Thibault Monsel
email: thibault.monsel@universite-paris-saclay.fr

Onofrio Semeraro

Lionel Mathelin

Guillaume Charpiat

Neural State-Dependent Delay Differential Equations

Keywords: Delay, Differential Equations, Delay Differential Equations, Neural Networks, Discontinuities, Neural Ordinary Differential Equations, NODE, Physical Modelling, Dynamical Systems, Numerical Integration, Continuous-depth models, Software, DDE solver

HAL is

Introduction

In many applications, one assumes the time-dependent system under consideration satisfies a Markov property; that is, future states of the system are entirely defined from the current state and are independent of the past. In this case, the system is satisfactorily described by an ordinary or a partial differential equation. However, the principle of Markovianity is often only a first approximation to the true situation and a more realistic model would include past states of the system. Describing such systems has fueled the extensive development of the theory of delay differential equations (DDE) [START_REF] Minorsky | Self-excited oscillations in dynamical systems possessing retarded actions[END_REF][START_REF] Myshkis | General theory of differential equations with retarded arguments[END_REF][START_REF] Hale | A stability theorem for functional-differential equations[END_REF]. This development has given rise to many practical applications: in the modelling of molecular kinetics [START_REF] Roussel | The use of delay differential equations in chemical kinetics[END_REF] as well as for diffusion processes [START_REF] Epstein | Differential delay equations in chemical kinetics: Some simple linear model systems[END_REF], in physics for modeling semiconductor lasers [START_REF] Vladimirov | Delay differential equations for mode-locked semiconductor lasers[END_REF], in climate research for describing the El Ninõ current [START_REF] Ghil | A delay differential model of ENSO variability: parametric instability and the distribution of extremes[END_REF][START_REF] Keane | The effect of state dependence in a delay differential equation model for the El Niño southern oscillation[END_REF] and tsunami forecasting [START_REF] Wu | Mining causality from continuous-time dynamics models: An application to tsunami forecasting[END_REF], to list only a few.

At the same time, the blooming of machine learning in recent years boosted the development of new algorithms aimed at modelling and predicting the behaviour of dynamical systems governing phenomena commonly found in a wide variety of fields ranging from physics to engineering or medicine. Among these novel strategies, the introduction of Neural Ordinary Differential Equations (NODEs) [START_REF] Chen | Neural ordinary differential equations[END_REF] has contributed to further deepening the analysis of continuous dynamical systems modelling based on neural networks. Indeed, NODEs are a family of neural networks that can be seen as the continuous extension of Residual Networks [START_REF] He | Deep residual learning for image recognition[END_REF], where the dynamics of a vector -hereafter often identified with the state of a physical system -x(t) ∈ R d at time t is given by the parameterized network f θ :

dx(t) dt ≡ ẋ(t) = f θ (x(t), t), x(0) = x 0 . (1)
NODEs have been successfully applied to various tasks, such as normalizing flows [START_REF] Kelly | Learning differential equations that are easy to solve[END_REF][START_REF] Grathwohl | Ffjord: Free-form continuous dynamics for scalable reversible generative models[END_REF], handling irregularly sampled time data [START_REF] Rubanova | Latent ODEs for irregularlysampled time series[END_REF][START_REF] Kidger | Neural controlled differential equations for irregular time series[END_REF], and image segmentation [START_REF] Pinckaers | Neural ordinary differential equations for semantic segmentation of individual colon glands[END_REF].

Related works

Starting from this groundbreaking work, numerous extensions of the NODE framework enabled to extend the range of applications; among them, the augmented version, usually referred to as Augmented Neural ODEs (ANODEs) by [START_REF] Dupont | Augmented neural ODEs[END_REF], was able to alleviate NODEs' expressivity bottleneck by augmenting the dimension of the space allowing the model to learn more complex functions using simpler flows [START_REF] Dupont | Augmented neural ODEs[END_REF]. Let a(t) ∈ R p denotes a point in the augmented space, the ODE problem is formulated as

d dt x(t) a(t) = f θ x(t) a(t) , t , x(0) a(0) = x 0 0 . (2)
τ = a √ × √ √ Piece-wise constant τ = t-a a a × √ √ √ Time-dependent τ = f (t) × × √ √ State-Dependent τ = f (t, x(t)) × × × √ Continuous τ = t 0 f (s, x(s))ds × × × ×
By introducing this new variable a(t) ANODE overcomes the inability of NODE to represent particular classes. However, this comes with the cost of lifting the data into a higher dimensional space, hence losing its interpretability. Among the techniques proposed for circumventing the limitations rising from the modelling of non-Markovian systems, the Neural Laplace model [START_REF] Holt | Neural Laplace: Learning diverse classes of differential equations in the Laplace domain[END_REF] proposes a unified framework that solves differential equations (DE): it learns DE solutions in the Laplace domain. The Neural Laplace model cascades 3 steps: first a network h γ encodes the trajectory, then the so-called Laplace representation network g β learns the dynamics in the Laplace domain to finally map it back to the temporal domain with an inverse Laplace transform (ILT). With the state x sampled T times at arbitrary time instants, h γ gives a latent initial condition representation vector p ∈ R K :

p = h γ ((x(t 1), t 1), . . . , (x(t T), t T)), (3)
that is fed to the network g β to get the Laplace transform

F(s) = v g β (p, u(s)) , (4)
with u a stereographic projector and v its inverse. Ultimately, an ILT step is applied to reconstruct state x from the learnt F(s).

Delay differential equations through neural networks and present work

In alternative to the aforementioned techniques, one may directly attack the DDE problem by working within the framework of neural network-based DDEs. Despite the success of the NODEs philosophy, the extension to DDEs has barely been studied yet, possibly owing to the challenges in applying backpropagation through DDE solvers due to the discontinuities. Very recently, [START_REF] Zhu | Neural delay differential equations[END_REF] first introduced a neural network based DDE with one single constant delay:

ẋ(t) = f θ (t, x(t), x(t -τ)), τ ∈ R x(t < 0) = φ(t), (5)
where φ(t) is the system's history function, τ a constant delay and f θ a parameterized network. Soon after, the same authors proposed Neural Piece-Wise Constant Delays Differential Equations (NPCDDEs) model in [START_REF] Zhu | Neural piecewise-constant delay differential equations[END_REF], where the problem is defined as

ẋ(t) = f θ k (t, x(t), x(t - t -β 1 β 1 β 1), . . . , x(t - t -β k β k β k), x(t < 0) = φ(t), ∀i ∈ {1, 2, . . . , k}, β i ∈ R. (6)
Compared to NODE and its augmented counterpart, neural network-based DDEs do not require an augmentation to a higher dimensional space in order to be a universal approximator, thus preserving physical interpretability of the state vector and allowing the detection of the time delays. Neural SDDDE is written in JAX (which is auto-differentiable and hardware agnostic) and is based on a general framework that pushes the envelope of Neural DDEs by handling DDEs with several delays in a more generic way. The implementation further encompasses general time-and state-dependent delay systems which extends the reach of [START_REF] Zhu | Neural piecewise-constant delay differential equations[END_REF].

In the remainder of the paper, we briefly introduce the framework in §2, together with a brief overview of the algorithms. Implementation and methodologies are further discussed in §3. Experiments and comparisons with the state-of-the-art techniques are detailed in 4, using as benchmark numerous timedelayed models of incremental complexity. Our solver is shown below to compare favorably with the current models on DDEs systems. Conclusions and outlook finalize the article in §5.

Neural State-Dependent DDEs

In this section, we present the Neural State-Dependent DDE (SDDDE) model, which can handle multiple types of delays. It is important to note that this approach is not capable of handling delays that are continuous in the sense of delays that are expressed with integrals as can be found in integro-differential equations. The types of delays that can be handled are listed in Table 1. We add that f defined in Table 1 must be a scalar valued function.

Definition

We now formally introduce the family of Neural SDDDEs. Such a system is defined as

ẋ(t) = f θ (t, x(t), x(t -τ 1), . . . , x(t -τ k)) τ i = τ i (t, x(t)), ∀i ∈ [1, 2, . . . , k] x(t < 0) = φ(t), (7)
where φ : R -→ R d is the history function, τ i : R × R d → R a delay function and

f θ : [0, T] k × R d → R d a parameterized net- work.
Most of the time, f θ , τ i and φ have additional properties like smoothness. By differential order of an equation we mean the order of the highest derivative and by difference order we mean one less than the number of distinct arguments involved [START_REF] Bellman | Differential-Difference Equations[END_REF]. Hence, Eq. (7) is of first differential order and k difference order. For a complete overview of DDE theory we refer the reader to [START_REF] Bellen | Numerical methods for delay differential equations[END_REF] and [START_REF] Bellman | Differential-Difference Equations[END_REF].

Challenges with DDE integration

Three problems arise in DDEs that can cause numerical difficulties. First, discontinuities may occur in various derivatives of the solution. This is due to the presence of delayed terms. In general, there is a derivative jump (or breaking point) at the initial time point t = 0 since φ(t = 0 -) ẋ(t = 0 +) .

Moreover, the history function φ may also have discontinuities. Discontinuities can then arise and propagate from the history function and initial point (by a discontinuity, we mean a jump in x or one of its derivatives). Second, a delay may vanish wtih time, i.e., τ i → 0. This issue may force the solver to take too many small steps. Authors from Zivari-Piran and Enright (2010) transform the DDE problem into a discontinuous initial value problem (IVP). This enables the problem to transfer ODE properties like uniqueness, existence, stiffness and bounds to DDEs. Third, a delay can be negative and make the integration scheme implicit.

As seen above DDEs can yield discontinuities because of the nature of the history function φ and the initial time point t = 0. This shows that DDEs possess a richer dynamical structure than ODEs. The presence of delayed terms may drastically change the qualitative behavior of the solution and act as a stabilizer as well as a destabilizer for models governed by ODEs, linking DDEs to control theory [START_REF] Kiss | Controlling Mackey-Glass chaos[END_REF].

Uniqueness and existence of solutions to DDEs

For clarity, we now state Bellman's theorem proving existence and uniqueness of solution to DDEs with constant delays. This result can be adapted to time-dependent delays [START_REF] Balachandran | An existence theorem for nonlinear delay differential equations[END_REF] and to the more general case of state-dependent delays [START_REF] Driver | Existence and stability of solutions of a delay-differential system[END_REF].

Theorem 1. [START_REF] Bellman | Differential-Difference Equations[END_REF]

-Local existence Suppose that φ(t) is continuous for 0 ≤ t ≤ ω, with m φ = max 0≤t≤ω |φ(t)|, and that f (u, v) satisfies a Lipschitz condition | f (u 1 , v 1)| + | f (u 2 , v 2)| < c 4 (|u 1 -u 2 | + |v 1 -v 2 |) (8) for (u 1 , v 1) and (u 2 , v 2) in a region N such that N : |u| + |v| ≤ c 1 .
Let c 2 denote the maximum of the (continuous

) function | f (u, v)| for (u, v) in N. Then if 2m φ < c 1 , there exists a unique continu- ous solution x(t) of ẋ(t) = f (x(t), x(t -ω)), t > ω x(t) = φ(t), 0 ≤ t ≤ ω (9) for 0 ≤ t ≤ ω + c 3 , where c 3 < (c 1 -2m φ)/2c 2 .
Proof of such a theorem can be found in the book of [START_REF] Bellman | Differential-Difference Equations[END_REF]. The richer structure of DDEs comes with the price of not having a global existence theorem like ODEs, unless requiring certain additional hypotheses.

Pseudo code for DDE solver

The pseudo code of the DDE solver implemented by Zivari-Piran and Enright (2010) is detailed in Algorithm 1, where the general outline of one integration step of a DDE is shown; the DDE solver is illustrated in Algorithm 2. For sake of simplicity, we suppose for the pseudo code a single time delay DDE since the general case does not differ from it.

Reverse-mode automatic differentiation of DDE solutions

Backpropagation remains the most challenging technicality when training continuous-depth networks. Authors of Zivari-Piran and Enright (2010) model DDEs as a discontinuous initial value problem (IVP). This approach is also followed in Julia's implementation [START_REF] Widmann | DelayDiffEq: Generating delay differential equation solvers via recursive embedding of ordinary differential equation solvers[END_REF]. We follow the same idea of seeing DDEs as several different ODEs defined on specific time intervals that follow one another. This way of thinking allows us to use off-the-shelf ODE solvers as long as discontinuity points are consistently detected during integration. Finally, writing the DDE solver within an autodifferentiable framework allows to train neural networks via gradient descent.

Algorithm 1 Pseudo code for one DDE numerical integration step

Input: Vector field f(t, x, x(t -τ)) Integration bound t n , t n+1 Interpolated estimated solution x(t) in [t 0 ; t n] Set of detected discontinuities Λ = {λ -m , . . . , λ 0 , . . . , λ r }. if t n+1 -t n > min(Λ) then Declare the interpolant Π n = x of x(t -τ) in [t n ; t n+1] while the interpolant Π n has not converged do Define f ODE (t, x) = f(t, x, Π n (t))
Step the solver

x(t n+1) = ODES olve(x(t n), f ODE , t n , t n+1) Update Π n using the computed solution x(t n+1). end while else Define f ODE (t, x) = f(t, x, x(t -τ))
Step the solver

x(t n+1) = ODES olve(x(t n), f ODE ,
Input: Vector field f(t, x, x(t -τ)) Integration bound t 0 , t F History function φ(t) Set of initial discontinuities Λ = {λ -m , . . . , λ 0 }. Choose an initial dt Declare t n = t 0 , t n+1 = t 0 + dt Declare interpolated estimated solution x(t) = φ(t) in [t n ; t n+1] repeat Algorithm 1 until t n+1 = t F

Methods

In the following, we discuss similarities, drawbacks and benefits of Neural SDDDE compared with the following models: NODE, ANODE and Neural Laplace. Compared to these techniques, we recall that Neural SDDDE is a direct method for solving DDEs, specifically designed to handle delayed systems; it does not require lifting of the problem to higher-dimensional spaces, with the benefit of preserving physical interpretability. This is not the case for ANODE, the augmented version of ODE, where flexibility is obtained by introducing an higher dimentional space. Lastly, Neural Laplace can solve a broader class of differential equations, although with some limitations that we pinpoint in the following.

Model comparison

From the theoretical viewpoint, the Laplace transformation is often a tool used in proofs on DDEs [START_REF] Bellman | Differential-Difference Equations[END_REF] since it allows to transform linear functional equations in f(x(t)) involving derivative and differences into linear equations involving only F(s). Thus, time-dependent and constant delay DDEs are transformed into linear equations of F(s) using the Laplace transform. This transformation enables Neural Laplace to bypass the explicit definition of delays, whereas Neural SDDDE needs the delays to be specified unless the vector flow f and delays are learnt jointly. These observations tie Neural Laplace to Neural SDDDE as they can be seen as similar models but living in different domains. However, a limitation of Laplace transformation-based approaches is that they are not defined for DDEs with state-dependent delays, thus limiting the class of time-delayed equation that one can solve with this technique.

Neural Laplace is a model that needs memory initialized latent variables, i.e., a long portion of the trajectory needs to be fed in order to get a reasonable representation of the latent variable. In contrast, by design, NODE and ANODE require information only at the initial time to predict the system dynamics. From this viewpoint, Neural SDDDE is somewhat a hybrid approach since a history function φ(t) is required. φ needs to be provided for t ∈ [-τ max , 0], where τ max is the maximum delay encountered during integration. This is more restricting than solely relying on an initial condition x(0) but far less than memory-based latent variables methods. Moreover, the training and testing schemes for Neural Laplace is constrained by this very same observation since future events can only be predicted after a certain observation time. This also makes the length of the trajectory to feed to Neural Laplace a hyperparameter to tune. This is not the case with NODE, ANODE and our approach.

Memory and computational complexity

Neural SDDDEs rely on an ODE solver, thus function evaluations are associated with the same computational cost as NODEs. However, Neural SDDDE has some extra constraints making the method more computationally involved. Hereafter, we compare the complexity of these two schemes; we define S as the number of stages in the Runge-Kutta (RK) scheme used for the time-integration, N the total number of integration steps, and d the state's dimension.

Memory complexity. DDE integration necessitates keeping a record of all previous states in memory due to the presence of delayed terms. This is because at any given time t, the DDE solver must be able to accurately determine x(t -τ) through interpolation of the stored state history. This extra amount of extra memory needed depends on the solver used. For example, the additional memory required when using a RK solver for one trajectory is O(S Nd). The model's memory footprint is not affected by the number of delays.

Time complexity. In comparison to NODE, the solution estimate x needs to be evaluated for each delayed state argument, i.e., x(t -τ i). The cost of evaluating the interpolant is small compared to the cost of computing its coefficients. Similarly, the time complexity is conditioned by the solver used. For example, for a RK scheme, the coefficient computation scales linearly with the number of stages. Hence, Neural SDDDE adds a time cost O(S D d) compared to NODE for each vector field function evaluation.

Experiments

We evaluate and compare the Neural SDDDE on several dynamical systems listed below coming from biology and population dynamics. We show that Neural SDDDE outperforms a variety of continuous-depth models and demonstrates its capabilities in simulating state-dependent delayed systems.

Dynamical systems

We pick different dynamical systems that exhibit specific delays since it is our main focus. Some systems are taken from [START_REF] Holt | Neural Laplace: Learning diverse classes of differential equations in the Laplace domain[END_REF] for comparison.

One constant time-delay system. We consider the delayed Lotka-Volterra from [START_REF] Bahar | Stochastic delay Lotka-Volterra model[END_REF], that simulates population dynamics:

ẋ(t) = 1 2 x(t)(1 -y(t -τ)) ẏ(t) = - 1 2 y(t)(1 -x(t -τ)). (10
)
The delay is fixed to τ = 0.2, we integrate in the time range [0, 30] and define the constant history function φ(t) = (x 0 , y 0) ∀t < 0 with x 0 and y 0 uniformly sampled from [0.1, 2].

Chaotic system with one constant time delay. We choose a chaotic setting of the Mackey-Glass system [START_REF] Mackey | Oscillation and chaos in physiological control systems[END_REF] that mimics pathological behavior in certain biological contexts:

ẋ(t) = β x(t -τ) 1 + x(t -τ) n -γx(t), (11)
with β = 0.25, n = 10 and γ = 0.1. The delay is fixed to τ = 10. We integrate in the time range [0, 80] and define the constant history function φ(t) = x 0 where x 0 is uniformly sampled from [0.1, 1.0].

Time-dependent delay system. Here, the delay is time dependent:

ẋ(t) = x(t)(1 -x(t -τ(t))), (12)
with τ(t) = 2 + sin(t). We integrate in the time range [0, 40] and define the constant history function φ(t) = x 0 , where x 0 is uniformly sampled from [0.1, 2.0].

State-dependent time-delay system. In this example, we consider the 1-D state-dependent Mackey Glass system from Dads et al. (2022) with a state-dependent delay:

ẋ(t) = -α(t)x(t) + β(t) x 2 (t -τ(x)) 1 + x 2 (t -τ(x)) + γ(t) (13)
with α(t) = 4 + sin(t) + sin(

√ 2t) + 1 1 + t 2 β(t) = γ(t) = sin(t) + sin(√ 2t) + 1 1 + t 2 (14)
and τ(x) = 1 2 cos x(t). The model is defined on the time range [0, 10] and the constant history function is φ(t) = x 0 with x 0 uniformly sampled from [0.1, 1]. .Finally, we choose the delayed PDE taken from [START_REF] Arino | Delay Differential Equations and Applications[END_REF]. Such dynamics can for example model single species growth in a food-limited environment.

Delayed Diffusion Equation

∂u ∂t (x, t) = D ∂ 2 u ∂x 2 (x, t) + ru(x, t) (1 -u(x, t -τ)) , (15)
where D = 0.01, r = 0.9 and τ = 2. We integrate in the time range [0, 4], the spatial domain is D x = [0, 1] with periodic boundary conditions and define the history function φ(x, t) = a sin xe -0.01t where a is uniformly sampled from [0.1, 4.0]. The spatial mesh is created with dx = 0.01.

Data generation. For all the systems listed in this section, data generation information is gathered in Appendix C along with information of the step history function generation in Appendix D.

Evaluation

We assess the performance of the models with their ability to predict future states of a given system. The metric used is the mean square error (MSE) in all cases. Neural Laplace predicts only after a burn-in time since a part of the observed trajectory is used to learn a latent initial condition vector p. Since NODE, ANODE and Neural SDDDE can be seen as initial value problems (IVPs) we produce trajectories from initial conditions and compute the MSE with respect to the whole trajectory. On each DDE system, to judge the quality of each model, we elaborate two additional experiments alongside with the test set predictions. By modifying the history function φ(t) we change the behavior of the system and hence generate new trajectories. The first experiment puts each model in a pure extrapolation regime ; the constant value of the history function φ(t) = x 0 is sampled outside the range of the training and testing data. This allows to see the models' extrapolation capabilities. The second assessment is more a hybrid approach where the history function is a step function:

φ(t) =        x 0 t ≤ t jump x 1 otherwise t jump ∼ U(-τ max , 0), x 0 , x 1 ∼ U(c 0 , c 1)
where t jump is the largest delay in the system and c 0 , c 1 are system specific randomly sampled values (see Appendix D for more details). Not only can the nature of the history step function change but can also have its domain function outside of the training and test data (extrapolation regime).

As a reminder, to produce outputs, NODE and ANODE need an initial condition, Neural SDDDE the history function and Neural Laplace a portion of the trajectory. To ensure comparison in our experiments, we opt to give Neural Laplace the same information as Neural SDDDE, specifically the history function. This could be seen as a restriction of Neural Laplace since in its authors give 50% of the trajectory to produce outputs. Therefore, we propose another small experiment: on one dynamical system, Neural SDDDE is compared with Neural Laplace which is given more than just the history function.

As stated previously, Neural Laplace does not need to define delays thanks to the Laplace transformation compared to Neural SDDDE. This is why we provide one last experiment: for the Mackey-Glass system, several delays are provided to the vector field of Neural SDDDE. The model will have to learn the system's dynamics with the panel of provided delays. Testset prediction. Neural SDDDE almost consistently outperforms each model over all DDE systems mentioned in section 4 and plots are provided with Figure 1. Neural Laplace seems to suffer from the Runge phenomenon where its most evident example is the State-Dependent DDE (Figure 1d) but also in the Mackey-Glass DDE (Figure 1b). This is most likely due to the query algorithm that does not span enough the Laplace domain. Not surprisingly, Neural ODE is the most limited model: all over predicts only the dynamics' mean trajectory of the dynamical systems under consideration except for the Lotka Volterra dataset where it reproduces the correct dynamics (Figure 1a). ANODE gives satisfactory results except in the Time Dependent DDE (1c). Finally, Neural SDDDE out of all the models provide the best outcome. Regarding the Diffusion Delay PDE, the PDE's evolution is predicted with an absolute error going as high as 10 -2 with all models as seen in Figure 1e. The absolute error is also displayed in Figure 1f: it depicts the discrepancy between models. Neural Laplace yields more errors for a given time steps across all the spatial domain compared to IVP models that have errors more localized in specific spatial regions.

Results

Test errors for each experiments are reported in

Extrapolation regime prediction. This experiment really challenges model generalization capabilities. Overall, on certain datasets, some models can extrapolate with new constant history functions that are not too far out from the function domain of history functions used during training; more in details, trajectories were generated with φ(t) = x 0 ∈ [a, b]: some models are able to exhibit adequate predictions for history functions that have a value near the bounds of [a, b]. For example, for the Mackey-Glass system (Figure 2b), Neural SDDDE predictions are good up to values of x 0 ≈ 1.2. For values higher than x 0 ≈ 1.4 (during training φ(t) = x 0 ∈ [0.1, 1]) overall variations are captured but the amplitudes are off. On the same Figure 2b, Neural Laplace yields anti-phase results along with what seems to be Runge phenomenon. For the Time Dependent system (Figure 2c), Neural Laplace yields better results: trajectories possess the overall dynamical trend with some amplitude discrepancy. Regarding performances of NODE and AN-ODE, results are quite heterogeneous, most of them fail apart for some exceptions discussed below. For the State-Dependent DDE (Figure 2d), ANODE produces satisfactory trajectories. This can be explained because the system at hand has almost periodic solutions thus easier to learn. For the Lotka Volterra dataset (Figure 2a), IVP models (ANODE, NODE, Neural SD-DDE) across the board yield realistic results even though the system's dynamics is not captured perfectly. For the Diffusion Delay PDE, overfitting is observed for Neural Laplace. Out of all the IVP models, Neural SDDDE predicts the best possible outcome compared to NODE and ANODE.

Step history function prediction. This third experiment also demonstrates how the modification of the history function leads to changes in the transient regime and impacts later dynamics. For example, the plots in Figure 3b exhibits a monotonic change at t ≈ 10 (it appeared because we added a new discontinuity jump in the history function) that never appeared beforehand and Neural SDDDE captures it to some extent. Neural Noise analysis. We conduct a noise study on one of the datasets, the Time Dependent DDE system. Each data point is added Gaussian noise that is scaled with a certain factor α of the trajectory's variance. The model is then trained with this noisy data and evaluated on the noiseless testset. In our experiment, we selected 4 scaling factors α: 0.02, 0.05, 0.1 and 0.2. and almost consistently outperforms other models. Additionally, results from Table 3 show that adding a small amount of noise (here α = 0.02) makes the learning process more robust, a common result in Machine Learning [START_REF] Morales | Adding noise to improve noise robustness in speech recognition[END_REF][START_REF] You | Adversarial noise layer: Regularize neural network by adding noise[END_REF].

Results in

Giving several delays to choose from. We now consider the case where Neural SDDDE is instantiated with a certain number of delays but only a subset of them correspond to the delayed terms of the system considered in hand. Figure 5 demonstrates that Neural SDDDE is able to provide accurate dynamics for the Mackey-Glass DDE where the delays provided were {5.0, 10.0, 15.0} (The training procedure is the same as depicted in Appendix B). The need for such a tool rises in modelling and prediction of dynamical systems describing real-life problems is apparent. Indeed, many systems are modelled leveraging the Markovianity property, but this is often only an approximation of more realistic descriptions where the effects of past states affect the current ones. So far, standard ways to data-drive dynamical models via neural networks are by circumventing these limitations with lifting the state to a higher dimensional spacefor instance applying the augmented version of Neural ODE (ANODE) -or considering different paradigms such as Neural Laplace. From the theoretical viewpoint, with respect to AN-ODEs, Neural DDEs preserve physical interpretability of the state vector and allow the detection of the time delays. With respect to Neural Laplace, a technique encompassing a broad number of different DEs, Neural DDEs are capable of handling delays that are state-dependent and do not necessitate a large amount of data for the initialization of the training. Finally, as already mentioned, the current toolbox generalizes the current envelope of DDEs, where only a single constant delay or several piece-wise constant delays can be handled.

In this work, NODEs, the augmented version ANODE and Neural Laplace are used for benchmarking Neural SDDDE using several numerical experiments of incremental complexity, including the Lokta-Volterra and Mackey-Glass models, timeand state-dependent models, and a system characterized by delay diffusion. The dynamics of these models is correctly reproduced for all these cases by Neural SDDDE. Moreover, we have shown that Neural SDDDE performs well compared these with established methods in terms of accuracy and reliability, and is highly effective in modeling DDEs, in particular statedependent ones when given the delays.

In future research, we plan to expand upon this approach by studying an equivalent version of ANODE with Neural SD-DDEs, along with the examination of DDEs of neutral type (NDDEs). Moreover, we believe this flexible and versatile tool may provide a valuable contribution to several fields such as control theory where time-delay are often considered. In particular, it may prove useful in learning a model for partially observed systems whose dynamics of observables can be learned, under mild conditions, from their time-history.

 Figure 1: Randomly test trajectory plots of Lotka-Volterra, Mackey-Glass, Time, State Dependent DDEs and Diffusion Delay PDE

Figure 4 :

 4 Figure 4: Time-dependent DDE randomly sampled testset trajectories where 50% of data is fed to Neural Laplace

Figure 5 :

 5 Figure 5: Randomly sampled test set of Mackey-Glass system where several delays were provided

Table 1 :

 1 Comparison with existing works that deals with DDEs. Our implementation deals with a wider range of delays

	delay types	τ's definition	Neural DDE	NPCDDEs	Neural Laplace	Neural SDDDE
	References	-	Zhu et al. (2021) Zhu et al. (2022) Holt et al. (2022)	This work
	Constant					

 t n , t n+1) end if Determine next time step t next from solver if step is accepted then Return updated x(t), next integration bounds t n+1 , t next and Λ.

	end if
	end if
	Output:
	Interpolated estimated solution
	Next integration bounds
	Updated set of discontinuities
	Algorithm 2 Pseudo code for DDE solver

else Check for discontinuities in [t n ; t n+1] if a discontinuity is found, λ r+1 then Return same x(t), next integration bounds t n , λ r+1 and Λ ∪ {λ r } . else Return same x(t), next integration bounds t n , t next and Λ.

Table 2 :

 2 .00020 .000200 ± .000052 .0000737 ± .0000106 .000300 ± .000043 Test MSE averaged over 5 runs of each experiments with their standard deviation. Best result bolded.

		NODE	ANODE	Neural Laplace	Neural SDDDE
	Lokta-Volterra	.00288 ± .00148	.0132 ± .0081	.275 ± .178	.00265 ± .00074
	Mackey-Glass	.668 ± 1.22	.00355 ± .00383	.0123 ± .0093	.000159 ± .000189
	Time Dependent DDE	1.01 ± .435	.00729 ± .00235	.0144 ± .0037	.00148 ± .00087
	State-Dependent DDE	.0363 ± .0015	.00107 ± .00076	.00379 ± .00110	.000149 ± .000007
	Delay Diffusion	.00117 ±			

Table 2 .

 2 Complementary information are included in the Appendix 5 for what concerns the implementation and the training process; training curves are plotted in Appendix A, model and training hyperparameters are given in Appendix B.

Table 2

 2

, we choose to only compare the test MSE of Neural SDDDE and Neural Laplace in Table 4. By comparing Figure 4 and 1c one can clearly note that the Runge phenomenon are almost absent and predictions are almost as good as Neural SDDDE. This confirms that, in general, Neural Laplace needs more than the history function in order to correctly simulate DDEs.

Table 4 :

 4 Time Dependent test MSE averaged over 5 runs of each experiments with their standard deviation. Best result bolded.

Table 3 :

 3 Table 3 show that our model is robust to noisy data Test MSE with the noiseless data averaged over 5 runs of each Time Dependent DDE noise experiments with their standard deviation. Best result bolded.

		NODE	ANODE	Neural Laplace	Neural SDDDE
	α = 0	1.01 ± .435	.00729 ± .00235	.0144 ± .00368	.00148 ± .000872
	α = 0.02 .720 ± .00254 .0128 ± .002377 .00881 ± .00254 .000906 ± .000441
	α = 0.05 4.032 ± 4.225	.03655 ± .0349	.00977 ± .00146	.00250 ± .000951
	α = 0.1	1.597 ± 1.100	.0223 ± .00634	.0154 ± .00501	.0121 ± .00534
	α = 0.2	1.02 ± .282	.0321 ± .00319	.0273 ± .00704	.0186 ± .00524

Release of DDE solver and code will be made public once published

This work was funded by the French Research Agency under project number ANR-20-CE23-0025-01 entitled SPEED.

Appendix C. Data generation parameters

We expose in Table C.7 the parameters used for each dataset generation. The start integration time is always T 0 = 0. T F refers to the end time integration. NUM_STEPS equally spaced points are sampled in [T 0 , T F]. The specific delays DELAYS and the constant history function φ(t) function domain are given. Each training dataset is comprised of 256 datapoints and the testset of 32 datapoints. We used our own DDE solver to generate the data (Dopri5 ODE solver [START_REF] Dormand | A family of embedded Runge-Kutta formulae[END_REF] was used.). We then double-checked and compared its validity with Julia's DDE solver .U refers to the uniform distribution. For example, Mackey Glass' constant history function value is uniformly sampled between 0.1 and 1.0. For the Diffusion Delay PDE the history function value in the column φ(t) refers to the constant a defined in Section 4.1.