
Arithmetic for Crypto in FPGA:
HDL or HLS?

Arnaud TISSERAND

CNRS, Lab-STICC

WRACH 2023, June 12 – 16, Roscoff, France

Notations 2
43

I URL

I Topic not discussed in this talk

I HW: hardware, SW: software

I (H)ECC: (hyper-)elliptic curve crypto

I PQC: post quantum crypto

I HDL: hardware description language (e.g. VHDL, Verilog)

I HLS: high-level synthesis

I CABA: cycle accurate bit accurate

I SCA: side-channel attacks

I EMR: electromagnetic radiation

http://url/

Agenda 3
43

I Context and motivations

I Introduction: crypto, arithmetic, hardware implementations

I Troubles

I HDL example: HECC

I HLS example: lattice based PQC

I Remarks / future prospects

Activities in Computer Arithmetic and Applied Crypto 4
43

Group:

I Karim BIGOU (Associate Professor UBO)
I AT
I PhD students (see next slide)

Topics:

I computer arithmetic: representations of numbers and algorithms

I implementations: HW (ASIC, FPGA) and SW (microcontroller,
multicore)

I crypto: asymmetric (RSA, (H)ECC, lattice based PQC), hash functions,
symmetric ciphers, homomorphic encryption

I physical attacks (observation and perturbation): attacks and protections

https://lab-sticc.univ-brest.fr/~kbigou/
https://www.arnaud-tisserand.fr/

PhD Students 5
43

I Gabriel GALLIN (IRISA/Lab-STICC, 2014-18): Hardware Arithmetic
Units and Crypto-Processor for Hyperelliptic Curves Cryptography, HDL
generator

I Timo ZIJLSTRA (2017-20): Secure Hardware Accelerators for
Post-Quantum Cryptography, HLS codes, lattice-based crypto

I Libey DJATH (2017-21): RNS-Flexible Hardware Accelerators for
High-Security Asymmetric Cryptography

https://tel.archives-ouvertes.fr/tel-01989822
https://tel.archives-ouvertes.fr/tel-01989822
https://sourcesup.renater.fr/htmm/
https://sourcesup.renater.fr/htmm/
https://hal.archives-ouvertes.fr/tel-02953277
https://hal.archives-ouvertes.fr/tel-02953277
https://sourcesup.renater.fr/www/lwe-hls-fpga/
https://hal.archives-ouvertes.fr/tel-03393289
https://hal.archives-ouvertes.fr/tel-03393289

Related Publications 6
43

I [GCT17] IndoCrypt 2017. Architecture level Optimizations for Kummer
based HECC on FPGAs, by Gallin, Celik and T.

I [GT19] IEEE Trans. Computers 2019. Generation of Finely-Pipelined
GF(P) Multipliers for Flexible Curve based Cryptography on FPGAs, by
Gallin and T.

I [DBT19] ARITH 2019. Hierarchical Approach in RNS Base Extension
for Asymmetric Cryptography, by Djath, Bigou and T.

I [DZBT19] Compas 2019: Comparaison d’algorithmes de réduction
modulaire en HLS sur FPGA, par Djath, Zijlstra, and Bigou et T.

I [ZBT19] IndoCrypt 2019. FPGA Implementation and Comparison of
Protections against SCAs for RLWE, by Zijlstra, Bigou, and T.

I [ZBT21] IEEE Trans. Computers 2021. Lattice-based Cryptosystems on
FPGA: Parallelization and Comparison using HLS, by Zijlstra, Bigou,
and T.

https://hal.archives-ouvertes.fr/hal-01614063
https://hal.archives-ouvertes.fr/hal-01614063
https://hal.archives-ouvertes.fr/hal-02141260
https://hal.archives-ouvertes.fr/hal-02141260
https://hal.archives-ouvertes.fr/hal-02096353
https://hal.archives-ouvertes.fr/hal-02096353
https://hal.archives-ouvertes.fr/hal-02129095
https://hal.archives-ouvertes.fr/hal-02129095
https://hal.archives-ouvertes.fr/hal-02309481/
https://hal.archives-ouvertes.fr/hal-02309481/
https://hal.archives-ouvertes.fr/hal-03347174/
https://hal.archives-ouvertes.fr/hal-03347174/

Motivation 7
43

We have been implementing arithmetic accelerators for cryptography in
hardware (ASIC & FPGA) using HDL descriptions and tools for quite some
time, but

I hiring PhD students with skills in both arithmetic, crypto and hardware
implementation is difficult

I HW design requires time to learn and experiment

I HDL coding is tedious =⇒ it limits exploration at
architecture/algorithm/arithmetic levels

Why Using HLS Instead of HDL? 8
43

HLS should help us to:

I reduce design and debug time

I explore more advanced arithmetic algorithms, representations of
numbers and architectures

I use advanced optimizations (compared to manually optimized solutions)

I combine various protection schemes

I quickly compare various solutions using the same environment/effort

I ?

Spoiler alert: HLS helps on some points, but no magic, need to “think in
HW”!

Introduction: Crypto Context 9
43

Crypto algorithms use large data (keys, intermediate, results) to avoid
theoretical attacks

=⇒ “numerical” validation can be tricky

Crypto algorithms bring confusion and diffusion

=⇒ help “basic” debugging

=⇒ determine “bad or worst cases” is very tricky

We use crypto algorithms and parameters from cryptographers, but we can
modify some internal arithmetic computations and representations

Introduction: Arithmetic Context 10
43

Most implementation methods, in SW and HW, only support “basic”
arithmetic (simple integers, 2’s complement) and real approximations
(fixed-point and floating-point)

In crypto, we need more than that:

I modular arithmetic

I finite fields/rings (extensions)

I polynomials, vectors and matrices

I conversions to/from other representations/domains (e.g. FFT/NTT,
masking, . . .)

I random numbers

I etc.

Introduction: Hardware Metrics 11
43

I speed: delay, frequency, latency, throughput

I device cost: area, memory size (data, µcode)

I energy, power, voltage

I design cost

I side channel leakage (time, power, EMR)

I fault sensitivity

Introduction: Area Metrics in FPGAs 12
43

FPGAs are composed of various configurable elements:

I logic blocks for small arbitrary functions (e.g. f(6b)→ 1b)
AMD-Xilinx: LUTs, slices, CLBs

I registers for storing bits
AMD-Xilinx: flip-flops

I small RAM blocks (e.g. dual port 36 Kb width and depth can be
configured)
AMD-Xilinx: BRAM

I small multiplier-accumulator blocks (e.g. (25b× 18b)± 48b→ 48b)
AMD-Xilinx: DSP blocks/slices

Warning: names vary (check docs for specs)

Links: ARCHI schools (2013), TI article (FR)

https://archi.sciencesconf.org/
https://doi.org/10.51257/a-v1-h1196

Introduction: SW vs HDL 13
43

Small pseudo code:

for i from 0 to n-1 do:
S[i] = A[i] + B[i]

SW development assumes an implicit architecture with a (mostly sequential)
behavior which hides details

In HDL design, one has to describe more details:

I what should be done
I where are the elements (area and explicit parallelism management)
I when use elements and send/receive signals (up to cycle level accuracy)

Troubles with “Signed” Integers 14
43

Unsigned binary integer:

(xn−1xn−2 . . . x1x0) =
n−1∑
i=0

xi2i

Signed binary integer using 2’s complement representation:

(xn−1xn−2 . . . x1x0) = xn−1(−2n−1) +
n−2∑
i=0

xi2i

=⇒the set of representable integers is asymmetric!

Example: n = 8 x ∈ {−128,−127, . . . , 1, 0, 1, . . . , 127}

=⇒using identities involving −x or abs(x) can be tricky

Currently, almost no support for other representations of signed integers

Our solution: home made “wrappers” for other number systems

Troubles with “n-Bit” Integers 15
43

Standard arithmetic behavior for integer operations:

I n bits + n bits n+ 1 bits
I n bits × n bits 2n bits

In many programming languages and HDLs:

I n bits + n bits ?
I n bits × n bits ?

Common “solution”: implicit modulo 2w where w is the word size

In SW, try to code a multiple-word addition without assembly intrinsics such
as ADDC vs ADD...

Troubles with Explicit Parallelism in HW 16
43

To improve performances, one can:

I Use parallel blocks for independent computations (up to area budget)

I Use deeper pipeline to increase frequency and throughput (limited by
data dependencies, control)

I Use hyper-threading like solutions to use same HW resources for
multiple independent computations

Sure, but:

I This is not simple to describe that in HDLs in an abstract way

I Each change in the cycles when an element produces/consumes data
will impact (many) other elements. . .

Our solution: homemade code generators (great but costly)

Experimental and Validation Environment 17
43

I Tools and FPGAs from AMD-Xilinx:
I ISE and Vivado for HDL
I Vivado HLS and Vitis HLS
I Spartan, Artix, Kintex, Virtex, Zynq. . .
I Thanks for donations through the XUP

I Numerous simulations on several simulators (HDL, netlist CABA) for
random and generated data sets

I Mathematical proofs of our algorithms (future: use a proof assistant)

I Intensive comparisons to values obtained from maths tools (e.g., Sage)
and crypto libraries

I Hyper intensive verifications on (a cluster of) FPGA boards: Sasebo,
Sakura, ZedBoard. . .

HDL Example: HECC (1/6) 18
43

Loop, indexed by key digits, of curve-level operations such as:

M

S

IN OUT

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

S

S

S

S

S

S

S

S

S

S

S

OUT

OUT

OUT

OUT

OUT

OUT

OUT

cst cst cst cst
cst cst cst

cst cst cst cst

IN

IN

IN

IN

IN

IN

IN

I exploration: architectures, internal widths, parallelism, pipeline
I efficient arithmetic operators over Fp (p fixed or generic)
I protections against SCA

Details: [GCT17], [GT19], HAH project (Labex CominLabs 2014–2017)

https://project.inria.fr/hahyperliptic

HDL Example: HECC (2/6) 19
43

Hyperthreaded modular Montgomery multiplier (HTMM) with high
frequency AND reduced area from homemade HDL generators [GT19]

0

Task 2

Task 3

Task 1

RAM RAM

https://sourcesup.renater.fr/htmm/

HDL Example: HECC (3/6) 20
43

Generated HDL results for 128b HTMM on Virtex-7:
74
78
82

86
138
142

146

312

150
S44B

D 9 1.0
B 2
S 287 0.9
L 523 0.9
F 683 0.9
f 481 0.8

75
79
83
87

139
143
147

286

151
F44B

D 9 1.0
B 2
S 325 1.1
L 545 0.9
F 725 1.0
f 528 0.8

75
79
83
87

139
143
147

239

151
F44D

D 9 1.0
B 0
S 306 1.0
L 600 1.0
F 758 1.0
f 633 1.0

0 100 200 300 400 500
time [ns]

27
47

67
87

107
127

147

478

167
MA16

D 21 2.3
B 6
S 455 1.5
L 1182 2.0
F 1305 1.7
f 350 0.6

HDL Example: HECC (4/6) 21
43

Example of tricky optimization possible at very low level: bubble removal in
HTMM pipeline (due to some carry propagation)

MSW
LSW

0

0

0

0
time

j=0 j=1 j=2 j=3 j=4 j=0 j=1 j=2 j=3 j=4

j=0 j=1 j=2 j=3 j=0 j=1 j=2 j=3 j=4j=4

b
e
fo
re

a
ft
e
r

After some efforts, we have been able to design, prove and implement an
optimized bubble free HTMM

Not sure this kind of “low-level” optimization is accessible for HLS users. . .

HDL Example: HECC (5/6) 22
43

Simul.

Sage

CAD Tools

FPGA Final
Report

inputs

Synth.
Implem.

generated
vhdl

programs + modelsHTMM generator

1

4

5

3

3

4

4

4 4

5 5

3

4
2

510 540540 570570 600600 630630 660
area [LUTs]

250250250

300300300

350350350

400400

tim
e

[n
s]

+26%

+72%

F35B
F35D

F44B

F44D

F45B

F45D

S35B S35D

S44B S44D

S45B S45D

V7

HDL Example: HECC (6/6) 23
43

Data
Memory

Control

Program
Memory

Data MUX

C
tr

l
D

M
U

X

AddSub Mult CSWAP CSWAPAddSub

Data
Memory

MultAddSubControl

Program
Memory

Data MUX

C
tr

l
D

M
U

X

Mult

Control

Program
Memory

Data MUX

ADD/SUBAddSub

Data
Memory

Data MUX

Data
Memory

ADD/SUBAddSub

Mult

Mult

C
S
W
A
P

HLS Implementation of Modular Arithmetic 24
43

Need for efficient modular arithmetic on “small” values in:

I lattice based solutions for PQC (e.g. 13 – 25 bits field elements)

I ECC in RNS (vectors of residues on 16 – 64 bits)

Experiment/optimize various algorithms and architectures for:

I modular arithmetic (sequences of) operations
I a± b mod m
I a× b mod m
I

∑N−1
i=0 ai mod m

I
∑N−1

i=0 ai × bi mod m
I various widths w ∈ {10, . . . , 64} bits
I various forms of moduli

I generic m
I sparse m for PQC (e.g. a few non-zero digits among w)
I RNS friendly m = 2w − c (with c small)

User Code for (∑N−1
i=0 ai × bi) mod m 25

43

1 #include "parameters.h"
2 #include "arithmod.h"
3

4 word m2_rsf(word A[N], word B[N])
5 {
6 sumdword res=0;
7 acc: for(counter i=0; i<N; i++)
8 res += DW(A[i]) * DW(B[i]);
9 return barrett(res);

10 }

word, dword, sumdword, . . . are typedefs for w, 2w, 2w + dlog2Ne bits
values

W(), DW(), SUM_DW(), . . . are cast macros for these types

HLS tools require to label loops, function calls, operations, . . . to apply
directives (unroll, pipeline, memory, unit mapping. . .))

Details: [DZBT19]

Library Code Example for Barrett Reduction 26
43

1 #include "parameters.h"
2 #include "arithmod_internal.h"
3

4 word barrett(sumdword x)
5 {
6 sumword x1 = SUM_W(x >> width);
7 sumword q = SUM_W((RSW(x1) * RSW(R_const)) >> (shift - width));
8 word x0 = W(x);
9 counter c = 0;

10 if (x0 > M) c = 2;
11 else if (x0 != 0) c = 1;
12 q = q + c;
13 sumdword z = SUM_DW(q) * SUM_DW(m);
14 signword res = x - z;
15 if (res < 0) res = res + M;
16 if (res < 0) res = res + M;
17 return W(res);
18 }

Implementation Results for (∑N−1
i=0 ai × bi) mod m (1/3) 27

43

Implementation Results for (∑N−1
i=0 ai × bi) mod m (2/3) 28

43

Implementation Results for (∑N−1
i=0 ai × bi) mod m (3/3) 29

43

HLS Implementation of LWE (1/6) 30
43

Base architecture for multiplication of 8× 640 matrices with 15 bits
coefficients:

PRRAM RAM

++ ++++ ++

15100

15 15 15 15 15 15 15 15

40 40 40 40

2525 25 25

120

Details: [ZBT21] and PhD thesis Timo

HLS Implementation of LWE (2/6) 31
43

Code for matrix multiplication:
col_A: for(i=0; i<k; i++){

copy1: for(ii=0; ii<8; ii++)
C1_tmp[ii] = C1[ii][i]; // copy BRAM -> registers

row_A: for(jj=0; jj<k; jj++){
sum = 0;
prng(State_A, &a_coeff); // PK coeff. from PRNG
row_E: for(j=0; j<4; j++){

comp_2prods(a_coeff, E1[j][jj], &prod1, &prod2);
C1_tmp[2*j] = C1_tmp[2*j] + prod1; // update C1
C1_tmp[2*j+1] = C1_tmp[2*j+1] + prod2;

}
}
copy2 :for(ii=0; ii<8; ii++)

C1[ii][i] = C1_tmp[ii]; // copy registers -> BRAM
}

1

Exploration of numerous directives combinations (#pragma HLS ...):
unroll, pipeline, inline, allocation, dependence,
array_partition, array_reshape, array_map

HLS Implementation of LWE (3/6) 32
43

Parallel implementation with unrolling factor 2:
BRAM 13 = 1.00×13

Enc. time (µs)
1201 =
0.55 ×
2181

Slice 1588 = 1.10× 1437LUT 4053 = 1.04×3884

DSP
9 =

1.8 × 5 0.0

0.2

0.4

0.6

0.8

1.0

HLS Implementation of LWE (4/6) 33
43

Parallel implementation with unrolling factor 4:
BRAM 17 = 1.30×13

Enc. time (µs)
698 =
0.32 ×
2181

Slice 1917 = 1.33× 1437LUT 5000 = 1.28×3884

DSP
17 =

3.4 × 5 0.0

0.2

0.4

0.6

0.8

1.0

HLS Implementation of LWE (5/6) 34
43

Parallel implementation with unrolling factor 8:
BRAM 25 = 1.92×13

Enc. time (µs)
554 =
0.25 ×
2181

Slice 2583 = 1.79× 1437LUT 6683 = 1.72×3884

DSP
33 =

6.6 × 5 0.0

0.2

0.4

0.6

0.8

1.0

HLS Implementation of LWE (6/6) 35
43

Parallel implementation with unrolling factor 16:
BRAM 41 = 3.15×13

Enc. time (µs)
508 =
0.23 ×
2181

Slice 3914 = 2.72× 1437LUT 9296 = 2.39×3884

DSP
65 =

13.0 × 5 0.0

0.2

0.4

0.6

0.8

1.0

HLS Implementation of MLWE 36
43

Example of architecture “easily” implemented and optimized:

ADD

MA

PR

RAM

BN

28813 288

13 13 13 13 13

13 13 13

28813 288

13 13 13 13 13

13

28813 288

13 13 13 13 13

13 13 13

ADD ADD

RAM RAM RAM RAM RAM

BN BN BN BN BNPR PR PR PR PR PR PR PR

MA MA MA MA MA MA MA MA

Comparison LWE – MLWE – RLWE (1/2) 37
43

Throughput (in k-encryptions per second) vs area (in DSPs) trade-offs for
various parallelism levels. The most left point of each curve corresponds to a
sequential architecture, the middle point embeds parallel NTTs (for
RLWE/MLWE) and the most right point is a full parallel architecture.

0 5 10 15 20 25

DSP

0

5

10

15

20

25

30

35

40

45

O
p
s/

s
×

10
00

MLWE-512

MLWE-768

MLWE-1024

RLWE-1024

LWE-640

LWE-976

LWE-1344

Comparison LWE – MLWE – RLWE (2/2) 38
43

FPGA “Scalability” 39
43

Implementation results for CCA-secure MLWE-1024 using SHAKE256 for
error sampling on different FPGA families using Vivado 2018.3:

HLS Implementation of SCA Countermeasures (1/2) 40
43

Implementation of various countermeasures from state of art:

I masking
I shifting
I blinding

Implementation of our own countermeasures:

I masking with deterministic decoder
I shuffling (LFSR and permutation network)
I randomized redundant representations

Z/(2rq)Z instead of Z/qZ with random multiples of q

Details: [ZBT19] and PhD thesis Timo

HLS Implementation of SCA Countermeasures (2/2) 41
43

FPGA results for RLWE with various countermeasures and
(q, n) = (7681, 256) (timings for decryption only):

Concluding Remarks 42
43

I HLS is interesting for arithmetic and algorithmic exploration

I Provides good results after important code optimizations (/rewrite)

I Requires some experience on FPGA implementation

I Still room for improvement (frequency, pipeline, memory directives,
parallel descriptions, . . .)

I Is C a good language for HLS / arithmetic / crypto ? ?!?!

I In software, why do we still write parts in assembly?
I are we “better” than compilers? NO!
I we don’t know how to write specific behavior in C
I some architecture features are not (yet) supported

I Still need ways to express arith and physical properties

Future Prospects 43
43

I Arithmetic library for asymmetric crypto in HLS with various
representations of numbers and advanced algorithms

I “Calibration” of library components from implementationS resultS

I Countermeasures (observation and perturbation)

I Express/verify (formally?):
I design properties (arith, archi, activity, timing)
I validation of computation behavior and physical behavior

I Try languages such as Chisel, Spinal HDL

I Training

I 2 PhD grants Oct. 2023: RNS in HW for: isogenies; agile and secure
accelerator

Thank you! Questions?

arnaud.tisserand@cnrs.fr / https://www.arnaud-tisserand.fr

emailto:arnaud.tisserand@cnrs.fr
https://www.arnaud-tisserand.fr

