

On the application of the Schoenberg quasi-interpolant for complexity reduction in trajectory generation [Poster]

Vincent Marguet, Florin Stoican, Ionela Prodan

▶ To cite this version:

Vincent Marguet, Florin Stoican, Ionela Prodan. On the application of the Schoenberg quasiinterpolant for complexity reduction in trajectory generation [Poster]. European Control Conference 2023, Jun 2023, Bucharest, Romania. hal-04126046

HAL Id: hal-04126046 https://hal.science/hal-04126046

Submitted on 12 Jun2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Laboratoire de Conception et d'Intégration des Systèmes

On the application of the Schoenberg quasi-interpolant for complexity reduction in trajectory generation

Vincent Marguet¹ Florin Stoican² Ionela Prodan¹

¹Univ. Grenoble Alpes, Grenoble INP[†], LCIS, F-26000, Valence, France [†]Institute of Engineering and Management Univ. Grenoble Alpes **UGA** Email:{vincent.marguet, ionela.prodan}@lcis.grenoble-inp.fr

²Faculty of Automatic Control and Computers, Politehnica University of Bucharest, ACSE, Bucharest, Romania,

Email:florin.stoican@upb.ro

$$z(t) = \sum_{k=0}^{n-1} P_k B_{k,p,\xi}(t) = \mathbf{PB}_{p,\xi}(t), \forall t \in [0,T], \quad (2)$$

$$\tilde{f}(t) = \sum_{k=0}^{\tilde{n}-1} f(\tilde{t}_k) \tilde{B}_{k,\tilde{p},\tilde{\xi}}(t),$$

$$\tilde{t}_k = \frac{\tilde{\tau}_{k+1} + \ldots + \tilde{\tau}_{k+\tilde{p}-1}}{\tilde{p}-1}.$$

$$\min_{z(t)} \int_0^T \|\dot{z}(t)\| dt$$

s.t. $\underline{v} \le \|\dot{z}(t)\| \le \overline{v}, \forall t \in [0, T]$
 $\underline{\phi} \le \phi(t) \le \overline{\phi}, \forall t \in [0, T]$
 $z(t_j) = p_j, \forall j.$

$$\min_{P_k, B_k(t)} \int_0^T f_c(t) dt,$$
s.t. $\underline{v}^2 \leq f_v(t) \leq \overline{v}^2,$
 $\tan(\underline{\phi}) \leq f_{\phi}(t) \leq \tan(\overline{\phi}),$

$$\sum_{k=0}^{n-1} P_k B_{k,p}(t_j) = p_j, \forall j,$$

$$f_{c}(t) = \sqrt{\sum_{k_{1},k_{2}=0}^{n-2} \left(P_{k_{1}}^{\prime}\right)^{\top} P_{k_{2}}^{\prime} B_{k_{1},p-1}(t) B_{k_{2},p-1}(t)}$$

$$f_{v}(t) = \sum_{k_{1},k_{2}=0}^{n-2} \left(P_{k_{1}}^{\prime}\right)^{\top} P_{k_{2}}^{\prime} B_{k_{1},p-1}(t) B_{k_{2},p-1}(t),$$

$$I(t) = \frac{\sum_{k_1=0}^{n-3} \sum_{k_2=0}^{n-2} \left(P_{k_1}'' \right)^\top Q P_{k_2}' B_{k_1,p-2}(t) B_{k_2,p-1}(t)}{\left[-\frac{1}{2} \sum_{k_1=0}^{n-3} \sum_{k_2=0}^{n-2} \left(P_{k_1}'' \right)^\top Q P_{k_2}' B_{k_1,p-2}(t) B_{k_2,p-1}(t) \right]}$$

Trajectory generation for a fixed-wing UAV

Let us consider a 2D 3-DOF model of a fixed wing UAV, [Beard and McLain 2012], where the position (x(t), y(t)) and the heading (yaw) angle $\psi(t) \in [0; 2\pi]$ rad are the state variables. Their dynamics are described by the following equations, where $V_a(t)$ and $\phi(t)$ are the inputs, the airspeed velocity and the roll angle, respectively:

$$\begin{array}{cccc}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

We consider as flat output (for more details on flatness and the UAV's flat representation see [Fliess et al. 1995], [Prodan et al. 2013) the position of the aircraft $z(t) = [z_1(t) \ z_2(t)]^{\top} = [x(t) \ y(t)]^{\top}.$

Thus, we are able to express all the state variables and inputs via the flat output and its first and second derivatives:

> $x(t) = z_1(t),$ $y(t) = z_2(t),$ $\psi(t) = \arctan\left(\right)$

(9c) $g_{\sqrt{\sum_{k_1,k_2=0}^{n-2} \left(P'_{k_1}\right)^\top} P'_{k_2} B_{k_1,p-1}(t) B_{k_2,p-1}(t)$ where $Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and P'_k, P''_k are used as short-hands for the control points associated to the first and second order derivatives of the B-spline curve. Using again the illustrative example from (8) we apply (2) thrice, once to approximate the nonlinear cost (8a), once to approximate the velocity in (8b) and once to approximate the roll angle in (8c). Correspondingly, the approximations are $\tilde{f}_{\{c,v,\phi\}}(t) = \sum_{k=0}^{n-1} f_{\{c,v,\phi\}}(\tilde{t}_k) B_{k,\tilde{p},\tilde{\xi}}(t),$ (10)which allow to approximate: 1 the cost from (8a) as $\int_{0}^{T} \tilde{f}_{c}(t) \mathrm{d}t = \int_{0}^{T} \sum_{k=0}^{n-1} f_{c}(\tilde{t}_{k}) B_{k,\tilde{p},\tilde{\xi}}(t) = \sum_{k=0}^{n-1} \left| f_{c}(\tilde{t}_{k}) \int_{0}^{T} B_{k,\tilde{p},\tilde{\xi}}(t) \mathrm{d}t \right|$ (11)**2** the velocity inequalities $\underline{v}^2 \leq f_c(t) \leq \overline{v}^2$ from (8b) by $\underline{v}^2 \le \sum_{k=0}^{n-1} f_v(\tilde{t}_k) B_{k,\tilde{p},\tilde{\xi}}(t) \le \overline{v}^2,$ (12)**3** the roll angle inequalities $\tan(\phi) \leq f_{\phi}(t) \leq \tan(\overline{\phi})$ from (8c) by (13)

$$\mathbf{n}(\underline{\phi}) \leq \sum_{k=0}^{n-1} f_{\phi}(\tilde{t}_k) B_{k,\tilde{p},\tilde{\xi}}(t) \leq \tan(\overline{\phi}).$$

(5a)Introducing approximations (11)–(13) and keeping the already linear equality (8d) (5b)leads to the approximated constrained-optimization problem [Marguet et al. 2023]

ta

-1	50	100	150
-	Tir	ne [s]	
Simulation data		Numerical Va	alue
Gravitational acceleration g		9.81 <i>m/s</i> ²	
Velocity control input		$V_a \in [18\ 25] \text{ m/s}$	
Bank control input		$\phi \in [-0.43 \ 0.43]$ rad	
Altitude	150 m		
Simulation time T		150 s	
Way-point list		$\mathbb{P} = \{(1000, 1000, 150), (1100, 100), (110$	
		250,150),(400,0,150),(-250,	
		250,150), (40	00,500,150)}
Number of control points n 10			
Order of the B-spline curves p 4			
Number of greville points \tilde{n} 20		20	
Table 1. Numerical values of the simulations			
Due to the approximation error, the velocity constraint was tightened from 40%, centered in the middle of its interval.			
Simulation Results			Numerical Value
Number of inequality constraints of (8)			∞
Computational time of (8)			_
Number of inequality constraints of (14)			60
Computational time of (14)			145 <i>s</i>
Number of iterations to solve (14)			608
Table 2. Computational time analysis for the approximated curves			

Marguet, V., F. Stoican, and I. Prodan (2023). "On the application of the Schoenberg quasi-interpolant for complexity reduction in trajectory generation". In: 2023 European Control Conference (ECC). IEEE. Lyche, T., C. Manni, and H. Speleers (2018). "Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement". In: Splines and PDEs: From Approximation Theory to Numerical Linear Algebra. Prodan, I., S. Olaru, R. Bencatel, J. B. de Sousa, C. Stoica, and S.-I. Niculescu (2013). "Receding horizon flight control for trajectory tracking of autonomous aerial vehicles". In: Control Engineering Practice 21.10. Beard, R. W. and T. W. McLain (2012). Small unmanned aircraft: Theory and practice. Princeton university press. Fliess, M., J. Lévine, P. Martin, and P. Rouchon (1995). "Flatness and defect of non-linear systems: introductory theory and examples". In: International journal of control 61.6.

*This work is supported by the French National Research Agency in the framework of the "France 2030" program (ANR-15-IDEX-0002) and by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).