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Improving Path Planning Performance through Multimodal
Generative Models with Local Critics

Jorge Ocampo Jimenez and Wael Suleiman

Abstract—This paper presents a novel method for accelerating
path planning tasks in unknown scenes with obstacles by utilizing
Wasserstein Generative Adversarial Networks (WGANs) with
Gradient Penalty (GP) to approximate the distribution of the free
conditioned configuration space. Our proposed approach involves
conditioning the WGAN-GP with a Variational Auto-Encoder
in a continuous latent space to handle multimodal datasets.
However, training a Variational Auto-Encoder with WGAN-GP
can be challenging for image-to-configuration-space problems, as
the Kullback-Leibler loss function often converges to a random
distribution. To overcome this issue, we simplify the configuration
space as a set of Gaussian distributions and divide the dataset
into several local models. This enables us to not only learn
the model but also speed up its convergence. We evaluate the
reconstructed configuration space using the homology rank of
manifolds for datasets with the geometry score. Furthermore, we
propose a novel transformation of the robot’s configuration space
that enables us to measure how well collision-free regions are
reconstructed, which could be used with other rank of homology
metrics. Our experiments show promising results for accelerating
path planning tasks in unknown scenes while generating quasi-
optimal paths with our WGAN-GP. The source code is openly
available1.

Index Terms—Sampling-based path planning, Generative Ad-
versarial Networks, Image-conditioned generative model, Varia-
tional Autoencoders, Homology rank

I. INTRODUCTION

Random sampling algorithms are a popular choice for find-
ing a collision-free path through a robot’s configuration space
(CS) from an initial state to a goal region. However, these
algorithms can be time-consuming, as they involve exploring
the configuration space randomly. This becomes even more
challenging when the CS is complex and difficult to model
analytically, which is often the case in practical applications.
Therefore, there is a need to develop more efficient and
accurate methods for path planning, especially in scenarios
where random sampling algorithms may not be suitable.

Machine learning techniques, such as neural network gen-
erative models like Variational Auto-Encoder (VAE) [1] and
Generative Adversarial Networks (GANs) [2], have been ap-
plied to improve the efficiency of random sampling algorithms
and bias the distribution of samples towards collision free
(CF)-states. While previous works have successfully used
GANs [2], [3], [4] to generate inverse and forward kinematics,
there has been little research on using GANs to model multi-
modal distributions, such as RGB images encoded as latent
vectors to CF states. Therefore, this paper aims to address
this gap by investigating the use of GANs for this purpose.
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1https://bitbucket.org/joro3001/multiwgangp/

(a) Approximation of the free-
search tree of a path with
WGAN-GP and a VAE for an
unseen scenario

(b) Approximation of the free-
search tree of a path with
MultiWGAN-GP for an unseen
scenario space

Fig. 1: Search tree for a path planning task of unseen scenarios.

To overcome challenges such as unstable training processes
and the potential for unexpected results when the conditioning
input has not been seen before, this work proposes encoding
latent vectors with a VAE. Furthermore, this paper aims to
evaluate the general ability of GANs to generate new samples
for new scenarios as shown in Fig. 1. By investigating the use
of GANs in this way, this research could lead to significant
improvements in the efficiency and accuracy of path planning
algorithms in a variety of practical applications.

This work utilizes an RGB image of the robot’s image-
scenario to encode the input condition. The aim is to convert
discrete training data into a continuous representation, which
empowers the generator to create unconstrained configuration
states from input data that was not included in the training
phase. This issue is akin to interpolating between two recog-
nized positions of obstacles in the image-scenario. In a similar
vein to [5], which addresses image-to-image translation, an
encoder is leveraged to embed an image into a random vector
to capture the style of an image-to-image GAN’s mask. Our
work differs from this as the encoder is utilized to influence
the latent vector using an RGB input of the obstacles, directing
the GAN towards areas where the current model’s parameters
are more prone to generating valid configurations.

Our model was trained using the forward kinematics from
the simulations presented in [6]. We created multiple scenarios
by placing random obstacles around a 2 DOF manipulator and
utilized the robot’s obstacles represented as images to train our
model to reconstruct its configuration space. To avoid defining
a fixed clipping interval, we employed a Wasserstein loss func-
tion [7] with gradient penalty [8] for training the model. Our
experiments have shown that dividing the configuration space
into subsets enhances the convergence of the algorithm and



simplifies the training process. This is achieved by reducing
the problem to determining the translations of the means of
a set of Gaussians, which facilitates the search and prevents
model collapse. The architecture for our method is illustrated
in Fig. 2. Notably, our approach outperformed standard train-
ing methods and significantly enhanced the reconstruction of
the configuration space.

We evaluated the performance of our model using the
Geometry Score (GS) metric [9]. This allowed us to gauge
the impact of proposed model on the reconstruction of the
collision-free CS by comparing the rank of the homology
of the manifolds. To establish a baseline for comparison, we
employed a WGAN-GP conditioned by a VAE that generated
CF-states directly. Our experiments revealed that our model
converges faster and more accurately to the original CS. We
anticipate that our model holds the potential to be replicated
and enhanced for tasks that necessitate the generation of multi-
modal CSs for motion planning problems.

II. ORIGINAL CONTRIBUTIONS

This paper offers several novel contributions, including:
1) Demonstrating the possibility of training WGAN-GP for

path planning tasks and image-to-CS models for CS
reconstruction.

2) Introducing a new architecture that improves the training
of WGAN-GP when conditioned by an Auto-Encoder.

3) Presenting a new method to generate configuration
spaces that works effectively for scenarios not previously
encountered.

4) Extending the rank of homology scores to quantify the
accuracy of a reconstructed CS compared to the original
data.

5) In our approach, we propose perturbing the encoder to
handle situations where the generator fails to produce
collision-free states without relying on sampling from
alternative distributions.

Compared to other similar works where the planner’s sampling
is biased, our method offers several advantages, for instance:

• By using both GANs and VAEs, our model can handle
noisy and non-previously trained scenarios while gen-
erating quality WGAN samples without requiring the
identification of new clipping intervals for training.

• Our image-to-CS model has the potential to be extended
to reconstruct higher-dimensional CSs for robotic tasks.

• Unlike traditional methods that rely on finding a suitable
ratio between a uniform or biased distribution for RRT-
based planners, our approach focuses on manipulating the
encoder parameter to enhance the generation of collision-
free states.

III. RELATED WORK

The utilization of learning by demonstration has proven to
be an effective approach in multiple studies aimed at enhanc-
ing the performance of sampling-based random planners [10].
A common technique employed is the use of an autogenerative
model that learns a map linking the robot’s configuration space
and the image-scenario with a reduced number of samples

from the complete distribution. In recent years, deep neural
models have gained significant popularity in this field due to
their ability to handle vast quantities of input data, such as
image or cloud point representations of the robot’s scenario,
as well as an extensive range of examples, including the
robot’s possible configurations and the number and location
of obstacles present in the workspace.

Generative models are widely utilized in the context of
Rapidly-exploring Random Trees (RRT)-based algorithms [11]
for two primary purposes: to provide a bias to the sampler or
to act as a heuristic for the cost function. The model guides
the algorithm towards lower cost paths by considering the
condition of the scenario.

The application of neural networks for learning the sampling
distributions of biased sampling-based planners was first in-
troduced in [12]. The study utilized a conditional variational
autoencoder to identify areas in the state space that held
promise based on the initial and goal states, as well as the
obstacles present in the scenario. This enabled the sampler of
RRT-based algorithms to be biased, resulting in more efficient
path planning.

In another study, [1], an encoder was also utilized to
capture the environment’s information, and the sampler was
conditioned on raw sensor data or voxelized output embedded
in the latent space. The encoded information was then utilized
by a planning network, in combination with the current and
goal states, to generate the next state. This model is capable
of biasing the sampler of RRT* [13] and has been tested on
high dimensional configuration spaces.

Although VAE methods have proven effective in reducing
the computation time of sampling, GANs have demonstrated
superior results in tasks such as image-to-image generation
and dataset generation, which could potentially improve the
success rate of planned paths.

The study presented in [14] employs inverse reinforcement
learning to determine the weights of the RRT*’s cost function,
based on the expected behavior of a robot in environments
previously occupied by humans. This approach guides the
planner towards the desired path. However, it may not be
suitable for dynamic environments where the weights cannot
be modified without compromising the asymptotic optimality
of the algorithm.

The research presented in [3] utilizes 2D working spaces as
inputs for a conditional GAN. The GAN is conditioned on the
RGB representation of the initial and final points of the path,
as well as the map of the working space. The generator is
trained using two discriminators, with one responsible for the
obstacle map and the other for the initial and final goal states
represented in the working space. The resulting algorithm
has an impressive success rate of approximately 90% for
generating connected configurations.

The work in [4] presents an approach where GANs are
utilized to bias a RRT-based planner by incorporating Encoders
and Decoders directly as hidden layers in the generator. The
initial state, map, and latent vector are given as input to
the encoder’s input layer, while the decoders output a 2D
representation of the path. The generator is then able to output
the path as an output image. The method treats the path as an
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Fig. 2: Our proposed model generates the Gaussians of different regions of the CS of the robot. RGB images of the obstacles
are used as input to bias the latent vector to the correct region of the CS.

image-to-image model. While it does not provide information
on running times, it is reported that the algorithm takes fewer
iterations to achieve a lower cost than RRT*.

Although GANs have been successful in generating fea-
sible configurations through 2D representations, where the
workspace and configuration space overlap, their application
in high-dimensional configuration spaces or in models where
the workspace is different from the configuration space is still
unclear. The current representation limits existing techniques
to only image-to-image generation, thus reducing their appli-
cability. Therefore, there is a need to develop new methods
that can overcome these limitations and expand the appli-
cation of GANs to a wider range of scenarios, including
high-dimensional configuration spaces and non-overlapping
workspace and configuration spaces.

The research presented in [2] explores the use of a GAN to
learn the inverse kinematics of high-dimensional robots. The
model is conditioned on the target working space position of
the end-effectors, enabling the generation of samples in high
dimensional configuration spaces, which was previously not
feasible. It is important to note, however, that the conditioning
is not directly based on sensor data or the current state of the
scenario.

Although new advances in generative neural network mod-
els have been proposed, such as the diffusion generation
approach in path planning [15], their use for random sampling-
based planners is limited to cases where there are time con-
straints to obtain a collision-free path. One common issue with
diffusion-based methods is speed, and sampling the diffusion
generator multiple times can be very costly.

Our approach builds upon previous work and overcomes
some of their limitations. We use a multimodal generator,
similar to [1], but train it using a WGAN-GP [8] to gen-

erate collision-free configurations. This improves the qual-
ity of the generated configuration states and enables quasi-
asymptotically-optimal planning in high dimensional configu-
ration spaces with time constraints.

In contrast to [16], we use a VAE to encode the conditioning
from the obstacles image-scenario of the WGAN-GP genera-
tor, enabling us to generate configuration states that closely
match those encountered in previously seen scenarios and
explore new configurations. We also use the gradient penalty
technique, which increases the capacity of the discriminator
to learn complex features without requiring tuning of clipping
parameters.

Our approach can be extended to higher dimensional con-
figuration spaces, making it a versatile and effective method
for sampling-based path planning and CS-reconstruction. In
the case of path planning, we can embed the problem in
higher-dimensional Euclidean spaces using the same model
architecture.

IV. PROBLEM FORMULATION

The objective of this research is to develop a method for
approximating the CS of a robot by leveraging information
from its obstacles represented as an image-scenario, with
the ultimate goal of enhancing the performance of a path
planner. This is accomplished by training a model to learn the
mapping from the image-scenario to the CS, allowing for more
efficient sampling and speeding up the planning process. The
proposed method has the potential to significantly enhance the
performance of robotic systems by reducing the computational
cost of planning, while still producing optimal paths.

Mathematically speaking, a path planning problem is de-
fined by a state space X= [0, 1]d with dimension d ∈ N, d ≥ 2.



Xobs is defined as the set of obstacles that corresponds
to the collision sates, it also defines the free state space
Xfree = X\Xobs, with initial state x0 ∈ Xfree and a set
of goal states Xgoal ⊂ Xfree . A path is a continuous function
s : [0, 1]→ Rd , and it is collision-free if s(τ) ∈ Xfree for all
τ ∈ [0, 1] and feasible when it is collision-free and s(0) = x0

and s(1) ∈ Xgoal.
Finding a feasible path in the CS of a robot is known to be

PSPACE-complete [17], which means that it is computation-
ally intractable for most practical applications. As a result,
researchers have developed sampling-based motion planning
algorithms as a means of finding paths in high-dimensional
CSs. These algorithms operate by randomly sampling config-
urations and connecting them to form a path to the goal states.
Completeness, or finding a solution if one exists, requires
drawing a sufficient number of uniformly distributed random
samples. Asymptotic optimality, where the path cost converges
to the optimal solution, can be achieved by systematically
connecting the nodes of the search tree [12].

To improve the efficiency of sampling-based motion plan-
ners, researchers have proposed various methods to bias the
path towards the goal. One such method is to learn a probabil-
ity distribution over the free states (Xfree) based on the robot’s
scenario, which can guide the sampling process to explore
regions of the CS that are more likely to lead to the goal. As
a result, the algorithm can decrease the time spent exploring
regions of the CS that are not useful for finding a path.
This speeds up the planning process and has the potential to
substantially enhance the efficiency of sampling-based motion
planning algorithms, making them more practical for real-
world applications.

V. METHODOLOGY

We propose a novel approach for speeding up sampling-
based motion planning algorithms by generating Xfree states
with additional properties such as feasibility and connectivity
with the current path. Our approach uses a GAN to sample
from a learned distribution over Xfree, which biases the
sampling process towards regions of the CS more likely to lead
to CF-states. Specifically, we use a WGAN-GP to generate
high-quality collision-free configurations without the need for
finding a suitable clipping interval. This replaces the uniform
distribution usually used for sampling Xfree and leads to faster
query times.

A. Generative Model

GAN are mainly defined by the loss function in Eq. (1):

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x)]+

Ez∼pz(x)[log(1−D(G(z)))]
(1)

where pr and pz represent respectively the distributions over
the multidimensional real data x and the noise input vector
z. D is a binary classifier that distinguishes between pr and
the distribution of the generator G, pg . The loss function
represents a minimax game in which G tries to deceive D
to classify pg as pr. If Nash equilibrium is reached, G will be

able to generate new samples that closely resemble to pr each
time that an input noise z is given to G [18]. However, directly
using the proposed model to bias the sampling process poses a
challenge, as it does not allow for conditioning the sampler on
information about the current state of the robot or the scenario.

To address this, [18] proposes a conditional GAN that per-
mits conditioning on known information about the distribution.
In the context of path planning, this extra information can
relate to the current state of the robot in various spaces, such
as the obstacles in a specific scenario. The central idea is to
concatenate a portion of the known information from pr in G
and D in Eq. (2) [19]:

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x|y)]+

Ez∼pz(x)[log(1−D(G(z|y)))]
(2)

where y can represent any form of auxiliary information.
However, obtaining Nash equilibrium becomes challenging
when the two loss models are updated independently [20].
If pg and pr are situated in low-dimensional manifolds, they
will almost surely be disjoint [21]. Good discriminators can
cause the gradient to vanish, which means that G will only
generate a small number of samples.

In order to improve the training stability of GAN models, a
method was proposed in [7] which employs the Earth-Mover
distance to measure the similarity between pg and pr. This
approach offers the benefit of providing smooth measures even
in scenarios where the distributions are completely overlapping
or disjoint. The modified version of this method, which utilizes
Kantorovich-Rubinstein Duality, is expressed as follows:

W (pr, pg) = max
w∈W

Ex∼pr
[fw(x)]− Ez∼pr(z)[fw(gρ(z))] (3)

where fw is a K-Lipschitz continous function parameterized
by w in a compact parameter space W , and the weights of
the network g are ρ. Initially, in [7], weight clipping was
proposed as a method to stabilize the training of a WGAN
model. However, choosing the right clipping parameters can be
challenging, and setting them to values that are too large or too
small can result in slow convergence or vanishing gradients. To
address this issue, [8] introduced a gradient penalty approach
that penalizes the model gradients if the Lipschitz constraint
is violated. Specifically, if f has a gradient norm greater than
1, a penalty term is added to the loss function to encourage
the model to stay within the Lipschitz constraint as follows:

L = Ex∼pr [fw(x)]− Ez∼pr(z)[fw(gρ(z))]︸ ︷︷ ︸
Original critic loss

+λEx̂∼px̂
[(∥∇x̂fw(x̂)∥2 − 1)2]︸ ︷︷ ︸

Gradient penalty

(4)

where λ is a penalty coefficient to weight the gradient penalty,
x̂ sampled from gρ and x with t uniformly sampled between
0 and 1:

x̂ = tx+ (1− t)gρ(z) with 0 ≤ t ≤ 1 (5)



B. Image conditioning

Instead of conditioning the GAN directly on the input
image, we used a VAE [22]. This autoencoder is utilized to
map the input image of the current scenario into a latent vector
z. This latent vector is then used as the input to the WGAN-GP
in (5). By transforming the image space into a parametrized
multivariate normal distribution with vector mean 0 and vector
standard deviation 1, the autoencoder aims to represent the
image as closely as possible to the Gaussian distribution
while preserving enough information to reconstruct the image
using the latent vector z. This enables us to generate new
obstacle configurations that interpolate between data points
from the training data during inference. This transformation is
particularly valuable for path planning because it ensures that
when the model receives a new scenario input, it generates an
interpolation of the cost space based on the examples it was
trained on.

To overlap the different samples from the training model, we
included the Kullback-Leibler divergence loss function during
the training of the WGAN-GP. The divergence loss is defined
as the Kullback-Leibler divergence between two probability
density functions p(·) and q(·) and is given by:

DKL(p||q) =
∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (6)

If the images are real valued, we use N (µi, σ
2
i ) as the

likelihood and a N (0,1) as the prior, and the term simplifies
as shown in [23]:

DKL =

n∑
i=1

σ2
i + µ2

i − log(σi)− 1 (7)

To train the encoder, we added Eq. (7) alongside the
generation loss from (3) to get:

min
G

{
−Ez∼pr(z)[fw(gρ(z))] +DKL(q(z|x)||pr(z))

}
(8)

where q(z|x) is the latent distribution given the input image.

C. Evaluating the reconstruction of CS

An essential requirement for accurately reconstructing the
CS in path planning problems is the ability to differentiate
between CF states and states in collision. Collision states
can be visualized as voids or holes in the CS of the robot.
To evaluate the quality of the reconstructed distribution of
collision-free states, we have chosen to use the Geometriy
Score (GS) [9] as a metric. This score effectively measures
how well the reconstructed CS represents the CF space and
identifies the collision states.

The GS is a metric that utilizes the topological properties
of a manifold, specifically the homology group formed by the
quotient space between cycles and boundaries of graphs of
discrete elements of the CS. Essentially, the GS measures
the number of holes present in the CS and how well they
are identified by the reconstructed space, providing a reliable
assessment of the reconstruction’s quality.

To define a hole in the context of a topological set, we create
subsets of the space known as k-simplexes. The elements of

these subsets can be interpreted as vertices, and the subsets
spanned by the k-simplexes as faces. The homology group
can then describe the holes, with the kernel of the cycles and
the image of the boundaries numerically defining the quantity
of the kth dimensional holes in the topology formed by the
edges constructed by the kth simplexes.

Using the GS, we form k-simplices by selecting a neigh-
borhood of random points from the reconstructed CSs as
landmarks L from the dataset X . These landmarks are then
connected to the closest vertices using a changing parameter
ϵ, and the resulting k-simplices and faces are used to compute
the rank of the homology (Betti number).

By varying the value of ϵ, we can generate different k-
simplices and different ranks for each ϵ−homology. To esti-
mate the score, we identify topological features that persist
over a significant range of ϵ. This measurement is known as
the Mean Relative Living Times (MRLT), which comprises
the Relative Living Times for each possible number of holes
t, as calculated using the following equation:

RLT(t, k,X,L) ≜
µ{α ∈ [0, αmax] : βk(α) = t}

αmax
(9)

where µ represents the mean, α is a relaxation parameter that
generates a sequence of simplicial complexes, the maximum
value of α, denoted by αmax, can be defined as a linear
function of the distance between the cloud points, and t is
a positive integer number. βk is the kth Betti number, which
represents the rank of the homology group of dimension k, it
is defined by:

βk(α) ≜ |{[bt, dt] ∈ Ik : α ∈ [bt, dt]}| (10)

Ik = {[bt, dt]}st=1 is a collection of s ∈ N persistence intervals
in a fixed k dimension.

We can measure the topological activity associated with
each value of β(α) by utilizing the RTL defined in (9). This
metric can be computed using the dataset X and a random
selection of data points/landmarks L for a given number of
holes t.

To obtain a comprehensive evaluation of the model, the
MRTL is used to estimate the expected value across various
numbers of holes:

MRLT(t, k,X) ≜ EL[RLT (t, k,X,L)] (11)

wich defines the the certainty about the number of k-
dimensional holes on average.

To compare two datasets, X1 and X2, the GS is defined as
the expected square difference of the datasets MRLT:

GS(X1,X2) ≜
∑tmax−1

t=0 (MRLT(t, 1,X1)−MRLT(t, 1,X2))
2

(12)
with imax being an upper bound on βk(α).

During our testing of GS on our dataset, we encountered
a problem with the metric when obstacles partitioned the CS.
According to the definition of GS in (12), the score is close
to 0 when two datasets have similar topological properties.
However, in our test case involving a manipulator robot, when
an obstacle blocks the first link, it generates a partition of the



CS. The issue with this type of CS is that the GS will be
very similar between CSs that do not have many holes but are
partitioned. This is because the simplices are created separately
or suddenly fuse into one component, as shown in Fig. 3.

collision free states

(a) CS where the obstacle con-
strains second link of the ma-
nipulator

collision free states

(b) CS where the obstacle con-
strains the first link of the ma-
nipulator

Fig. 3: Two different CSs where the obstacle is positioned in
two different places. Although they are graphically different,
the GS indicates that they are topologically very similar (GS
= 0.05975).

To address the issue of measuring similarity when there are
no holes in the reconstructed CS, we propose incorporating
the GS of the dataset’s complement. By considering the
complement, denoted as Xc, we ensure that there is at least
one hole if there is a CF state, which should be reflected in
the GS estimation for the current Xc. To illustrate, we show
an example of obtaining the complement of the CS in Fig. 4.

(a) X1 represents a big hole in
Xc

1 .

(b) X2 represents several holes in
Xc

2 .

Fig. 4: By utilizing the complements of the point clouds, we
can detect holes if CF-states are present.

To obtain Xc we can retrieve the collision states that
were produced during the sampling phase for obtaining X .
However, we also need to determine Xc for the generated
points from the trained model. We suggest approximating Xc

from X specifically in the context of manipulator robots,
where only X is available.

The algorithm that we propose operates under the assump-
tion that the CS was sampled uniformly to partition the CS
into smaller intervals for each dimension of the manipulator,

denoted as θi, where X ⊂ θ2 and i is the joint’s vector entry
number.

To increase the likelihood of capturing at least one point
for each coordinate, the number of intervals is determined by
the number of points originally sampled from the collision
states. We divide the CS uniformly in function of the number
of points of the dataset X .

The next step is to determine whether there exists a
predefined distance without any points in the current one-
dimensional interval θi; from θi,j,k to θi,j+1,k, where j
denotes the current partition of θi and k the current partition of
θq , where q ∈ N. If there are no points in the current interval,
it could potentially represent a boundary of X from θi,j,k to
θi,j+1,k.

To verify that the empty interval is indeed where the
states are in collision, we examine the neighboring intervals,
specifically θi,j,k+1 to θi,j+1,k+1, to determine if they have a
boundary that intersects with θi,j,k. If an intersection exists,
we conclude that we have found a boundary of Xc. However,
if there is no intersection, it is assumed to be a random distance
between the cloud points generated from the sampling algo-
rithm. For the two-dimensional case, we apply the algorithm
to each entry i.

Once the boundary points of the joint are identified, we
make a weighted random sampling of Xc. The weight is de-
fined by the area of the detected boundary regions. Algorithm
1 outlines the procedure for generating Xc from X .

Algorithm 1: Generation of Xc from X

Data: X ⊂ θ2, j ∈ R+

Result: Xc = [θc
0,θ

c
1]

1 intervalsj =
{[−π,−π + j), [−π + j,−π + 2j), ..., [π − j, π]};

2 itervalsjk = intervalsj × intervalsj ;
3 boundaryi = ∅;
4 for θi ∈X do
5 if i == 1 then
6 X = XT ;

7 for intervalj ∈ intervalsjk do
8 for interval ∈ intervalsj do
9 if isEmpty(X(interval)) then

10 boundaryi,j .appends(X(interval));

11 for θi ∈X do
12 for boundaryj ∈ boundaryi,j do
13 if boundaryj ∩ boundaryj+1 then
14 boundaries.append(boundaryj , boundaryj+1)

15 [θc
0,θ

c
1] = weightedRandom(boundaries);

16 return [θc
0,θ

c
1];

In order to effectively apply the GS to our problem, we
employed a mapping technique that involves converting the
CS to a circular shape. This was a crucial step, as the GS relies
on an open disk to define neighborhood, whereas our current
representation has distinct, angular corners. By implementing



this transformation, we were able to preserve the defining traits
of the CS while ensuring that the same neighborhood definition
could be applied. As a result, we were able to utilize the GS
throughout the entire CF-square area, as demonstrated in Fig.
5.

(a) Approximation of the com-
plement of the CS X

(b) Mapping from the square Xc

to a circle

Fig. 5: After approximating the complement of CS (a) and
mapping it (b), we obtain a new GS from the example of
Fig. 3 that reflects more the topological properties of the CSs,
GS=0.244

To facilitate easier detection of the holes, we enlarged their
size by applying the exponential function to the transformed
circular data. This extension was applied to all data in the first
quadrant, including the holes themselves. To ensure that the
holes could be detected across all quadrants, we rotated the
circle four times, each time with an angle of π

2 . This rotation
allowed us to define the new GS-C score given by:

GS-C(X1,X2) =
1

2(tmax − 1)
(max

GS
GS(R(Θ)X1,R(Θ)X2)

+max
GS

GS(R(Θ)Xc
1 ,R(Θ)Xc

2))

(13)

with Θ ∈ {0, π
2 , π, π + π

2 } and R is a rotation matrix.

D. Clustering

When it comes to path planning problems in robotics,
the accurate sampling of CF states is of utmost importance.
Any false positives can result in the robot colliding with
its environment, causing potential damage and setbacks. By
training a model to learn the topology of the CS, we can
significantly enhance tasks related to path planning. This
technique allows us to better understand the environment in
which the robot is operating, allowing for more accurate and
efficient planning of its path.

We encountered challenges when training a WGAN-GP
with the entire dataset to reconstruct the Xfree of the robot.
Specifically, generating holes or partitions of the CF states af-
ter changing the image-scenario conditioning proved difficult.
This is not unexpected as the problem of learning a CS can
be viewed as learning a distribution. When the conditioning
splits the CS, a new distribution is created, which means

Fig. 6: After 500 epochs, the generator with only one cluster
struggles to reconstruct the partition of CS. θi has been
standardized.

the algorithm must effectively learn several distributions per
condition. This scenario is illustrated in Fig. 6.

To enhance the reconstruction of CSs, we suggest imple-
menting a clustering approach. This approach draws inspira-
tion from the field of image-to-image generation. The process
involves training several local WGAN-GPs, each representing
a different region of the image, alongside a set of correspond-
ing critics. These critics and discriminators are then used to
train a new generator that can generate more detailed images.

In the context of image-to-free-CS, clustering plays a critical
role in reducing the overall complexity of the model. By
decreasing the number of potential transformations of data
points, clustering helps to streamline the process. For example,
if a given cluster does not contain any holes in its conditioning,
then the conditioning can be simplified to a straightforward
translation of the point positions within the current configura-
tion. This can greatly enhance the efficiency and effectiveness
of the overall image-to-free-CS process.

To effectively partition the configuration space, we imple-
mented k-means clustering with a value of k equal to 2 across
the entire CS dataset. However, it is important to note that
when the CS samples are diverse, the k-means algorithm will
divide the data uniformly into 2 regions. The selection of 2
was based on testing, where we found that the algorithm was
still able to effectively learn the conditioning of the CS with
the size of the proposed dataset. While it may be possible
to select more clusters, doing so could result in the curse of
dimensionality if we have only a few samples for training
each cluster using the WGAN-GP model. Therefore, selecting
a larger number of clusters could increase the probability that
the range of the homology group conditioned by the image-
scenario remains constant, but it could also lead to issues with
the curse of dimensionality.

During training, we encountered an issue where the non-
clustered WGAN-GP was unable to effectively learn the
conditioning with the encoder. We observed that some of
the clusters would collapse when the encoder and WGAN-
GP were trained simultaneously. Similarly, when training the
model independently, it could not successfully learn the CS or
conditioning. To address this issue, we introduced a reduction



in complexity by training the generator to learn as if it were
parameters of a Gaussian Mixture Model (GMM), which is
defined by the following equation:

p(x) =

K∑
k

p(x|z = k)p(z = k) (14)

where p(x|z = k) ∼ N (µk,Σk).
Previous works such as [24] and [10] have GMMs for

path planning with RRT-based algorithms to learn the biased
configuration space directly. However, the challenge with this
approach is the difficulty in conditioning the GMM to changes
in the initial and final states of the path.

In contrast, our method represents the initial and final states
as a concatenation of the latent vector for generation, which
simplifies the problem. We use Gaussian models to approxi-
mate the configuration space, with only the means of a normal
distribution (µk) being learned by the generator, and Σk fixed
as a constant diagonal matrix with σ = 0.025. We selected
σ empirically, testing the largest possible value that could
significantly reduce the search space while still providing an
accurate approximation of the configuration space.

Our approach can be viewed as injecting Gaussian noise
into the data to prevent the model from collapsing to specific
regions instead of approximating the real probability distribu-
tion, as suggested in [25]. By adopting this approach, we were
able to improve the model’s ability to learn the conditioning
and enhance the overall effectiveness of the training process.
To be able to estimate the gradient for the normal distributions,
we use the reparametrization trick from [26].

We conducted experiments to generate multiple sets of
parameters for the Gaussian distributions per query, and we
increased the output dimension of the generator if that was
necessary. Our results indicated that incorporating the mean
of the discriminator with all the means generated by each
iteration improved the fitting of the training data. However,
we observed that some of the means fell outside of the
configuration space. We concluded that the critic loss was
responsible for generating outliers that extended beyond the
boundaries of the clusters.

In order to translate the predicted means that are outside
of the training dataset for reconstructing the configuration
space, we employed an iterative approach using a smooth
approximation of the maximum function [27]. We performed
this process for multiple values, taking the smooth maximum
of the critic and directly adding it to the loss function during
each iteration. This allowed us to achieve a more accurate and
robust reconstruction of the configuration space, even for the
predicted means that fall outside of the training dataset.

Sϵ(x1, x2) =
(x1 + x2)

√
(x1 − x2)2 + ϵ2

2
(15)

Sϵ → max when ϵ→ 0.
Our proposed WGAN-GP algorithm, with multiple clusters;

MultiWGAN-GP can be expressed as Algorithm 2.
For the final step, we utilize the trained critics from Algo-

rithm 2 to bias the models with the local critics of each cluster
f
(j)
w using the whole dataset. This approach can improve the

Algorithm 2: Generating means from clusters

Data: X ⊂ θ2,y ⊂ I : U → [−1, 1]3×48×48 as subset
of the input images, l number of clusters,
x(j) ⊂X is a subset of the training data of the
jth cluster, K is number of means per cluster,
m is batch size, ncritic is number of iteration of
the critic, and q(z|y) is previously trained
encoder

Result: g(0...l)ρ , f
(0..l)
w

1 for j = 0 : l do
2 while ρ(j) has not converged do
3 for t = 0, ..., ncritic do
4 Sample {x(i,j)}mi=1 ∼ Pr a batch of size m

from the cluster j from the real data;
5 Sample {z(i,j)}mi=1 ∼ q(z|y(i,j)) a batch

from a previous trained encoder;
6 x̃

(i,j)
0..K ← N0..K(g

(j)
ρ (z(i,j)));

7 L(i,j) ← [ 1m
∑m

i=1 f
(j)
w (x(i,j))−

1
m

∑m
i=1 f

(j)
w (x̃

(i,j)
0..K) +

λ
m

∑m
i=1(∥∇x̂(i,j)f

(j)
w (x̂(i,j))∥2 − 1)2 −

Sϵ(f (j)
w (x̃

(i,j)
0..K))];

8 w(j) ← Adam(∇w(j)L(i,j), w(j))

9 Sample {z(i,j)}mi=1 ∼ q(z|y(i,j)) a batch from
the encoder;

10 x̃
(i,j)
0..K ← N0..K(g

(j)
ρ (z(i,j)));

11 ρ(j) ← Adam(∇ρ(j)[− 1
m

∑m
i=1 f

(j)
w (x̃

(i,j)
0..K)], ρ(j));

performance of the general WGAN-GP model, and help it
converge closer to the actual training data in the local regions.
To implement this last step to train the global GAN, we
modify lines 7 and 11 of Algorithm 2 by incorporating the
discriminator of the clusters. Specifically, we add the local
trained critic of each cluster to the loss function of the global
GAN as follows:

L(i) ← ∇w[
1

m

m∑
i=1

fw(x
(i))− 1

m

m∑
i=1

fw(x̃
(i))

+
λ

m

m∑
i=1

(∥∇x̂(i)D(x̂(i))∥2 − 1)2]

ρ← Adam(∇ρ[−
1

m

m∑
i=1

fw(x̃
(i))−1

l

l∑
j=1

1

m

m∑
i=1

f (j)
w (x̃(i))], ρ)

(16)

with l = 1 and σ = 0 for the global critic and generator
training.

This modification ensures that the general model is also
guided by the local characteristics of each cluster, resulting in
better performance and more accurate results.

E. Planner

To guide the path towards the desired region in the free
configuration space, we utilized a technique inspired by [28].



Our approach involved using the learned generator as a sam-
pler for RRT path planning algorithm. However, we made
a modification in our implementation to specifically handle
situations where our encoder failed to capture the complete
encoding of a previously observed scenario. To this end, we
increased the value of σ directly from the encoder’s output,
instead of trying to find a ratio between sampling from the
uniform distribution and the generator. This idea is similar to
having a forward trajectory of k ∈ N diffusion steps from the
predicted distribution fw(·) with fixed mean µ ̸= 0 [29].

Algorithm 3: RRT with MultiWGAN-GP
Data: xinit, xgoal,y ⊂ I : U → [−1, 1]t×3×48×48, t ∈

N is the number of points to sample from
MultiWGAN-GP with t ≥ n iterations,
ϵσ = [0, ϵ1, ..., ϵk], k ∈ N, ϵi ∈ R+ and
ϵi > ϵi−1 is the amount of the k perturbation of
σ.

Result: G
1 V ← xinit, E ← ∅;
2 µ,σ ← q(z|y);
3 BiasSampler = ∪ki=0fw(N (µ,σ + ϵσ[i]));
4 for i = 1, ..., n do
5 xrand ← BiasSampler[i];
6 xnearest ← Nearest(G = (V,E), xrand);
7 xnew ← Steer(xnearest, xrand);
8 if ObstacleFree(xnearest, xnew) then
9 V ← V ∪ {xnew};

10 E ← E ∪ {(xnearest, xnew)};

11 return G = (V,E);

Our objective in taking this approach was to cover a more
diverse set of latent vectors, thereby helping the generator to
incorporate images that exhibit fewer similar features. This
method can prove useful in situations where the encoder’s
trained query is unable to find any CF states within a pre-
determined number of generator samples. By employing this
method, it becomes possible to identify CF points, even in
scenarios where no examples closely resemble the trained data
by leveraging shared characteristics among multiple training
data scenarios; this implementation is reflected in Algorithm
3.

VI. EXPERIMENTAL RESULTS

In order to provide visual representation of the results,
we have designed a setup that incorporates a two-degree-of-
freedom manipulator robot. The purpose of this setup is to
demonstrate, through graphical means, the effectiveness of our
proposed architecture in learning a two-dimensional configu-
ration space that is dependent on the position of an obstacle.
Furthermore, we aim to demonstrate how our architecture can
be applied to diverse problems that necessitate understanding
of the configuration space.

All the models are trained on a system with 2 x Intel Gold
6148 Skylake, 16 GB of RAM and 2 x NVidia V100SXM2.
For deployment, we use Ubuntu 22.04 running on a 3.60 GHz

× 8 Intel Core i7-9700K processor, 16GB RAM on NVidia
RTX 2070.

We propose two sets of experiments to examine the ef-
fectiveness of partitioning the original dataset into clusters
and learning the parameters of Gaussian distributions versus
training the WGAN-GP with the image encoder directly. The
training dataset comprises 100 image-scenarios and their cor-
responding configuration spaces of a simulated 2-dimensional
2-DOF manipulator robot with circular obstacles randomly
placed within its working space. All input images of the
scenario were resized to 48 x 48 pixels. We utilized the Pytorch
Lightning framework with Adam optimizer parameters derived
from [8] for training. Our experiments hyperparameters con-
sisted of a learning rate of 4e−5, a batch size of 512, a
regularization coefficient λ of 10, an encoder regularization
coefficient, K =4 means per cluster, a latent dimensionality
of 512 for z, and ncritic = 5 training iterations per generator
iteration. All the CSs are standarized. Our code is openly
available2.

We employ an image to represent the conditioning factor in
our experiment. This image encapsulates the obstacle’s repre-
sentation within the robot’s operational space. To streamline
the experimentation process, we opted for three circles of
radius one unit to serve as the obstacle. Additionally, we
include the robot’s starting position, which is at the initial
state of 0 before the path is planned.

Please refer to Appendix A for a comprehensive description
and visual representation of the encoder, decoder, generator,
and critic components.

A. Reconstruction of the free-CS

The aim of this experiment is to demonstrate the effective-
ness of our proposed architecture in reconstructing a CS in
comparison to using the entire dataset. To achieve this, we
utilize a limited dataset and evaluate both a simple WGAN-
GP model and our advanced MultiWGAN-GP model. Through
this comparison, we showcase the superior performance of our
proposed architecture.

We conducted training for both models over 400 epochs.
In the case of the MultiWGAN-GP model, we opted to group
the data into two distinct clusters to minimize the likelihood
of gaps within each cluster. We experimented with using
additional clusters initially, but found that reducing the number
of samples per cluster resulted in the curse of dimensionality,
which adversely affected the overall training process.

We generated 100 random CSs where the image-scenario
have 3 circular obstacles positioned randomly with a 2-
dimensional 2-DoF manipulator as training data. Each CS
consist of 10000 random samples of CF states. We can see
some samples of the dataset in Fig. 7.

Fig. 8 illustrates the results of reconstructing the training
data using Eq. (8). The GS-C scores and plot reveals that the
models are dissimilar, as the generated states fail to capture the
variety present in the data, and instead appear to be centered
around the mean of all the models. While the model is able to
learn the data boundaries standarized between [−π, π], it fails

2https://bitbucket.org/joro3001/multiwgangp/



Fig. 7: Five samples from the dataset for training.

Fig. 8: Reconstruction of the CS using WGAN-GP directly
from Eq. (8). Lower GS-C is better.

to differentiate between CF states and those that are in colli-
sion, resulting in collisions being generated. This failure can
be attributed to the encoder training being incorporated within
the WGAN-GP training process. Specifically, the cost defined
by Eq. (7) converges close to the normal distribution, thereby
impacting the WGAN-GP’s ability to learn any conditioning.
Even with offline VAE training, the WGAN-GP still struggles
to learn the configuration states.

Fig. 9 depicts the reconstruction of the training data using
our proposed MultiWGAN-GP technique. The results demon-
strate the efficacy of our method, as only one cluster is required
to generate the data. The GS-C analysis indicates that the
worst-case scenarios are avoided, and we can visually observe
that the conditioning from the scenario with the encoder is
being learned, despite the fact that the encoder was trained
independently from the WGAN-GP in this case. This approach
offers several advantages, such as accelerating the training of
the WGAN-GP by independently training the encoder, and
utilizing the same encoder to train each cluster when using
the multi-cluster approach with MultiWGAN-GP.

Fig. 10 illustrates that when testing the model with con-

Fig. 9: Reconstruction of the CS with MultiWGAN-GP one
cluster.

figuration spaces that have not been previously observed, the
resulting approximation is very similar to the training data
from Fig. 9 when the CSs are similar to those used to train
the encoder. However, in cases where the configuration spaces
are significantly different from those used during training
or have small holes inside the CS, the generator is unable
to accurately predict the CS. We conclude with this finding
that we need to incorporate a more diverse range of obstacle
positions during training to account for a wider variety of CS
scenarios, specially when the collision area is relatively small.

Training with MultiWGAN-GP and multiple clusters, we
can see from the results shown in Fig. 11 that the improvement
in GS-C is significant compared against one cluster.

Regarding extrapolation, we can observe from Fig. 12 an
improvement in extrapolation to previously unseen scenarios
in most cases, compared to the MultiWGAN-GP with only
one cluster.

B. Path planning with extra models

To train the generator for sampling paths in the S1×S1 con-
figuration space, we first transformed the data by embedding
it into a 4-dimensional Euclidean space, where we estimated
the sine and cosine of each angle θi. This allowed us to
represent each path as a continuous line and eliminate any
discontinuities in the data.

To address the variability of the paths in the RRT algorithm,
we used RRT* paths as training data, which provided a more
stable distribution that did not fluctuate significantly when
the configuration space was changed. In our experiments, we
allowed the RRT* algorithm 10 seconds to find the path and
rewire the tree. We used path length as the minimization



Fig. 10: Reconstruction of the CS with MultiWGAN-GP one
cluster with non previously seen data.

Fig. 11: Reconstruction of the CS with MultiWGAN-GP 2
clusters. Visually similar to one cluster reconstruction but the
GS-C is improved.

Fig. 12: Reconstruction of the CS with MultiWGAN-GP 2
clusters with previously unseen data.

objective for the generator training, as it provides a reliable
measure of the quality of generated paths.

In the previous section, we generated 10 new different
scenario/configuration spaces for testing, and in this section,
we estimated paths in each of these spaces. Our objective was
to combine the same critics used to learn the CS reconstruction
and improve the RRT planner’s quality. To generate more data
and overcome the curse of dimensionality, we interpolated all
the paths.

In our proposed model, we used the same auto-encoder
and parameters that were used in the CS learning phase.
To evaluate our approach’s improvement compared to other
methods, we trained two WGAN-GP paths: one using only
the auto-encoder and another using the two critics from the
previous section. Both models were trained for 600 epochs.

As expected, our proposed approach of incorporating critics
to bias the training to the distribution yielded faster discovery
of the free-CS constrained to the path, compared to training
the model with only one critic. This is evident from Fig. 13,
where the partitioned critics captured the local properties of
the CS in greater detail.

Furthermore, incorporating the extra critics helped to pro-
vide more information about the complete CS, making it easier
to differentiate between CF-states with the image-scenario
input, especially in non-previously seen instances. This is
exemplified in Fig. 14, where our model with two critics was
able to accurately reconstruct the path compared to the model
with only one critic.

To implement the trained sampler, we utilized the Open
Motion Planning Library (OMPL) [30] implementations of
RRT and RRT*. Specifically, for our proposed MultiWGAN-
GP path planner, we replaced the standard uniform sampler



(a) Sampling using the model
trained with only the critic for the
path.

(b) Sampling using the model
trained with the critics used to
learn the CS and path.

Fig. 13: Testing the sampling from the generators used for
sampling.

(a) Sampling using the model
trained with only the critic for the
path.

(b) Sampling using the model
trained with the critics used to
learn the CS and path.

Fig. 14: Using the GAN model to estimate samples from the
path in non-previously seen scenario and CS. The extra critics
help to capture information from the whole CS.

with our trained sampler to steer the planner towards the next
CF-state. This resulted in a more efficient and effective path
planner, as demonstrated in Fig. 15.

We conducted experiments to directly compare our method
to RRT and RRT* on 10 previously unseen scenarios. We
aimed to demonstrate improvements in both the quality of the
path, represented by the path length mean of RRT* , and the
running mean time. Each of the 10 different scenarios were
run 100 times to obtain the estimated scores. As the CS is
relatively simple, we allowed only 1 second to solve each of
the paths. The initial state of the path and the final state goal
were fixed for all the CSs during these tests. The results of
these experiments is given in Table I.

The results reported in Table I indicate that there were
instances where the shortest path could not be found by the

Fig. 15: Comparison between RRT, RRT* and the fit data of
our method. The arrows indicate the direction of the path.

(a) Our method produced longest
path in this case. There is no
sample in the training data that are
close to this unseen scenario.

(b) Our method produces the
shortest path. There are some
samples of the training dataset
that are similar to this unseen sce-
nario.

Fig. 16: Extrapolation of the planners on non-previously seen
scenarios. Our method is able to find the shortest path in the
scenarios that are similar to the trained data.

algorithms. However, our proposed method, MultiWGAN-GP,
was successful in shortening the path in 30% of cases, while
RRT* and RRT achieved reductions of 40% and 30%, respec-
tively. It is worth noting that these cases typically occurred
when the CS and scenario were significantly different from
the training data. This is because the learned model produces
a latent vector close to several similar scenarios, some of
which may not be precisely useful for the current scenario to
generate the shortest path, as shown in Fig. 16. Furthermore,
the implementation of RRT does not utilize rewiring, which
could potentially improve the path length with the remaining
planning time left for the planner to find the CF-path.

The experimental results demonstrate that our method can
generate a feasible CF-path for the given scenario. With more
data, it may be able to achieve better path length than RRT*
when the planning time is constrained.

Our proposed algorithm was able to find a CF-path in all



Experiment # Image-Scenario Input Algorithm Path length mean (radians) Running time mean (seconds) Success rate

1
RRT 6.45 0.08 70.00%
RRT* 4.05 1 70.00%

MultiWGAN-GP 4.42 0.21 100.00%

2
RRT 13.74 0.2 70.00%
RRT* 14.58 1 50.00%

MultiWGAN-GP 15.52 0.32 100.00%

3
RRT 14.32 0.27 70.00%
RRT* 12.82 1 30.00%

MultiWGAN-GP 10.04 0.22 100.00%

4
RRT 5.85 0.18 80.00%
RRT* 5.57 1 60.00%

MultiWGAN-GP 5.79 0.18 100.00%

5
RRT 8.83 0.13 80.00%
RRT* 6.59 1 70.00%

MultiWGAN-GP 7.54 0.17 100.00%

6
RRT 15.12 0.2 70.00%
RRT* 14.68 1 80.00%

MultiWGAN-GP 18.11 0.23 100.00%

7
RRT 15.68 0.18 80.00%
RRT* 15.98 1 80.00%

MultiWGAN-GP 17.87 0.25 100.00%

8
RRT 14.5 0.2 70.00%
RRT* 15.08 1 70.00%

MultiWGAN-GP 16.56 0.21 100.00%

9
RRT 11.35 0.13 80.00%
RRT* 11.2 1 70.00%

MultiWGAN-GP 10.27 0.17 100.00%

10
RRT 10.43 0.14 20.00%
RRT* 5.81 1 80.00%

MultiWGAN-GP 4.41 0.16 100.00%

TABLE I: The results of the path planning task for extrapolation indicate that our method successfully improved the success
rate of RRT without a significant increase in running time.

the new cases in a timely manner compared with the running
time of RRT. During testing, we found that we needed to
sample at least 300 states from the generated path, which takes
approximately 0.18 seconds, one example is presented in Fig.
17. Since we used path interpolation as our training data, most
of the states generated by the neural network are in close
proximity to each other, which slows down the steering of the
algorithm towards the closest neighbor in the graph.

To speed up our method, we need to reduce the number
of sampling points and ensure that each point is as close as
possible to a waypoint that can be accepted by the algorithm.
This can be achieved by increasing the amount of training
paths to cover a variety of scenarios, allowing the model to
learn the minimum number of waypoints needed to reduce
the amount of required collision checking during interpolation
between the new state and the current state. By improving
the model’s ability to learn these minimal waypoints, we can
reduce the time taken to find a path and increase the efficiency
of our proposed method.

There is still room for improvement in terms of the speed
of querying the encoder and generator to achieve real-time
performance. One approach to achieve this could be reducing
the number of operations required by the neural network, for
instance, by optimizing the architecture or using more efficient
algorithms.

Overall, while our proposed method shows promising re-
sults, there is still further work to be done to improve its
efficiency and real-time performance. By incorporating the
aforementioned improvements, we believe that our algorithm

Fig. 17: Extrapolation of the path where our method achieves
the same speed as the RRT algorithm, taking into account the
overhead of calling both the encoder and generator.

can be further optimized to achieve better results and be
applicable to more complex scenarios.

Regarding the success rate, our algorithm was able to
generate feasible CF paths each time, even when faced with
previously unknown scenarios, whereas RRT and RRT* strug-
gled to find CF waypoints. This is especially important in
tasks where low latency and safety are major concerns, such



as human-robot interaction.
Although our planning scenarios were generated randomly,

we recognize the possibility of our algorithm encountering
challenges in generating a CF path within the time constraints
of the query. Furthermore, if the dataset exhibits bias towards
certain regions, the probability of sampling far from the mean
vector (µ) diminishes exponentially, even with a large variance
that approximates a uniform distribution. In such cases, it
may be necessary to acquire additional training data that
encompasses a broader range of scenarios to address these
situations effectively.

C. Discussion

In this study, we have discovered that implementing VAEs
and WGAN-GP for CS reconstruction within multimodal mod-
els, specifically Image-to-CS, poses a significant challenge.
The complexity of the model must be minimized by reducing
the number of operations the neural network needs to learn
the topology based on the image. By simplifying the model,
we were able to train the WGAN-GP and VAE independently,
resulting in improved training times for both models.

In addition, the study showed that topology metrics can
be used to evaluate the ability of GANs to represent a
distribution. However, we found that this approach requires
the transformation of data to accommodate for other structures
that may be present in CSs used in robotic tasks, in addition to
holes. By transforming the data in such a way, other structures
can be described using the rank of topology. This approach can
be beneficial in assessing the quality of GAN-generated CSs
to be used in robotic planning and control applications.

The experiments pointed out that using local critics in
WGAN models can improve their performance, even in differ-
ent tasks such as path planning where the reconstruction of the
configuration space and the generation of collision-free paths
are related problems but not identical. The inclusion of local
critics helped the model to converge to a better distribution
and improve its ability to generate valid paths. However, it
is worth noting that the use of multiple critics can lead to
situations where one partition of the data does not generate
any points, which can limit the effectiveness of the training
process for that critic.

We have demonstrated that the integration of VAEs and
WGAN-GP is an effective approach to accelerate path plan-
ning in 4-dimensional CSs, resulting in higher percentage of
CF-paths in previously unseen scenarios and quasi-optimal
paths when the WSs are similar to the training data. However,
it is important to note that minimizing the number of model
queries is crucial for real-time path planning applications.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented a novel approach for
training WGAN-GP models conditioned by VAEs, which
can be utilized for tasks related to CS reconstruction and
path planning. We also proposed to use homology ranking
to measure the reconstruction of the configuration space by
using the complement of the reconstructed data to be able to
measure the clusters of CF-states as holes in the complement

of the configuration space and being able to discriminate which
models describe better the reconstruction. In addition, we
explored the use of local critics to improve the reconstruction
of the CF-states in the CS for path planning tasks.

The results of our experiments demonstrate that our pro-
posed model is capable of generating CF-paths in unknown
scenarios with improved success rate and reduced running time
when compared to conventional path planning algorithms such
as RRT and RRT*.

We have also demonstrated the effectiveness of our pro-
posed method in planning paths in a 4-dimensional space for
a 2-dimensional 2-DOF simulated robot. However, to establish
the broader applicability of our method, it is necessary to ex-
tend it to higher dimensional spaces for redundant articulated
robots. This is critical to show its usefulness in solving high-
dimensional problems for real-world applications and using
real robots. Future work will focus on exploring the feasibility
of this extension and evaluating the performance of our method
on more complex tasks and scenarios.

One of the challenges that we identified is the processing
of the input data. In our work, we used a 2D representation
of the configuration space for the robot. However, in real-
world scenarios, we need to combine the VAE with noisy
depth information to provide sufficient information to the
GAN model for reconstructing the configuration space of
the robot. Therefore, further research is needed to explore
methods for incorporating depth information into the VAE-
GAN framework to improve the accuracy and robustness of
the model.
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APPENDIX A
NEURAL NETWORK ARCHITECTURE

In this section, we discuss each component of the proposed
architecture in detail.

First, let us consider the encoder. To design the encoder, we
partitioned the image into four small batches. This approach
not only allows for faster processing of the latent vector but
also helps capture more local information when multiple ob-
stacles appear in the same region. The choice of convolutions
in the encoder follows a similar architecture to the one used in
[5] for VAE-GAN models. However, we reduced the number
of convolutional layers to decrease the model size and improve
query speed. The architecture of the encoder is given in Fig.
18.

Moving on to the decoder, as depicted in Fig. 21, we
employed deconvolution techniques based on [31] to reduce
artifacts during image reconstruction in VAE training.

For the generator, shown in Fig. 19, we adopted the archi-
tecture proposed in [8] to sample a Rn vector from the latent
variable z.

Lastly, let us consider the critic. In contrast to image-image
generation models, our model employs a unique identifier
to represent the image instead of processing it directly. The
purpose of this unique ID is to indicate which instance of
the current configuration space we are dealing with during
training, rather than evaluating the quality of the reconstructed
scenario. Therefore, a significant portion of the model is
dedicated to distinguishing between the generated vectors
representing collision-free states. We adapted the proposal
from [32] to project the condition onto the critic, thereby
improving the performance of the trained generator. Fig. 20
provides an illustration of the critic component.
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