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Abstract
Athlete’s pose acquisition and analysis is promising to provide coaches with details of athletes
performance and thus help to improve athletes’ performances with more detailed supervision from
coaches. Compared with traditional ways of acquiring an athlete's gesture, such as using wearable
sensors, computer vision technology has advantages of low-cost, high-efficient and non-intrusive.
This paper aims to bridge these two fields, by reconstructing athletes’ trajectory using monocular
(i.e. single-camera-shot) videos. Under a few assumptions that are applicable to most of the sports
of athletics, we proposed a method combining computer vision techniques and physics laws to
reconstruct athletes’ trajectories from monocular videos. The method first estimates 3D pose of
athletes from video inputs, then performs kinematic analysis on estimated poses to reconstruct the
trajectories of athletes. We tested this algorithm on videos from the triple jump finals of the 2016
Olympics in Rio de Janeiro. We achieved a best performance with 9.1% mean average error when
using ground-truth foot-ground contact signal and 21.4%mean average error when using predicted
foot-ground contact signal.

1. Introduction

In this paper, we focus on the reconstruction of an athlete's trajectory from dynamic monocular
RGB videos of athletics sports games. The reconstruction of a player's pose or trajectory is helpful
to provide detailed physics parameters (positions, velocities, accelerations, forces, etc.) to coaches
to help correct poses and improve the performance of athletes. Thanks to advances in computer
vision and artificial intelligence, estimating human poses from video recordings has become
possible [1-6]. Videos for athletes are usually shot with a single moving camera or independent,
unsynchronized moving cameras so that it can track the athlete and to ensure that the athlete
appears large enough and remains in the center of the frame. Such videos are characteristic of TV
broadcasting footage of sports games or videos shot by trainers during training sessions. Therefore,
it is important to reconstruct athletes’ trajectory from dynamic monocular RGB videos.

The estimation of 3D pose of humans frommonocular RGB videos is challenging because of the
nature of recovering 3D coordinates from 2D images. To recover the trajectory from dynamic
monocular videos is more cumbersome with the uncertainty of camera positions and a variable
background. To recover the trajectory, one needs the global position of every pose across the whole
video. The most common solution is to use triangularization with multiple-camera-shot videos [7-
10], which is not applicable in monocular videos. There are papers that solve this problem by
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introducing the SLAM algorithm [11]. However, it is mentioned by Yuan et al. [12] that moving
objects in the environment could cause SLAM to fail. The authors proposed an algorithm to estimate
the translation and rotation matrices , but this algorithm requires a dataset of dynamic cameras for
training. In our application, public sports-specific datasets of dynamic monocular footage are still
rare. Therefore, we propose an algorithm to take advantage of state-of-the-art human pose
estimation models, and introduce physics laws to help analyze and recover human body trajectories
from videos.

In this work, we rely on pre-trained existing models to predict 3D skeletons of athletes from
dynamic monocular videos. We estimate the foot-ground contact signal to help split athletes’
movements into foot-on-ground phase and foot-off-ground phase. Then using kinematic analysis,
we recover athletes’ trajectories of each phase. The advantage of this algorithm is that it does not
require an extra dataset for training and could be applied to most TV footage of sports of athletics.

2. Related work

Analyzing an athlete's trajectory thus relies on human pose estimation, physics models and action
analysis.

Human pose estimation. In recent years, there are numerous models proposed to estimate 3D
human pose by key points, but most of which estimate key points in camera coordinates or root-
relative coordinates [1-6]. To obtain global/absolute positions, one could use multiple
synchronized cameras with triangularization [7-10] or extra information like Inertial Mounted Unit
(IMU) sensor measurements [13, 14]. Some works consider recovering occlusion by estimating
translation and rotation matrices [12], which are learned on specific datasets.

In the computer vision field, there are two popular ways to represent a human body, i.e. skeleton
representation [24, 25] and body mesh representation [26]. While the body mesh representation
focuses more on the surface of the body in a 2D planar or a 3D volumetric manner, the skeleton
representation represents a human body by a few key points and the connections between the key
points. It thus directly provides us with synthetic features such as the body part positions and
orientations, and can be easily processed by physical law models. To integrate dynamic analysis in
our approach, we opt for the key points representation.

The methods estimating key points of human pose frommonocular cameras have made
tremendous improvements in the last years. The most successful algorithms such as Openpose [34],
HRNet [29], Alphapose [35], estimate 2D coordinates of each key point, in the plane of the camera
image. However, as the plane of the camera image is not always parallel to the athlete’s trajectory,
these results can not be easily exploited for our problem. More recently, 3D estimation of key point
coordinates have also developed, such as RepNet[33], SRNet [32] or MHFormer [4].
MHFormer utilizes Yolov3 [28] for detecting bounding boxes of humans in frames and HRNet [29]
for predicting 2D key points of humans. With the detected 2D key points as inputs, it estimates 3D
key points coordinates: this process is called “lifting”.

In this work, we need a 3D human pose estimation to analyze the athlete’s trajectory, thus we
choose MHFormer for its highest scores on benchmarks.
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Sports action analysis. Computer vision techniques have been applied to athletes’ action
recognition and analysis [19-21]. A review [22] on the application of camera-based HPE lists recent
research in the field of sports and physical exercise.For example, Wang et al. [19] applied computer
vision to estimate the pose of skaters and their boards, in order to evaluate the movements of
skaters. Although the videos used in this work are shot by dynamic cameras, they only need the
information about the poses of athletes, instead of their trajectories. Li et al. [20] applied a human
posture estimation algorithm to an auxiliary training system for golf, which is shot by fixed cameras.
Fastovets et al. [21], focused also on monocular TV sports footage, but their work is to estimate 2D
poses, instead of 3D poses or trajectories. This work tackles 3D poses and trajectories, despite using
a 2D video from a moving monocular camera.

Physics-law based models. Works considering physics laws by introducing physics engines [15-18]
first estimate human pose (2D or 3D) from videos, then optimize human models so that the pose
fits the human pose predictions. Although these models could provide poses constrained by physics
law, to our knowledge, there is not yet one that could apply to dynamic cameras. Indeed, this would
imply that the physics law can model the dynamics of the camera trajectories. In this work, we get
inspired by this idea that physics law is important, and can compensate for the uncertainty
introduced by a mobile camera.

In the proposed approach, we tackle sports action analysis for 3D trajectories and use physics law
based models to recover the trajectory from a moving camera.

3. Methods

Our proposed method for reconstructing human trajectory from video inputs combines two
analyses: human pose estimation and kinematic analysis. An overview of the approach is presented
in Fig. 1. Based on these outputs, the signals of body-ground contact information and body center of
mass of each pose are calculated. Finally, kinematic analysis is performed on previous results to
reconstruct the trajectory of the human in the input video.

Figure 1. Overview of proposed solution

This algorithm introduces a few assumptions in order to perform kinematic analysis. Firstly, it
assumes that the ground is flat, i.e. the gravity is perpendicular to the ground floor, which is true in
most of the athletics. The second assumption is that the feet of the athlete do not slide when
running, which is also valid for running and jumping movements that are considered in this study..
Beside these assumptions, we limit our applications to single-athlete videos, as usually in videos
during training sessions.
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Human Pose Estimation

2D & 3D HPE networks: In this work, we use the lifting network MHFormer [4] with The skeleton
representation shown in Fig. 2, which follows the definition of dataset Human3.6M [27]. The
output of the 3D key point coordinates are relative, with key point ‘Hip’ as root, with coordinates
fixed at zero. The networks in this algorithm utilize pre-trained models. Therefore, no training
process is required, though it would be helpful to train the model on an athletics-specific dataset.

First, we could observe for the 2D HPE network which estimates the 2D skeleton of input frames of
a video, joint swaps between left and right body parts [23] and noise. We corrected these obvious
errors of 2D skeletons as detailed in the next subsection and the results are sent to the 3D HPE
lifting network to generate 3D skeletons.

Then, as the 3D key point coordinates of the predicted poses by MHFormer are relative ones, and
the bone length is not explicitly set to be fixed throughout the video by MHFormer, we normalized
the bone lengths by ensuring the sum of every estimated 3D pose to be consistent. Then using the
official height of each athlete, we could estimate the absolute lengths of bones by approximating the
height with the sum of lengths of leg, spine, neck and head.

Figure 2. Skeleton representation of human body and key point definitions

2D Prediction corrections: In order to improve the performance of the 3D key point estimation,
we propose an algorithm to correct 2D predicted key points. In practice, 2D predictions are prone
to swap errors, i.e. wrongly assigning left and right leg key points. Under the assumption that swap
errors occur rarely, we claim that the existence of one swap causes the trajectory of both key points
to be longer (see an example in Fig. 3). Based on this principle, we detect swap errors point by point.
In addition to swap errors, there are also some missing detections that are corrected by
interpolation.
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Figure 3. An example showing that swap error causes key point trajectory to be longer

Bodymass center estimation: In order to use kinematic analysis by applying Newton’s laws, we
need to estimate the body mass center. It can be obtained from the position of each body part and
its mass. Some literature studied the distribution of body mass [30, 31]. We use Table. 1 from [30]
to approximately calculate the center of mass for any 3D pose. We first estimate the centers of mass
of different parts of the body, which are represented by connections of the skeleton representation.
For connections below the head (key point ‘Thorax’), the center of body mass is estimated by the
midpoint of the connections. The center of gravity of the combination of head and neck is estimated
by the midpoint of keypoints ‘Head’ and ‘Thorax’. Finally, as there is no key point representing
hands and feet, but the weights of hands and feet are not negligible, we roughly approximate the
centers of gravity of hands with key points ‘LWrist’ and ‘RWrist’ and similarly the centers of gravity
of feet are approximated with key points ‘LAnkle’ and ‘RAnkle’.

Segment
Mass percentage (%)

Segment
Mass percentage (%)

female male female male

Head 6.68 6.94 Forearm 1.38 1.62

Trunk 42.57 43.46 Hand 0.56 0.61

Upper Trunk 15.45 15.96 Thigh 14.78 14.16

Mid Trunk 14.65 16.33 Shank 4.81 4.33

Lower Trunk 12.47 11.17 Foot 1.29 1.37

Upper Arm 2.55 2.71 - - -

Table 1. Mass distribution of different body segments [30]
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Kinematic analysis: Phase splitting, Phase I, Phase II.

Our kinematic analysis will differentiate the phases the athlete is touching the ground and the
phases s/he is on air.

Phase splitting: The athlete’s running process could be split into two different phases (see Fig. 4).
The first phase (Phase I) is when the whole body of an athlete is in the air. The second phase (Phase
II) is defined as when there is some part of the body touching the ground, especially one foot or
both of the feet touch ground. We split the phases by detecting whether the athlete’s body contacts
the ground.

Figure 4. Splitting of two phases during running

There are multiple solutions to split the phases. One possible solution is to train a machine learning
model with a supervised learning scheme to detect whether the foot or a part of the body is
contacting the ground floor or not. However, we do not have datasets labeled with foot/body
contacting ground information to train such models. Therefore, we chose a simpler way, which is
based on signal processing algorithms on 2D key point estimation results.

We consider two 2D predicted key points: left and right foot (‘LFoot’ and ‘RFoot’). The predicted 2D
key points are in image coordinates, which are influenced by the dynamics of the camera. However,
when the camera moves slowly and smoothly, the key points in a frame sequence appear to be
periodic, which corresponds to the steps of the athlete. The algorithm considers the change of y
coordinate of each key point versus time. For either key point (‘LFoot’ or ‘RFoot’), if it has a local
minima at time t and the y coordinate value is lower than its counterpart, it will be detected as
contacting ground at time t. For t’s neighboring time if the y coordinate value of the same key point
does not exceed the local minima by a threshold, that time will be detected as the foot still on the
ground.

Phase I: During Phase I the whole body of the athlete is in the air, which means the body of the
athlete can be approximated as only affected by gravity, if other effects like wind are neglected.
Using methods introduced in the previous section, the center of body mass could be calculated
frame by frame across the whole video. Suppose that the speed of the mass center at the beginning
of Phase I is known, using the acceleration of gravity, the trajectory of the mass center across the
whole phase could be easily calculated and recovered.
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Phase II: During Phase II, there is some part of the body (represented by a key point) touching
ground. Because of the assumption of no sliding, the absolute position of the key point is fixed. With
this fixed key point during Phase II, the positions of the other parts of the body can be recovered.
Since the key points of the skeleton across the whole video is calculated, the positions and speeds of
the center of body mass could also be recovered, which will provide the initial speed for the Phase I
following the current phase.

4. Results

Dataset and evaluation metrics

We experimented the proposed algorithm on the TV broadcasting videos of men’s and women’s
triple jump finals of Rio Olympics games in 2016 to test the performance. These videos are
monocular and dynamic, and tracks a single athlete, which makes them suitable for our
requirements. The results of each jump attempts also provide us an easily accessible metric for
evaluation. Moreover, the heights of the athletes are available on the Internet.

The videos we selected includes part of jumps of medal-winners in triple jump finals of the Rio
Olympics. The following table summarizes of the jumps included in our dataset. There are in total
19 jump attempts in the videos, some of the attempts have two jump videos of normal speed and
slowmotion, respectively. We discarded some low-quality videos, and cut the videos so that each
one contains only one jump. Finally, we have 27 jump videos of 18 attempts.

Results (m)

Attempts 1 2 3 4 5 6

Women
Caterine Ibarguen 14.65 15.03 14.38 15.17 14.76 14.8

Yulimar Rojas 14.32 X 14.87 14.98 14.66 14.95

Olga Rypakova 14.73 14.49 14.52 14.2 14.74 14.58

Men
Christian Taylor 17.86 17.77 X 17.77 X X

Will Claye 17.76 X X 17.61 X 17.55

Dong Bin 17.58 X X – – –
Table 2. Results of 6 medal-winner in the triple jump finals of the Rio Olympic games. ‘X’ represents an
attempt is foul. ‘-’ represents missed attempt because of injury. The yellow highlighted results are included in
our dataset, among which those attempts highlighted with underline have two video. There are in total 27
videos in our dataset.

Based on the prediction of the algorithm, we accumulate the distance of the last three steps as
predicted result of the jump attempt. We take the average accuracy of all predictions as the major
metric to evaluate the performance of the algorithm.

We tried two methods to calculate total jump length, which is illustrated in Fig. 5. Method 1 directly
calculates the distance between the set-off position and the final landing position. Method 2
calculate the sum of each step length.
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Figure 5. Recovered trajectory of Dong Bin’s jump, with illustration of two methods to calculate the jump
result

Quantitative evaluation

Calculation method Foot-ground contact
signal With 2D corrections Mean absolute error

(%)
1 Ground-truth No 10.6
1 Ground-truth Yes 10.6
1 Predicted Yes 22.0
2 Ground-truth No 9.1
2 Ground-truth Yes 9.2
2 Predicted Yes 21.4

Table 3. Summary of results. Best performance is highlighted in bold.

The major results are reported in Table 3. We tested the performances of different calculation
methods, ground truth versus prediction of foot-ground contact signal and with and without 2D
corrections. In general, the best MAE (Mean Absolute Error) we achieved is 9.1% using method 2
with ground-truth foot-ground contact signal and without 2D corrections.

Different calculationmethods: From above results, it can be seen that under the same
experimental settings, method 2 outperforms method 1. Fig. 5 is a trajectory recovered from Dong
Bin’s jump, which also an illustrates the definition of the twomethods. From this figure, we can see
that the recovered trajectory is not a curved line, rather than the original straight one. The
distortion explains why method 2 performed better than method 1.

The distortion of the trajectory is resulted from the rotation of the camera. Although we assumed
that there is no foot-sliding, our model only takes one key point for each foot, which means the
rotation around foot is neglected. In fact, there are models able to predict more details of foot (e.g.
key points including toes and heels in [25] or body surface model [26]), which can help solve this
problem.
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Influence of 2D corrections: Even though we performed corrections to 2D key points predictions,
we surprisingly found that the 2D corrections do not help to improve the performance. An
explanation is that joint swap error occurs not very frequently, thus does not influence result very
much. To better examine the result, we made boxplot of above results. We found that there are
some outliers. The outliers are the caused by some uncorrected swaps in 2D poses. Fox example, in
Fig. 6 is 3 sequential frames of a same phase. As we rely on foot-ground contact information to
perform kinematics analysis, in this case the foot key points are exchanged, thus cause significant
errors in prediction.

Figure 6. Boxplot of results.

Figure 7. Example of swap error.
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Influence of foot-ground contact signal accuracy: The performance using foot-contact signal
predicted by our model is much worse than that using ground truth. Because the foot-contact
information is important in splitting two phases for kinematic analysis, it has large influence to the
final performance.

5. Conclusion

In conclusion, this work proposed an algorithm to combine existing human pose estimation models
with kinematic analysis, to enable athletes’ trajectory recovery frommonocular dynamic videos.
This algorithm is applicable to most sports of athletics. We take triple jump as an example and
achieved lowest mean absolute error of 9.1%. The result validated the feasibility of the proposed
algorithm. Moreover, this method could be improved by applying better human pose estimation
models or better foot-ground contact prediction models. Finally, this method provides an option to
analysis of athletes’ movement with low cost and high efficiency, and thus help with the
improvement of athletes’ performances.
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