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Notations 2
43

I URL

I Topic not discussed in this talk

I HW: hardware, SW: software

I (H)ECC: (hyper-)elliptic curve crypto

I PQC: post quantum crypto

I HDL: hardware description language (e.g. VHDL, Verilog)

I HLS: high-level synthesis

I CABA: cycle accurate bit accurate

I SCA: side-channel attacks

I EMR: electromagnetic radiation

http://url/


Agenda 3
43

I Context and motivations

I Introduction: crypto, arithmetic, hardware implementations

I Troubles

I HDL example: HECC

I HLS example: lattice based PQC

I Remarks / future prospects



Activities in Computer Arithmetic and Applied Crypto 4
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Group:

I Karim BIGOU (Associate Professor UBO)
I AT
I PhD students (see next slide)

Topics:

I computer arithmetic: representations of numbers and algorithms

I implementations: HW (ASIC, FPGA) and SW (microcontroller,
multicore)

I crypto: asymmetric (RSA, (H)ECC, lattice based PQC), hash functions,
symmetric ciphers, homomorphic encryption

I physical attacks (observation and perturbation): attacks and protections

https://lab-sticc.univ-brest.fr/~kbigou/
https://www.arnaud-tisserand.fr/


PhD Students 5
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I Gabriel GALLIN (IRISA/Lab-STICC, 2014-18): Hardware Arithmetic
Units and Crypto-Processor for Hyperelliptic Curves Cryptography, HDL
generator

I Timo ZIJLSTRA (2017-20): Secure Hardware Accelerators for
Post-Quantum Cryptography, HLS codes, lattice-based crypto

I Libey DJATH (2017-21): RNS-Flexible Hardware Accelerators for
High-Security Asymmetric Cryptography

https://tel.archives-ouvertes.fr/tel-01989822
https://tel.archives-ouvertes.fr/tel-01989822
https://sourcesup.renater.fr/htmm/
https://sourcesup.renater.fr/htmm/
https://hal.archives-ouvertes.fr/tel-02953277
https://hal.archives-ouvertes.fr/tel-02953277
https://sourcesup.renater.fr/www/lwe-hls-fpga/
https://hal.archives-ouvertes.fr/tel-03393289
https://hal.archives-ouvertes.fr/tel-03393289
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I [GCT17] IndoCrypt 2017. Architecture level Optimizations for Kummer
based HECC on FPGAs, by Gallin, Celik and T.

I [GT19] IEEE Trans. Computers 2019. Generation of Finely-Pipelined
GF(P) Multipliers for Flexible Curve based Cryptography on FPGAs, by
Gallin and T.

I [DBT19] ARITH 2019. Hierarchical Approach in RNS Base Extension
for Asymmetric Cryptography, by Djath, Bigou and T.

I [DZBT19] Compas 2019: Comparaison d’algorithmes de réduction
modulaire en HLS sur FPGA, par Djath, Zijlstra, and Bigou et T.

I [ZBT19] IndoCrypt 2019. FPGA Implementation and Comparison of
Protections against SCAs for RLWE, by Zijlstra, Bigou, and T.

I [ZBT21] IEEE Trans. Computers 2021. Lattice-based Cryptosystems on
FPGA: Parallelization and Comparison using HLS, by Zijlstra, Bigou,
and T.

https://hal.archives-ouvertes.fr/hal-01614063
https://hal.archives-ouvertes.fr/hal-01614063
https://hal.archives-ouvertes.fr/hal-02141260
https://hal.archives-ouvertes.fr/hal-02141260
https://hal.archives-ouvertes.fr/hal-02096353
https://hal.archives-ouvertes.fr/hal-02096353
https://hal.archives-ouvertes.fr/hal-02129095
https://hal.archives-ouvertes.fr/hal-02129095
https://hal.archives-ouvertes.fr/hal-02309481/
https://hal.archives-ouvertes.fr/hal-02309481/
https://hal.archives-ouvertes.fr/hal-03347174/
https://hal.archives-ouvertes.fr/hal-03347174/


Motivation 7
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We have been implementing arithmetic accelerators for cryptography in
hardware (ASIC & FPGA) using HDL descriptions and tools for quite some
time, but

I hiring PhD students with skills in both arithmetic, crypto and hardware
implementation is difficult

I HW design requires time to learn and experiment

I HDL coding is tedious =⇒ it limits exploration at
architecture/algorithm/arithmetic levels



Why Using HLS Instead of HDL? 8
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HLS should help us to:

I reduce design and debug time

I explore more advanced arithmetic algorithms, representations of
numbers and architectures

I use advanced optimizations (compared to manually optimized solutions)

I combine various protection schemes

I quickly compare various solutions using the same environment/effort

I ?

Spoiler alert: HLS helps on some points, but no magic, need to “think in
HW”!



Introduction: Crypto Context 9
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Crypto algorithms use large data (keys, intermediate, results) to avoid
theoretical attacks

=⇒ “numerical” validation can be tricky

Crypto algorithms bring confusion and diffusion

=⇒ help “basic” debugging

=⇒ determine “bad or worst cases” is very tricky

We use crypto algorithms and parameters from cryptographers, but we can
modify some internal arithmetic computations and representations



Introduction: Arithmetic Context 10
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Most implementation methods, in SW and HW, only support “basic”
arithmetic (simple integers, 2’s complement) and real approximations
(fixed-point and floating-point)

In crypto, we need more than that:

I modular arithmetic

I finite fields/rings (extensions)

I polynomials, vectors and matrices

I conversions to/from other representations/domains (e.g. FFT/NTT,
masking, . . . )

I random numbers

I etc.



Introduction: Hardware Metrics 11
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I speed: delay, frequency, latency, throughput

I device cost: area, memory size (data, µcode)

I energy, power, voltage

I design cost

I side channel leakage (time, power, EMR)

I fault sensitivity



Introduction: Area Metrics in FPGAs 12
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FPGAs are composed of various configurable elements:

I logic blocks for small arbitrary functions (e.g. f(6b)→ 1b)
AMD-Xilinx: LUTs, slices, CLBs

I registers for storing bits
AMD-Xilinx: flip-flops

I small RAM blocks (e.g. dual port 36 Kb width and depth can be
configured)
AMD-Xilinx: BRAM

I small multiplier-accumulator blocks (e.g. (25b× 18b)± 48b→ 48b )
AMD-Xilinx: DSP blocks/slices

Warning: names vary (check docs for specs)

Links: ARCHI schools (2013), TI article (FR)

https://archi.sciencesconf.org/
https://doi.org/10.51257/a-v1-h1196


Introduction: SW vs HDL 13
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Small pseudo code:

for i from 0 to n-1 do:
S[i] = A[i] + B[i]

SW development assumes an implicit architecture with a (mostly sequential)
behavior which hides details

In HDL design, one has to describe more details:

I what should be done
I where are the elements (area and explicit parallelism management)
I when use elements and send/receive signals (up to cycle level accuracy)



Troubles with “Signed” Integers 14
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Unsigned binary integer:

(xn−1xn−2 . . . x1x0) =
n−1∑
i=0

xi2i

Signed binary integer using 2’s complement representation:

(xn−1xn−2 . . . x1x0) = xn−1(−2n−1) +
n−2∑
i=0

xi2i

=⇒the set of representable integers is asymmetric!

Example: n = 8 x ∈ {−128,−127, . . . , 1, 0, 1, . . . , 127}

=⇒using identities involving −x or abs(x) can be tricky

Currently, almost no support for other representations of signed integers

Our solution: home made “wrappers” for other number systems



Troubles with “n-Bit” Integers 15
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Standard arithmetic behavior for integer operations:

I n bits + n bits  n+ 1 bits
I n bits × n bits  2n bits

In many programming languages and HDLs:

I n bits + n bits  ?
I n bits × n bits  ?

Common “solution”: implicit modulo 2w where w is the word size

In SW, try to code a multiple-word addition without assembly intrinsics such
as ADDC vs ADD...



Troubles with Explicit Parallelism in HW 16
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To improve performances, one can:

I Use parallel blocks for independent computations (up to area budget)

I Use deeper pipeline to increase frequency and throughput (limited by
data dependencies, control)

I Use hyper-threading like solutions to use same HW resources for
multiple independent computations

Sure, but:

I This is not simple to describe that in HDLs in an abstract way

I Each change in the cycles when an element produces/consumes data
will impact (many) other elements. . .

Our solution: homemade code generators (great but costly)



Experimental and Validation Environment 17
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I Tools and FPGAs from AMD-Xilinx:
I ISE and Vivado for HDL
I Vivado HLS and Vitis HLS
I Spartan, Artix, Kintex, Virtex, Zynq. . .
I Thanks for donations through the XUP

I Numerous simulations on several simulators (HDL, netlist CABA) for
random and generated data sets

I Mathematical proofs of our algorithms (future: use a proof assistant)

I Intensive comparisons to values obtained from maths tools (e.g., Sage)
and crypto libraries

I Hyper intensive verifications on (a cluster of) FPGA boards: Sasebo,
Sakura, ZedBoard. . .



HDL Example: HECC (1/6) 18
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Loop, indexed by key digits, of curve-level operations such as:
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I exploration: architectures, internal widths, parallelism, pipeline
I efficient arithmetic operators over Fp (p fixed or generic)
I protections against SCA

Details: [GCT17], [GT19], HAH project (Labex CominLabs 2014–2017)

https://project.inria.fr/hahyperliptic


HDL Example: HECC (2/6) 19
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Hyperthreaded modular Montgomery multiplier (HTMM) with high
frequency AND reduced area from homemade HDL generators [GT19]

0

Task 2

Task 3

Task 1

RAM RAM

https://sourcesup.renater.fr/htmm/


HDL Example: HECC (3/6) 20
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Generated HDL results for 128b HTMM on Virtex-7:
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HDL Example: HECC (4/6) 21
43

Example of tricky optimization possible at very low level: bubble removal in
HTMM pipeline (due to some carry propagation)
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After some efforts, we have been able to design, prove and implement an
optimized bubble free HTMM

Not sure this kind of “low-level” optimization is accessible for HLS users. . .



HDL Example: HECC (5/6) 22
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HDL Example: HECC (6/6) 23
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HLS Implementation of Modular Arithmetic 24
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Need for efficient modular arithmetic on “small” values in:

I lattice based solutions for PQC (e.g. 13 – 25 bits field elements)

I ECC in RNS (vectors of residues on 16 – 64 bits)

Experiment/optimize various algorithms and architectures for:

I modular arithmetic (sequences of) operations
I a± b mod m
I a× b mod m
I

∑N−1
i=0 ai mod m

I
∑N−1

i=0 ai × bi mod m
I various widths w ∈ {10, . . . , 64} bits
I various forms of moduli

I generic m
I sparse m for PQC (e.g. a few non-zero digits among w)
I RNS friendly m = 2w − c (with c small)



User Code for (∑N−1
i=0 ai × bi) mod m 25
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1 #include "parameters.h"
2 #include "arithmod.h"
3

4 word m2_rsf(word A[N], word B[N])
5 {
6 sumdword res=0;
7 acc: for(counter i=0; i<N; i++)
8 res += DW(A[i]) * DW(B[i]);
9 return barrett(res);

10 }

word, dword, sumdword, . . . are typedefs for w, 2w, 2w + dlog2Ne bits
values

W(), DW(), SUM_DW(), . . . are cast macros for these types

HLS tools require to label loops, function calls, operations, . . . to apply
directives (unroll, pipeline, memory, unit mapping. . . ))

Details: [DZBT19]



Library Code Example for Barrett Reduction 26
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1 #include "parameters.h"
2 #include "arithmod_internal.h"
3

4 word barrett(sumdword x)
5 {
6 sumword x1 = SUM_W(x >> width);
7 sumword q = SUM_W((RSW(x1) * RSW(R_const)) >> (shift - width));
8 word x0 = W(x);
9 counter c = 0;

10 if (x0 > M) c = 2;
11 else if (x0 != 0) c = 1;
12 q = q + c;
13 sumdword z = SUM_DW(q) * SUM_DW(m);
14 signword res = x - z;
15 if (res < 0) res = res + M;
16 if (res < 0) res = res + M;
17 return W(res);
18 }



Implementation Results for (∑N−1
i=0 ai × bi) mod m (1/3) 27

43



Implementation Results for (∑N−1
i=0 ai × bi) mod m (2/3) 28
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Implementation Results for (∑N−1
i=0 ai × bi) mod m (3/3) 29

43



HLS Implementation of LWE (1/6) 30
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Base architecture for multiplication of 8× 640 matrices with 15 bits
coefficients:

PRRAM RAM

****

++ ++++ ++

15100

15 15 15 15 15 15 15 15

40 40 40 40

2525 25 25

120

Details: [ZBT21] and PhD thesis Timo



HLS Implementation of LWE (2/6) 31
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Code for matrix multiplication:
col_A: for(i=0; i<k; i++){

copy1: for(ii=0; ii<8; ii++)
C1_tmp[ii] = C1[ii][i]; // copy BRAM -> registers

row_A: for(jj=0; jj<k; jj++){
sum = 0;
prng(State_A, &a_coeff); // PK coeff. from PRNG
row_E: for(j=0; j<4; j++){

comp_2prods(a_coeff, E1[j][jj], &prod1, &prod2);
C1_tmp[2*j] = C1_tmp[2*j] + prod1; // update C1
C1_tmp[2*j+1] = C1_tmp[2*j+1] + prod2;

}
}
copy2 :for(ii=0; ii<8; ii++)

C1[ii][i] = C1_tmp[ii]; // copy registers -> BRAM
}

1

Exploration of numerous directives combinations (#pragma HLS ...):
unroll, pipeline, inline, allocation, dependence,
array_partition, array_reshape, array_map



HLS Implementation of LWE (3/6) 32
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Parallel implementation with unrolling factor 2:
BRAM 13 = 1.00×13

Enc. time (µs)
1201 =
0.55 ×
2181

Slice 1588 = 1.10× 1437LUT 4053 = 1.04×3884

DSP
9 =

1.8 × 5 0.0

0.2

0.4

0.6

0.8

1.0
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Parallel implementation with unrolling factor 4:
BRAM 17 = 1.30×13

Enc. time (µs)
698 =
0.32 ×
2181

Slice 1917 = 1.33× 1437LUT 5000 = 1.28×3884

DSP
17 =

3.4 × 5 0.0
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0.6

0.8

1.0
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Parallel implementation with unrolling factor 8:
BRAM 25 = 1.92×13

Enc. time (µs)
554 =
0.25 ×
2181

Slice 2583 = 1.79× 1437LUT 6683 = 1.72×3884

DSP
33 =

6.6 × 5 0.0
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HLS Implementation of LWE (6/6) 35
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Parallel implementation with unrolling factor 16:
BRAM 41 = 3.15×13

Enc. time (µs)
508 =
0.23 ×
2181

Slice 3914 = 2.72× 1437LUT 9296 = 2.39×3884

DSP
65 =

13.0 × 5 0.0
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0.4

0.6

0.8

1.0



HLS Implementation of MLWE 36
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Example of architecture “easily” implemented and optimized:
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Comparison LWE – MLWE – RLWE (1/2) 37
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Throughput (in k-encryptions per second) vs area (in DSPs) trade-offs for
various parallelism levels. The most left point of each curve corresponds to a
sequential architecture, the middle point embeds parallel NTTs (for
RLWE/MLWE) and the most right point is a full parallel architecture.
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Comparison LWE – MLWE – RLWE (2/2) 38
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FPGA “Scalability” 39
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Implementation results for CCA-secure MLWE-1024 using SHAKE256 for
error sampling on different FPGA families using Vivado 2018.3:



HLS Implementation of SCA Countermeasures (1/2) 40
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Implementation of various countermeasures from state of art:

I masking
I shifting
I blinding

Implementation of our own countermeasures:

I masking with deterministic decoder
I shuffling (LFSR and permutation network)
I randomized redundant representations

Z/(2rq)Z instead of Z/qZ with random multiples of q

Details: [ZBT19] and PhD thesis Timo



HLS Implementation of SCA Countermeasures (2/2) 41
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FPGA results for RLWE with various countermeasures and
(q, n) = (7681, 256) (timings for decryption only):



Concluding Remarks 42
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I HLS is interesting for arithmetic and algorithmic exploration

I Provides good results after important code optimizations (/rewrite)

I Requires some experience on FPGA implementation

I Still room for improvement (frequency, pipeline, memory directives,
parallel descriptions, . . . )

I Is C a good language for HLS / arithmetic / crypto ? ?!?!

I In software, why do we still write parts in assembly?
I are we “better” than compilers? NO!
I we don’t know how to write specific behavior in C
I some architecture features are not (yet) supported

I Still need ways to express arith and physical properties



Future Prospects 43
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I Arithmetic library for asymmetric crypto in HLS with various
representations of numbers and advanced algorithms

I “Calibration” of library components from implementationS resultS

I Countermeasures (observation and perturbation)

I Express/verify (formally?):
I design properties (arith, archi, activity, timing)
I validation of computation behavior and physical behavior

I Try languages such as Chisel, Spinal HDL

I Training

I 2 PhD grants Oct. 2023: RNS in HW for: isogenies; agile and secure
accelerator

Thank you! Questions?

arnaud.tisserand@cnrs.fr / https://www.arnaud-tisserand.fr

emailto:arnaud.tisserand@cnrs.fr
https://www.arnaud-tisserand.fr

