On the application of the Schoenberg quasi-interpolant for complexity reduction in trajectory generation
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Highlights

Employ the Schoenberg operator to approximate nonlinear functions (which stem from cost and/or constraints representation in an optimisation-based trajectory generation problem); Present a motion planning algorithm which efficiently provides feasible trajectories via Schoenberg-based approximations.

B-spline curves

We consider the parametrization of a trajectory z(t) with B-spline curves as a linear combination of control points and B-spline basis functions:

z(t) = n-1 k=0 P k B k,p,ξ (t) = PB p,ξ (t), ∀t ∈ [0, T ], (1) 
with P = P 0 . . . P n-1 the matrix which gathers the control points, B p,ξ (t) = B 0,p,ξ (t) . . . B n-1,p,ξ (t) ⊤ the basis vector, ξ = {τ 0 ≤ τ 1 ≤ ... ≤ τ m } a knot sequence starting at 0 and ending at T . If m ≥ p + 2, we can define B-splines of order up to p over the knot sequence.

Schoenberg operator

The Schoenberg operator [START_REF] Lyche | Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement[END_REF]] approximates a function, denoted as f (•), by interpolating it as weighted sum of B-splines basis functions and the function's values in the Greville points of the B-spline basis:

f (t) = ñ-1 k=0 f ( tk ) Bk,p, ξ(t), (2) 
where the Greville points are tk = τk+1 + ... + τk+p-1 p -1 .

(3)

Trajectory generation for a fixed-wing UAV

Let us consider a 2D 3-DOF model of a fixed wing UAV, [START_REF] Beard | Small unmanned aircraft: Theory and practice[END_REF], where the position (x(t), y(t)) and the heading (yaw) angle ψ(t) ∈ [0; 2π] rad are the state variables. Their dynamics are described by the following equations, where V a (t) and ϕ(t) are the inputs, the airspeed velocity and the roll angle, respectively:

x y X Y ψ ẋ(t) = V a (t) cos ψ(t), (4a) ẏ(t) = V a (t) sin ψ(t), (4b) ψ(t) = g tan ϕ(t) V a (t) . ( 4c 
)
We consider as flat output (for more details on flatness and the UAV's flat representation see [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], [START_REF] Prodan | Receding horizon flight control for trajectory tracking of autonomous aerial vehicles[END_REF]) the position of the aircraft

z(t) = z 1 (t) z 2 (t) ⊤ = x(t) y(t) ⊤ .
Thus, we are able to express all the state variables and inputs via the flat output and its first and second derivatives:

x(t) = z 1 (t), (5a) y(t) = z 2 (t), (5b) 
ψ(t) = arctan ż2 (t) ż1 (t) , ( 5c 
) V a (t) = ż2 1 (t) + ż2 2 (t), (5d) 
ϕ(t) = arctan    1 g z2 (t) ż1 (t) -ż2 (t)z 1 (t) ż2 1 (t) + ż2 2 (t)    . (5e) 
This will allow to reformulate the various costs/constraints in terms of the flat output z(t) which will be further parameterized as in (1).

Schoenberg-based approximation of the optimization problem

Motion planning often reduces to solving a constrained optimization problem of the form min

z(t) T 0 C(z(t))dt (6a) s.t. g i (z(t)) ≤ 0, 0 ≤ t ≤ T, (6b) h j (z(t)) = 0, 0 ≤ t ≤ T. ( 6c 
)
The goal is to find a trajectory z(t) which minimizes the cost C(•) from (6a) while simultaneously respecting the inequality (6b) and equality constraints (6c) over the time interval [0, T ].

To better illustrate the subsequent ideas let us particularize ( 6) by taking z(t) as in (5). Then, we have that: the cost C(•) minimizes the trajectory length along the time horizon [0, T ]; the bounds on the velocity's magnitude are denoted by v and v, respectively; the bounds on the roll angle are denoted by ϕ and ϕ, respectively; the way-points passing (through p j at t j ) conditions. Thus, ( 6) is instantiated to the particular form:

min z(t) T 0 ∥ ż(t)∥dt (7a) s.t. v ≤ ∥ ż(t)∥ ≤ v, ∀t ∈ [0, T ] (7b) ϕ ≤ ϕ(t) ≤ ϕ, ∀t ∈ [0, T ] (7c) z(t j ) = p j , ∀j. (7d) 
Parameterizing z(t) as in (1) allows to reformulate (7) into

min P k ,B k (t) T 0 f c (t)dt, (8a) s.t. v 2 ≤ f v (t) ≤ v 2 , (8b) tan(ϕ) ≤ f ϕ (t) ≤ tan(ϕ), (8c) n-1 k=0 P k B k,p (t j ) = p j , ∀j, (8d) 
with the notations

f c (t) = n-2 k 1 ,k 2 =0 P ′ k 1 ⊤ P ′ k 2 B k 1 ,p-1 (t)B k 2 ,p-1 (t), (9a) 
f v (t) = n-2 k 1 ,k 2 =0 P ′ k 1 ⊤ P ′ k 2 B k 1 ,p-1 (t)B k 2 ,p-1 (t), (9b) 
f ϕ (t) = n-3 k 1 =0 n-2 k 2 =0 P ′′ k 1 ⊤ QP ′ k 2 B k 1 ,p-2 (t)B k 2 ,p-1 (t) g n-2 k 1 ,k 2 =0 P ′ k 1 ⊤ P ′ k 2 B k 1 ,p-1 (t)B k 2 ,p-1 (t) , ( 9c 
)
where Q = 0 -1 1 0 and P ′ k , P ′′ k are used as short-hands for the control points associated to the first and second order derivatives of the B-spline curve. Using again the illustrative example from (8) we apply (2) thrice, once to approximate the nonlinear cost (8a), once to approximate the velocity in (8b) and once to approximate the roll angle in (8c). Correspondingly, the approximations are

f{c,v,ϕ} (t) = ñ-1 k=0 f {c,v,ϕ} ( tk )B k,p, ξ(t), (10) 
which allow to approximate:

1 the cost from (8a) as

T 0 fc (t)dt = T 0 ñ-1 k=0 f c ( tk )B k,p, ξ(t) = ñ-1 k=0 f c ( tk ) T 0 B k,p, ξ(t)dt (11) 2 the velocity inequalities v 2 ≤ f c (t) ≤ v 2 from (8b) by v 2 ≤ ñ-1 k=0 f v ( tk )B k,p, ξ(t) ≤ v 2 , ( 12 
)
3 the roll angle inequalities tan(ϕ) ≤ f ϕ (t) ≤ tan(ϕ) from (8c) by tan(ϕ) ≤ ñ-1 k=0 f ϕ ( tk )B k,p, ξ(t) ≤ tan(ϕ). (13) 
Introducing approximations (11)-( 13) and keeping the already linear equality (8d) leads to the approximated constrained-optimization problem [START_REF] Marguet | On the application of the Schoenberg quasi-interpolant for complexity reduction in trajectory generation[END_REF]] 

min P k ϵ 2 (14a) -ϵ ≤ ñ-1 k=0 f c ( tk ) T 0 B k,p (t)dt ≤ ϵ, (14b) s.t. v 2 ≤ f v ( tk ) ≤ v 2 , 0 ≤ k ≤ ñ -1, (14c) tan(ϕ) ≤ f ϕ ( tk ) ≤ tan(ϕ), 0 ≤ k ≤ ñ -1, (14d) 
p j = n-1 k=0 P k B k,p (t j ), ∀j. (14e) 

Simulation results

Simulation data

Future work

Extend this algorithm to multiple UAVs, taking into account "inter-UAV" constraints like communication range among them and collision avoidance Apply this algorithm to other UAV models: Quadcopter Crazyflie that we are using in the Esisarium platform.

Study the approximation error caused by the Schoenberg operator in order to obtain bounds to know a priori the constraints tightening.

  Numerical Value Gravitational acceleration g 9.81 m/s 2 Velocity control input V a ∈ [18 25] m/s Bank control input ϕ ∈ [-0.43 0.43] rad Altitude 150 m Simulation time T 150 s Way-point list P={(1000,1000,150),(1100, 250,150),(400,0,150),(-250, 250,150), (400,500,150)} Number of control points n 10 Order of the B-spline curves p 4 Number of greville points ñ 20

Table 1 .

 1 Numerical values of the simulationsDue to the approximation error, the velocity constraint was tightened from 40%, centered in the middle of its interval.

	Simulation Results

Table 2 .

 2 Computational time analysis for the approximated curves