty}^2$ be the w_2 -adic limit of $\{x_k\}_{k \ge 1}$ with $x_k \in K_{\infty}$. For a given k, the sequence $\{p^{-n}R_n^{\perp}(x_k)\}_{n \ge 0} \in \prod_{n \ge 0} K_n^{\perp}$ has finite support. As $k \to +\infty$, these sequences converge uniformly in $\prod_{n \ge 0} K_n^{\perp}$ to $\{p^{-n}R_n^{\perp}(x)\}_{n \ge 0}$, so that $p^{-n}R_n^{\perp}(x) \to 0$ as $n \to +\infty$. Hence $\sum_{n \ge 0} R_n^{\perp}(x)$ converges for w_2 . Since $x_k = \sum_{n \ge 0} R_n^{\perp}(x_k)$ for all k, we have $x = \sum_{n \ge 0} R_n^{\perp}(x)$. Finally, if $x = \sum_{n \ge 0} x_n^{\perp}$ with $x_n^{\perp} \in K_n^{\perp}$ and $p^{-n}x_n^{\perp} \to 0$ for val_p, then $x_n^{\perp} = R_n^{\perp}(x)$ which proves unicity.

Corollary 4.4. — The map $\theta : \widehat{K}^2_{\infty} \to \widehat{K}_{\infty}$ is injective.

Proof. — If $x_n^{\perp} \in K_n^{\perp}$ and $x_n^{\perp} \to 0$ and $\sum_{n \ge 0} x_n^{\perp} = 0$ in \widehat{K}_{∞} , then $x_n^{\perp} = 0$ for all n. \Box

Corollary 4.5. — The ring R is the set of $y \in \widehat{K}_{\infty}$ that can be written as $y = \sum_{n \ge 0} p^n y_n$ with $y_n \in K_n$ and $y_n \to 0$.

Proposition 4.6. — The ring R is a field, and $R = \{x \in \widehat{K}_{\infty} \text{ such that } g(x) - x = o(c(g)) \text{ as } g \to 1 \text{ in } \Gamma\}.$

Proof. — The fact that R is a field results from the second statement, since g(1/x)-1/x = (x - g(x))/(xg(x)). Take $y = \sum_{n \ge 0} p^n y_n$ with $y_n \in K_n$ and $y_n \to 0$. If $m \ge 1$, then for all $k \gg 0$, we have $y_n \in p^{m+n}\mathcal{O}_{K_n}$. We can write $y = x_k + \sum_{n \ge k} p^n y_n$ and then $(g-1)(y) \in p^{k+m}\mathcal{O}_{K_\infty}$ if $g \in \operatorname{Gal}(K_\infty/K_k)$. This proves one implication.

Conversely, take $x \in \widehat{K}_{\infty}$ such that g(x) - x = o(c(g)). Write $x = \sum_{k \ge 0} x_k$ with $x_0 = R_0(x) \in K_0$ and $x_k = R_k^{\perp}(x) \in K_k^{\perp}$ for all $k \ge 1$. For $n \ge 0$, let g_n denote a topological generator of $\operatorname{Gal}(K_{\infty}/K_n)$. Take $m \ge 0$, and $n \ge 0$ such that we have $\operatorname{val}_p((g_n - 1)(x)) \ge m + n$. We have $(1 - g_n)(x) = \sum_{k \ge n+1} (1 - g_n)x_k$, so that by lemma 2.6 and prop 2.4: $\operatorname{val}_p(x_{n+1}) \ge \operatorname{val}_p((1 - g_n)(x_{n+1})) - c_3 \ge \operatorname{val}_p((1 - g_n)(x)) - c_2 - c_3 \ge n + m - c_2 - c_3$. This implies the result.

Remark 4.7. — Prop 4.6 says that R is the set of vectors of \widehat{K}_{∞} that are C^1 with zero derivative (flat to order 1) for the action of Γ .

Theorem A follows from coro 4.4 since $\theta : \mathbf{B}_2(\widehat{K}_{\infty}) \to \widehat{K}_{\infty}$ is not injective. Finally, coro 4.4, coro 4.5, and prop 4.6 imply theorem C.

References

- [CG96] J. COATES & R. GREENBERG "Kummer theory for abelian varieties over local fields", Invent. Math. 124 (1996), no. 1-3, p. 129–174.
- [Col12] P. COLMEZ "Une construction de B⁺_{dR}", Rend. Semin. Mat. Univ. Padova 128 (2012), p. 109–130 (2013).

LAURENT BERGER

- [Fon94] J.-M. FONTAINE "Le corps des périodes p-adiques", Astérisque (1994), no. 223, p. 59–111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).
- [Fon82] _____, "Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux", *Invent. Math.* 65 (1981/82), no. 3, p. 379–409.
- [Fou05] L. FOURQUAUX "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate", Ph.D. Thesis, Université Paris 6, 2005.
- [IZ99] A. IOVITA & A. ZAHARESCU "Galois theory of B_{dR}^+ ", Compositio Math. 117 (1999), no. 1, p. 1–31.
- [Pon20] G. PONSINET "Universal norms and the Fargues-Fontaine curve", preprint, 2020.
- [Sch12] P. SCHOLZE "Perfectoid spaces", Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 245–313.
- [Tat67] J. T. TATE "p-divisible groups", in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158–183.
- [Win83] J.-P. WINTENBERGER "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59–89.

May 31, 2023

LAURENT BERGER, UMPA de l'ENS de Lyon, UMR 5669 du CNRS E-mail:laurent.berger@ens-lyon.fr • Url:perso.ens-lyon.fr/laurent.berger/