Romain Fontaine
email: romain.fontaine@insa-lyon.fr

Jilles Dibangoye
email: jilles-steeve.dibangoye@insa-lyon.fr

Christine Solnon
email: christine.solnon@insa-lyon.fr

Exact and Anytime Approach for Solving the Time Dependent Traveling Salesman Problem with Time Windows

Keywords: Travelling Salesman, Dynamic Programming, Time-Dependent cost functions

The Time Dependent (TD) Traveling Salesman Problem (TSP) is a generalization of the TSP which allows one to take traffic conditions into account when planning tours in an urban context, by making the travel time between locations dependent on the departure time instead of being constant. The TD-TSPTW further generalizes this problem by adding Time Window constraints.

Existing exact approaches such as Integer Linear Programming and Dynamic Programming usually do not scale well. We therefore introduce a new exact approach based on an anytime extension of A*. We combine this approach with local search, to converge faster towards better solutions, and bounding and time window constraint propagation, to prune parts of the state space. We experimentally compare our approach with state-of-the-art approaches on both TD-TSPTW and TSPTW benchmarks.

Introduction

The Time Dependent (TD) Traveling Salesman Problem (TSP) is a generalization of the TSP where travel times vary throughout the day, thus allowing one to take traffic conditions into account when planning delivery tours in an urban context. The TD-TSPTW further generalizes this problem by adding Time Window (TW) constraints. The relevance of considering TD travel times in an urban context is studied in [START_REF] Rifki | On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours[END_REF] on realistic data; it is shown that this reduces TW violations and also, in some cases, tour durations. However, this generalization makes the problem harder to solve and exact approaches such as Constraint Programming (CP), Integer Linear Programming (ILP), or Dynamic Programming (DP) do not scale well.

In this article, we propose a new DP-based approach which aims at finding approximate solutions quickly while being able to prove optimality. Notations and definitions are introduced in Section 2, and a literature review is done in Section 3. Our solving approach is presented in Section 4. It is based on Anytime Column Search (ACS), an anytime variant of A* introduced by [START_REF] Vadlamudi | Anytime Column Search[END_REF] which progressively widens the exploration of the DP state-transition graph. We combine ACS with TW constraint propagation (to filter the state space) and with local search (to improve upper bounds found by ACS). We also use bounding functions to guide the search, and we describe three bounds which provide different trade-offs between computational cost and tightness.

We introduce new rules based on latest departure times to filter edges of the underlying graph as it is essential for computing better bounds. In Section 5, we present experimental results. We first analyse the benefits of combining ACS with TW constraint propagation, local search, and edge filtering by considering the results obtained when disabling these components. This allows us to show that our new filtering rules greatly improve the solving process. Then, we experimentally compare our approach with state-of-the-art approaches based on ILP [START_REF] Vu | Dynamic Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF][START_REF] Arigliano | Timedependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF] and DP [START_REF] Lera-Romero | Dynamic Programming for the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF] on three different benchmarks. We show that our approach is able to find reference solutions much faster, and that it is also able to prove optimality on most instances. In Section 6, we experimentally evaluate our approach on classic TSPTW benchmarks, and we show that it outperforms the DP-based approach of [START_REF] Gillard | Improving the Filtering of Branch-and-Bound MDD Solver[END_REF] and the LS-based approach of Da Silva & Urrutia (2010).

Finally, conclusions and future works are discussed in Section 7.

Definitions and Notations related to the TD-TSPTW

The set of vertices to visit is denoted V = {0, . . . , n}: 0 is the starting vertex, and n the ending vertex (in practice, 0 and n often refer to the same location, i.e., the depot). C = V \ {0, n} denotes the set of customer vertices. t 0 denotes the starting time from vertex 0. Given i ∈ V, e i and l i respectively denote the earliest and latest visit times of i. We assume that e 0 = l 0 = e n = t 0 . The latest visit time of n, l n , represents the time horizon.

It is possible to arrive before e i on i but, in this case, we have to wait on i. Given a time t and a TW [e i , l i], we note t ↑ [ei,li] the TW-aware time that includes a waiting time whenever t < e i and returns ∞ whenever t > l i , i.e., t ↑[ei,li] = e i if t < e i ; t ↑[ei,li] = t if e i ≤ t ≤ l i ; and t ↑[ei,li] = ∞ if t > l i .

Given i, j ∈ V, c i,j denotes the TD cost function such that c i,j (t) is the travel time from i to j when leaving i at time t, and a i,j denotes the arrival time function such that a i,j (t) = t + c i,j (t). The inverse of a i,j is denoted a -1 i,j : a -1 i,j (t) is the time at which i must be left to arrive on j at time t. We assume that TD cost functions satisfy the First-In First-Out (FIFO) property introduced by [START_REF] Ichoua | Vehicle dispatching with time-dependent travel times[END_REF]. This property ensures that every arrival time function a i,j is non-decreasing, i.e., ∀t 1 , t 2 ∈ [t 0 , l n], t 1 < t 2 ⇒ a i,j (t 1) ≤ a i,j (t 2). In other words, waiting at i cannot allow one to arrive sooner at j. Without loss of generality, we also assume that cost functions satisfy the triangle inequality, i.e., ∀i, j, k ∈ V, ∀t ∈ [t 0 , l n], a j,k (a i,j (t)) ≤ a i,k (t). Indeed, whenever this property is not satisfied, we can enforce cost functions to satisfy it by computing shortest paths in a pre-processing step (this may be done in polynomial-time provided that cost functions satisfy the FIFO property [START_REF] Kaufman | Fastest paths in time-dependent networks for intelligent vehicle-highway systems application[END_REF]).

The goal of the TD-TSPTW is to minimise the makespan, i.e., the arrival time on n of a path that starts from 0 at time t 0 , visits each customer i ∈ C once within its TW [e i , l i] and ends on n no later than l n . The objective function is defined more formally in Section 3.3.

Literature Review

The TD-TSP has been introduced by [START_REF] Malandraki | Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms[END_REF]. Since then, different approaches have been proposed to solve this problem (or its variants) and a review may be found in [START_REF] Gendreau | Time-dependent routing problems: A review[END_REF]. Many approaches are based on metaheuristics such as, for example, Ant Colony Optimization [START_REF] Donati | Time dependent vehicle routing problem with a multi ant colony system[END_REF], Tabu Search [START_REF] Ichoua | Vehicle dispatching with time-dependent travel times[END_REF], or Large Neighborhood Search [START_REF] Sun | Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows[END_REF]. These approaches provide no guarantee on solution quality. In this section, we first describe exact approaches which ensure finding the optimal solution (given enough time and memory), i.e., CP, ILP, and DP, and then we describe exact and anytime variants of DP and A* which share similarities with our approach. et al. (2015) have introduced the global constraint TDNoOverlap which ensures that a set of tasks is not overlapping when transition times between tasks are time-dependent. This constraint may be used to solve the TD-TSPTW, and it is much more efficient than classical CP models for the TD-TSPTW (based on allDifferent constraints), but it is not competitive with state-of-the-art ILP approaches. In this case, the TD-TSP can be solved as a classical asymmetric TSP with constant travel times. When ∆ < 1, the optimal solution computed with ∆ = 1 provides a lower bound which is used in the branch-and-bound algorithm of Arigliano et al. (2018a). In [START_REF] Arigliano | Timedependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF], the branching strategy of this algorithm is enhanced with a dominance rule induced by TWs. This approach performs best when all arcs share rather similar congestion patterns, i.e., when ∆ is very close to 1.

Constraint Programming

Melgarejo

Integer Linear Programming

State

Dynamic Programming

The DP approach proposed by [START_REF] Bellman | Dynamic Programming Treatment of the Travelling Salesman Problem[END_REF] for the TSP has been extended to handle TD cost functions by [START_REF] Malandraki | A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem[END_REF] and TWs by [START_REF] Christofides | State-space relaxation procedures for the computation of bounds to routing problems[END_REF]. It has also been extended to Vehicle Routing Problems (VRPs) by van Hoorn (2016) and to TD-VRPs by [START_REF] Rifki | On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours[END_REF].

We describe the basic principles of DP for solving the TD-TSPTW as it is a starting point for introducing our approach. Given a vertex i ∈ V \ {0} and a set of vertices S ⊆ C \ {i}, let p(i, S) denote the earliest arrival time of a path that starts from 0 at time t 0 , visits each vertex of S exactly once, and ends on i, while satisfying TW constraints of all vertices in S ∪ {i} (if no such path exists, then p(i, S) = ∞). We may recursively define p(i, S) as follows:

p(i, S) = min j∈S a j,i (p(j, S \ {j})) ↑[ei,li] if S ̸ = ∅ (1) a 0,i (t 0) ↑[ei,li] otherwise (2)
The optimal solution corresponds to p(n, C), i.e., the earliest arrival time on n of a path that starts from 0 at t 0 and visits all vertices of C during their TWs.

It may be computed by searching for a path in a state-transition graph. States are triples (i, S, t) such that i ∈ V \ {0} is the last visited vertex, S ⊆ C \ {i} is the set of customers that have been visited before i, and t ∈ [e i , l i] is the arrival time on i. A state (i, S, t) is an initial state whenever S = ∅: in this case, i is the first customer visited after the depot 0, and t = a 0,i (t 0) ↑ [ei,li] . A state (i, S, t) is a final state whenever i = n and S = C: in this case, all customers have been visited and t is the arrival time on the depot n. Edges of the graph correspond to transitions between states. More precisely, for each state s = (i, S, t):

• if S ∪{i} ⊂ C then, for each customer j ∈ C \(S ∪{i}) such that a i,j (t) ≤ l j ,
there is a transition from s to (j, S ∪ {i}, a i,j (t) ↑[ej ,lj]);

• if S ∪ {i} = C and a i,n (t) ≤ l n , there is a transition from s to the final state (n, S ∪ {i}, a i,n (t)).

The goal is to find a path from an initial state to a final state (n, C, t) such that t is minimal. This path may be computed in a level-wise manner, starting from level 0 that contains all initial states: for each level k ranging from 1 to n-1, we compute every state (j, S, t) such that #S = k and t is minimal by exploiting the states (i, S \ {i}, t ′) of level k -1 according to Eq. (1).

Variants of Dynamic Programming

As the number of states explored by DP for the TSP is in Results are presented for several problems, including the TSPTW. As far as we know, this kind of approach has never been used to solve the TD-TSPTW. [START_REF] Hart | A Formal Basis for the Heuristic Determination of Minimum Cost Paths[END_REF] have introduced A*, which uses heuristics to speed up the search of shortest paths in state-transition graphs and which is widely used to solve problems that have DP formulations, such as planning problems for example. A* is not anytime: it provides a single optimal solution, and it may have to explore an exponential number of states before finding it. One may convert A* into anytime algorithms such as, for example, anytime weighted and real-time A* algorithms [START_REF] Hansen | Anytime heuristic search[END_REF][START_REF] Bulitko | Learning in real-time search: A unifying framework[END_REF].

O(n • 2 n),
Recently, [START_REF] Libralesso | An anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem[END_REF] have introduced Iterative Memory Bounded A* (IMBA*) which allowed them to win the 2018 ROADEF chal-lenge. The basic idea is to limit the number of stored states with a parameter D, like in RDP. However, in RDP the limit is on the number of states in each level, whereas in IMBA* the limit is on the total number of open states, for all levels. When D = 1, the algorithm behaves like a pure greedy one; when D = ∞, the algorithm is exact. To obtain an anytime and exact algorithm, IMBA* iterates the process with increasing values of D, according to a geometric progression. [START_REF] Libralesso | Tree search for the sequential ordering problem[END_REF] have used a very similar approach to obtain state-of-the-art results on the sequential ordering problem.

In this paper, we propose to use Anytime Column Search (ACS) which has been introduced by [START_REF] Vadlamudi | Anytime Column Search[END_REF]. ACS is both exact and anytime and, like IMBA*, it iterates A*-like searches. However, instead of bounding the number of stored states, ACS bounds the number of states which are expanded at each level to the w best ones. [START_REF] Vadlamudi | Anytime Column Search[END_REF] report that, for the TSP, ACS performs best when w = 1. Hence, we set w to 1 in this paper.

New Approach for the TD-TSPTW

In this section, we first describe ACS and show how to use it to solve the TD-TSPTW (Section 4.1) and how to combine it with TW constraint propagation (Section 4.2) and bounding functions (Section 4.3). Then, we describe a local search algorithm used to improve upper bounds found by ACS (Section 4.4).

Finally, we discuss some implementation issues (Section 4.5).

Anytime Column Search

Our instantiation of ACS to solve the TD-TSPTW is described in Algorithm 1. Algorithm 1: ACS for the TD-TSPTW As this filtering is expensive, we consider a lazy approach where useless states are removed only when searching for the next state to expand (lines 5-7). We introduce the following predicate to decide whether an open state is still useful

1 ub ← ln; ND ← {(i, ∅, a0,i(t0) ↑[e i ,l i]) : i ∈ C}; open(0) ← ND 2 foreach level k ∈ [1, n -2] do open(k) ← ∅; 3 while there exists a state s ∈ ∪ k∈[0,n-2] open(k) such that useful (s) do 4 foreach k ∈ [0, n -2] such
or not: useful (s) ⇐⇒ (f (s) < ub ∧ ∀s ′ ∈ ND, s is not dominated by s ′).
At each iteration of the while loop (lines 3-16), we consider each level k ranging from 0 to n -2 and we search for the most promising state in open(k),

i.e., the state s = (i, S, t) that is useful and that minimizes f (s) (lines 5-7).

When k = n -2, we have already visited all customers and if the arrival time at n is lower than ub, then we have found a new improving solution (line 10).

When k < n -2, s is expanded in the loop lines 12-16: for each non visited customer j, we compute the new state s ′ obtained when going from i to j at time t, and if s ′ is useful, we update ND and open(k + 1) (lines 15-16).

ACS ends when open sets no longer contain useful states. In this case, the last solution found is optimal (see proof in [START_REF] Vadlamudi | Anytime Column Search[END_REF]). However, as improving solutions are found progressively, one may stop ACS when a given limit is reached. If there are no TWs, a first solution is found at the end of the first iteration of the loop lines 3-16 andthere are O(n 2) open states: open(0) contains n-1 states, and∀k > 0, #open(k) = #open(k-1)-1. This first solution is the one that would be computed with a greedy algorithm that selects, at each iteration, the state s that minimizes f (s) among all successors of the last selected state. Of course, in presence of TWs it may be necessary to iterate more than once the loop lines 3-16 before finding a solution. However, TW constraints may also be used to prune parts of the search space, as described in Section 4.2.

Propagation of time window constraints

TW constraints are propagated to infer precedence relations and tighten other TWs. We use the same propagation rules as [START_REF] Vu | Dynamic Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF], which are adaptations to TD cost functions of the rules described by [START_REF] Dash | A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows[END_REF] for the TSPTW. These rules operate on two sets E and R.

• E is the set of edges that may be used to travel from a vertex to its successor when building tours:

E is initialized to {(0, i), (i, n), (i, j) : i, j ∈ C ∧i ̸ = j}.
• R is the set of precedence relations: it contains every couple (i, j) such that i must be visited before j in every feasible solution (intermediate nodes may be visited between i and j). R is initialized to {(0, i), (i, n) : i ∈ C}.

A first set of rules is used to tighten the TW of a vertex k by propagating TWs of its predecessors and successors in E:

• e k is increased if k can only be reached later than e k , i.e.,

e k ← max e k , min (i,k)∈E a i,k (e i) ;
• e k is increased if it implies waiting for all its successors, i.e.,

e k ← max e k , min (k,i)∈E a -1 k,i (e i) ; • l k is decreased if it implies arriving too late at each successor of k, i.e., l k ← min l k , max (k,i)∈E a -1 k,i (l i) ; • l k is decreased if k is always reached before l k when leaving its predecessors as late as possible, i.e., l k ← min l k , max (i,k)∈E a i,k (l i) .
When TWs are tightened, R and E are updated as follows:

• (i, j) is removed from E and (j, i) is added to R whenever a i,j (e i) > l j ;

• A subpath ⟨i, j, k⟩ is infeasible if a i,j (e i) > l j or if a j,k (max{e j , a i,j (e i)}) > l k . For all i, j ∈ V, if there exists k such that both ⟨i, j, k⟩ and ⟨k, i, j⟩ are infeasible, then (i, j) is removed from E. If ⟨i, k, j⟩ is also infeasible, then (j, i) is added to R.

Finally, the last two rules ensure the transitive closure of R and exploit precedence relations in R to filter E:

• ∀i, j, k ∈ V, if {(i, j), (j, k)} ⊆ R, then (i, k) is added to R and removed from E.
• For each (i, j) ∈ R, arc (j, i) is removed from E.

These rules are applied until reaching a fixed point where no more rule can be applied. This is done at the beginning of Algorithm 1, as a preprocessing step. This is also done after each improvement of l n (line 10). As far as we know, it is the first time this procedure is used to prune the search space during the search. This is particularly relevant in our context as tighter TWs lead to better relaxations of TD cost functions into constant cost functions, as explained in Section 4.3. In some cases, these rules may either detect an inconsistency (when a vertex in V \ {n} has no outgoing edge in E or when a vertex in V \ {0} has no incoming edge in E), or prove optimality (when the TW of n is tightened to a single value, i.e., e n = l n).

E and R are also used to reduce the number of states explored in the loop lines 12-16: we only consider the customers j ∈ C \ (S ∪ {i}) such that (i, j) ∈ E and, ∀k ∈ V \ (S ∪ {i}), (k, j) ̸ ∈ R.

Computation of the lower bound f

Given a state s = (i, S, t), f (s) is a lower bound of the arrival time of the fastest path that starts from i at time t, visits every customer in C \ (S ∪ {i}), and ends on n, while satisfying all TWs (f may detect that no such path exists and return ∞). It is used by Algorithm 1 to (i) expand first the most promising state of each level, and (ii) prune the state space when a state cannot lead to a solution with a cost smaller than ub. Bounds are widely used in A* and in Branch & Bound approaches, and there exist many different lower bounds for the TSP, which are often computed by solving relaxations. In this section, we describe three lower bounds for the TD-TSPTW, called f FEA , f OIA , and f MSA , which provide different trade-offs between computational cost and tightness. f FEA is a new bound whereas f OIA and f MSA combine f FEA with classical TSP bounds. Before describing bounds, we define constant edge costs and the graph used for computing these bounds.

Definition of constant costs

The cost of edge (j, k) depends on the departure time from j, which is not known exactly when computing f (s). To ensure that f (s) is a lower bound, we compute a lower bound c j,k of the cost of every edge (j, k) ∈ E. To this end, we first introduce the Latest Departure Time (LDT) from a vertex j to reach another vertex k no later than l k while leaving j no later than l j , i.e., LDT (j, k) = min{l j , a -1 j,k (l k)}. The lower bound of the cost of edge (j, k) is the shortest travel time from j to k for each departure time t ∈ [e j , LDT (j, k)],

plus the waiting time on k when the arrival time on k is earlier than e k , i.e., c j,k = min t∈[ej ,LDT (j,k)] c j,k (t) + max{0, e k -a j,k (t)}. These constant costs are precomputed and updated every time TWs are tightened using rules described in Section 4.2. 4.3.2. Definition of the graph G s used to compute f (s) Given a state s = (i, S, t), the lower bound f (s) is computed by solving a relaxation of the shortest Hamiltonian path problem from i to n in a graph

G s = (V s , E s) such that V s = {n} ∪ C \ S. A straightforward definition of E s is E s = E ∩ ((V s \ {n}) × (V s \ {i}))
as E contains edges than may be used in a feasible solution and the path must start from i and end on n. To tighten the lower bound, we introduce three new rules for removing from E s edges that cannot be used when the current state is s.

The first two rules are applied on edges that start from i.

• As the path starts from i, we remove any edge (i, k) such that there exists a vertex l that must be visited before k but has not yet been visited:

Rule 1 = E s ← E s \ {(i, k) : k ∈ V s \ {i} ∧ ∃l ∈ V s \ {i}, (l, k) ∈ R}.
• As a vertex must be visited before the end of its TW, we remove any edge (i, k) such that we cannot reach k on time when leaving i at time t:

Rule 2 = E s ← E s \ {(i, k) : k ∈ V s \ {i} ∧ t > LDT (i, k)}.
A third rule is applied on edges that start from another vertex j ∈ V s \ {i}.

For these edges, we know that we first have to travel from i to j and the departure time from j is lower bounded by a i,j (t). However, as this filtering is expensive to perform, we do it once for all possible vertices j ∈ V s \ {i} and, therefore, we consider a lower bound t ′ which is valid for all these vertices, i.e., t ′ = min (i,j)∈Es a i,j (t). Then, we use t ′ to remove any edge (j, k) such that we cannot reach k on time when leaving j at time t ′ :

Rule 3 = E s ← E s \ {(j, k) : j ∈ V s \ {i, n} ∧ k ∈ V s \ {i} ∧ t ′ > LDT (j, k)}.

Feasibility bound f fea

This bound performs a simple feasibility check on G s : If any vertex in V s \{n} (resp. V s \ {i}) has no outgoing (resp. incoming) arc in E s , then s cannot lead to a feasible solution (as there exists no Hamiltonian path from i to n in G s).

In this case, f fea (i, S, t) = ∞. Otherwise, f fea (i, S, t) = t.

We also experimented with other feasibility checks, such as ensuring that each node in V s \ {i} is reachable from i (with a linear-time graph traversal), or ensuring that there is a unique topological order among the set of strongly connected components of G s (when the topological order is not unique, no Hamiltonian path exists). Both these feasibility checks were implemented but discarded as they did not bring enough benefits relatively to their cost.

Outgoing/Incoming Arcs bound f oia

This bound is an adaptation to the TDTSP-TW of the I/O bound used by [START_REF] Libralesso | Tree search for the sequential ordering problem[END_REF] for the sequential ordering problem. It is weaker than the assignment relaxation (i.e., the minimum assignment in the bipartite graph between V s \ {n} and V s \ {i}). Indeed, it relaxes the constraint that each vertex in V s \ {n} must be connected to a different vertex in V s \ {i}.

It is also an order cheaper to compute as it is computed in linear time with respect to the number of edges in E s . As G s is not necessarily symmetric, we combine two different bounds: f oa , which considers Outgoing Arcs, and f ia , which considers Incoming Arcs. More precisely, f oa adds to t the sum of the minimum-weight outgoing arc for each node in V s \ {n}, i.e., f oa (i, S, t) = t + j∈Vs\{n} min c j,k : (j, k) ∈ E s , whereas f ia considers incoming arcs, i.e., f ia (i, S, t) = t + k∈Vs\{i} min c j,k : (j, k) ∈ E s .

Finally, we define f oia (i, S, t) = max {f fea (s), f oa (s), f ia (s)}, which can be computed using a single traversal of edge set E s .

Minimum Spanning Arborescence bound f msa

The Minimum Spanning Arborescence (MSA) is a classic relaxation of the Asymmetric TSP [START_REF] Roberti | Models and algorithms for the Asymmetric Traveling Salesman Problem: an experimental comparison[END_REF]. We extend it to the TD-TSPTW using the cost lower bound c and the graph G s . More precisely, given a state s = (i, S, t), f msa (s) is equal to t plus the cost of the MSA rooted at i in G s .

When no such arborescence exists (i.e., there exists at least one node in V s \ {i} that cannot be reached from i) or if a node in V s \ {n} has no outgoing arc, we set f msa (s) = ∞. The MSA is computed in O(#E s log #V s) with the algorithm of [START_REF] Gabow | Efficient algorithms for finding minimum spanning trees in undirected and directed graphs[END_REF].

Local Search (LS)

In order to converge faster towards good solutions, we combine Algorithm 1 with a LS procedure which tries to improve every solution provided by ACS (line 10). We use an approach similar to the one of Da Silva & Urrutia (2010) for the TSPTW, based on the following neighborhoods: 1-shift (that moves a single vertex backward or forward in the path), and 2-opt (that reverses a subsequence of vertices of the path). We exploit the two sets E and R to reduce the size of the neighborhoods. For each possible candidate move, we update visit times of each vertex impacted by it. If a TW is violated or the travel time exceeds ub, the move is rejected. Otherwise it is accepted and ub is updated.

Moves are repeated until reaching a local optimum (i.e., a solution that cannot be improved using a single move).

Implementation Issues

Our algorithm has been implemented in C++1 . In this section, we detail some implementation choices that have a strong impact on time or space.

Data structures. Bitsets are used to efficiently represent the set S in a state (i, S, t). A hash table is used to represent ND: the key is a couple (i, S), and the value is the smallest time t such that state (i, S, t) has been created. This allows us to check in amortized constant time if a state already belongs to ND or if there is a dominance relation between two states. For each level k, a priority for each edge (i, j) and each time step s, there is an input value that gives the travel time from i to j when leaving at time-step s. This representation is compact, but it does not necessarily verify the FIFO property. In this case, we use the transformation described by [START_REF] Melgarejo | A time-dependent no-29 overlap constraint: Application to urban delivery problems[END_REF] to ensure the FIFO property. This allows us to compute c i,j (t) in constant time.

In benchmarks that consider the IGP model (described in Section 3), travel times may be computed from distances and speeds in such a way that the FIFO property is ensured [START_REF] Ichoua | Vehicle dispatching with time-dependent travel times[END_REF]. This is done in linear time with respect to the number of time steps involved when traveling from i to j. Similarly to [START_REF] Arigliano | Timedependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF] and [START_REF] Vu | Dynamic Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF], we round times to the nearest integer.

Computation of a -1 i,j (t). Our implementation assumes that all times have integer values. We use binary search2 to search for the value t ′ = a -1 i,j (t) such that a i,j (t ′) = t in O(log 2 (l i -e i)). If t ′ has not an integer value or if there exist more than one value for t ′ (this occurs when a ij has constant parts), we ensure correctness by returning the largest integer value t ′ such that a i,j (t ′) ≤ t.

Computation of E s . Building the graph G s to compute f (s) is one of the main bottlenecks of our approach, as filtering arcs according to their LDT (using Rules 2 and 3 of Section 4.3.2) requires O(n 2) comparisons and memory accesses. To speed up this step, we precompute a set E t = {(i, j) ∈ E : t ≤ LDT (i, j)} for each time t ∈ RT where RT = {LDT (i, j) : (i, j) ∈ E} is the set of all relevant times. Each set E t is encoded with bitsets (for compact storage and fast computation of set intersections), and it is updated when E is modified or TWs are tightened. Given a state s = (i, S, t), we compute E s as follows: if t > max RT , then E s = ∅ (as t is larger than the LDT of all edges); otherwise, we search for the smallest time t ′ ∈ RT such that t ′ ≥ t and we define E s = E ∩ E t ′ .

Using bitsets to encode E t allows us to efficiently implement f fea : to check if a vertex has no outgoing or incoming edges, we test bitset emptiness. Hence, although f fea and f oia have the same asymptotic complexity, f FEA is much faster in practice.

Experimental results on TD benchmarks

In this section, our goal is to (i) evaluate the relevance of the various components of our approach (Section 5.2); (ii) compare our approach with the ILP approaches of [START_REF] Arigliano | Timedependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF] (iii) evaluate our approach and the one of Lera-Romero et al. (2022) on a realistic benchmark (Section 5.5). Before reporting experimental results, we first describe the experimental setting in Section 5.1.

Experimental Setting

Considered approaches. We consider three variants of our approach that only differ on the computation of the lower bound f : fea (resp. oia and msa) denotes the variant obtained when f = f fea (resp. f = f oia and f = f msa).

Our approach is compared with the ILP approaches of [START_REF] Arigliano | Timedependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF] and [START_REF] Vu | Dynamic Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF], respectively denoted Ari18 and Vu20, and with the DP approach of Lera-Romero et al. (2022 Benchmark B Vu20 . This benchmark has been used by [START_REF] Vu | Dynamic Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF] to evaluate Vu20. It is an extension of B Ari18 , where the number of vertices has been increased to n ∈ {60, 80, 100}, using a similar model to generate TD cost functions except that only four values of ∆ are considered, i.e., ∆ ∈ {.7, .8, .9, .98}.

TWs have been generated differently: instead of using a parameter β, there is a parameter w ∈ {40, 60, 80, 100, 120, 150} that determines the TW width (which is the same for all customers of the instance). There are 10 instances for each combination of (n, w, ∆), leading to a total of 720 instances. TWs of most instances of this benchmark are much tighter than those of B Ari18 : the average OTW over the 120 instances with w = 40 (resp. 60, 80, 100, 120, and 150) is equal to 5 (resp. 8, 11, 14, 16, and 20).

Benchmark B Rif20 . B Ari18 and B Vu20 have been randomly generated according to a rather simple model: customers are randomly distributed in three concentric circular zones which are used to define TD travel speeds, and the distance between two points is constant. This is not very realistic as in real urban contexts the fastest path between two customers may change depending on the departure time. In order to evaluate our approach on more realistic TD cost functions, we consider the benchmark described by [START_REF] Rifki | On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours[END_REF], denoted B Rif20 . TD cost functions of this benchmark were generated by computing shortest paths in the road network of Lyon for all possible departure times, using a realistic traffic simulation built from real-world data. Different TD cost functions are provided, on two parameters σ and l that define the spatial and temporal granularity of traffic data. We report results with σ = 100 and l = 6 which are the finest possible values (similar results were obtained with other values). In this case, TD cost functions are piecewise-constant functions composed of 120 time-steps. To ease the comparison with results obtained on B Ari18 , we consider instances with n ∈ {21, 31, 41} and TWs were generated using the same model, i.e., TW tightness is controlled by β ∈ {0, .25, .50, 1}.

There are 150 instances for each combination of (n, β), leading to a total of 1800 instances. The average OTW over the 450 instances with β = 0 (resp. .25, .50, and 1) is equal to 100 (resp. 86, 62, and 16).

Considered hardware. Ler22, fea, oia, and msa are run on 2.1GHz Intel Xeon E5-2620 v4 processors with 64GB RAM. To favor reproducibility, experiments were executed on Grid5000 [START_REF] Balouek | Adding Virtualization Capabilities to the Grid'5000 Testbed[END_REF]. As suggested by [START_REF] Fichte | Complications for Computational Experiments from Modern Processors[END_REF], Turbo Boost was disabled and each machine solved one instance at a time, using a single processor. Run times of Ari18 and Vu20 are those reported by [START_REF] Arigliano | Timedependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF] and [START_REF] Vu | Dynamic Discretization Discovery for Solving the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF], as source codes are not available: Ari18 is run on a 2.33GHz Intel Core 2 Duo processor with 4GB

RAM and Vu20 on a 3.4GHz Intel Core i7-2600 processor (unknown RAM).

Performance measures. We say that an instance is solved by an approach whenever it finds the optimal solution and proves its optimality within one hour. #s denotes the number of solved instances, and t s the average solving time for the solved instances. #r denotes the number of instances for which the approach has found the reference solution, and t r denotes the average time needed to find the reference solution for these instances. The reference solution is either the optimal solution, when Ler22 or at least one of our approaches has solved the instance, or the best solution obtained by running oia and msa with an extended time limit of 3 hours. The reference solution is optimal for all instances of B Vu20 and for all instances of B Ari18 and B Rif20 such that n ≤ 31 or β ≥ .50.

When n = 41, the percentage of instances for which the reference solution is known to be optimal is equal to 42% (resp. 96%) for B Ari18 when β = 0 (resp. β = .25), and to 9% (resp. 100%) for B Rif20 when β = 0 (resp. β = .25).

When displaying performance of different approaches, we underline the maximal value of #s or #r and we highlight in blue (resp. green) the smallest value of t s (resp. t r) among all approaches that maximize #s (resp.

#r). For Ari18 and Vu20, we do not report #r and t r as they are not available.

For Ler22, we do not report #r and t r as they are equal to #s and t s , given this approach is not anytime.

Analysis of the algorithm's components

ACS is combined with three key components, i.e., TW constraint propagation (described in Section 4.2), LS (described in Section 4.4), and rules that exploit LDTs to filter the set E s of edges used to compute f (described in Section 4.3.2). To evaluate the relevance of these components, we report results obtained with different variants obtained by disabling them. We consider f = f oia as similar conclusions are observed with f fea and f msa . We consider the following variants:

• oia 0 is the variant where the three components are disabled;

• oia 1 is obtained from oia 0 by enabling TW constraint propagation before starting the search, during a preprocessing step;

• oia 2 is obtained from oia 1 by also enabling TW constraint propagation during the search, each time ub is decreased;

• oia 3 is obtained from oia 2 by enabling LS;

• oia is obtained from oia 3 by enabling the filtering of E s .

In Table 1, we display performance measures of these variants on a representative subset of 180 instances with n = 31 and β ∈ {0, 0.25, 0.50} coming from B Ari18 (similar results are obtained with other benchmarks). When looking at the number of solved instances (left side of Table 1), we see that all components but LS improve performance: oia 1 , which propagates TW constraints before the search, solves 69 more instances than oia 0 ; oia 2 , which also propagates TW constraints during the search, solves three more instances; and the filtering of Gap to the optimal solution (%)

10 -1 10 0 10 1 10 2 10 3 10 -1 10 0 10 1 10 2 10 3 Time in seconds (log scale) of solved instances with respect to time. It shows us that similar improvements are observed for time limits shorter than one hour.

When looking at the number of reference solutions found (right side of Table 1), we see that the propagation of TW constraints during the search slightly degrades performance (oia 2 finds one less reference solution than oia 1): this step is rather time consuming and becomes interesting only when the optimal solution has been found, to shorten the time spent to prove optimality. We also see that LS allows oia 3 to find reference solutions quicker. To compare the ability of our different variants to quickly converge towards good solutions, we display in the bottom part of Figure 1 the evolution of the gap to the reference

Solved instances

Reference solutions

Ari18 Ler22 FEA OIA MSA FEA OIA MSA n β #s t s #s t s #s t s #s t s #s t s #r t r #r t r #r t r
16 0 287 299 300 5 300 0 300 0 300 0 300 0 300 0 300 0 .25 299 143 300 3 300 0 300 0 300 0 300 0 300 0 300 0 .50 299 26 300 2 300 0 300 0 300 0 300 0 300 0 300 0 1 300 2 300 0 300 0 300 0 300 0 300 0 300 0 300 0 21 0 248 660 300 198 300 1 300 1 300 3 300 0 300 0 300 1 .25 286 383 300 87 300 0 300 0 300 1 300 0 300 0 300 0 .50 296 289 300 19 300 0 300 0 300 0 300 0 300 0 300 0 1 300 29 300 0 300 0 300 0 300 0 300 0 300 0 300 0 solution with respect to time. It demonstrates that LS allows oia 3 to find better solutions than oia 2 at the beginning of the search, especially for wide TWs.

31
Finally, let us mention that all components but LS significantly reduce memory use. For example, when β = .25, oia 0 (resp. oia 1 , oia 2 , oia 3 , and oia) used on average 63.8 (resp. 19.1, 15.6, 15.6, and 1.9) GB of memory.

Experimental Comparison on Arigliano et al. (2018b)'s benchmark

Let us now compare our approach with Ari18 and Ler22 on benchmark B Ari18 . In Table 2, we report the number of solved instances and solving times. msa is always outperformed by both oia and fea, showing that a tighter (but more expensive) bound does not pay off on this benchmark. fea and oia have very close performance when n ≤ 21. When n = 31, fea solves all instances and outperforms oia but when n = 41, oia performs better than fea, showing that a tighter bound pays off when considering larger instances. Similar conclusions are drawn from the right side of Table 2, which considers the ability to quickly find reference solutions: oia outperforms both fea and msa.

Ler22 manages to solve more instances than our approach when n = 41 and β ≤ .50. However, when n = 31 and β ≤ .50, fea is faster than Ler22.

Also, unlike Ler22, our approach is anytime: when our approach has not solved an instance, it has found approximate solutions which are often optimal. To evaluate the ability of our approach to quickly converge towards good solutions, we display the evolution of the gap to reference solutions with respect to time for the hardest instance classes (i.e., n = 41 and β ≤ .50) in Figure 2. It shows us that oia converges faster than fea and msa and that it reaches an average gap to the reference solution of 1% in 168s (resp. 5s and .6s) when β = 0 (resp. β = .25 and β = .50). As a comparison, Ler22 either obtains the optimal solution, or no solution at all. When n = 41 and β = 0 (resp. β = .25 and β = .50), Ler22 has found 126 (resp. 244 and 300) optimal solutions in an average time of 2778s (resp. 2593s and 1837s). Regarding memory use, Ler22, fea, oia and msa respectively used 6, 35, 25 and 7 GB on average, when n = 41. This demonstrates that using tighter bounds reduces memory needs. whereas Ari18 is able to solve 241 instances.

The success of Ari18 is strongly related to ∆ as it relies on bounds which are tighter when ∆ is closer to 1, as explained in Section 3. To illustrate this, we detail in Table 3 the number of solved instances for each value of ∆ and each traffic pattern P when n = 41. It shows us that Ari18 is very sensitive to ∆ and P , whereas our approach is mainly sensitive to the TW width β. Note that B Ari18 has been randomly generated according to a model which allows one to 70 .80 .90 .95 .98 .70 .80 .90 .95 .98 Total .70 .80 .90 .95 .98 .70 .80 .90 .95 .98 Total 0 6 8 10 19 28 1 0 3 12 23 110 0 0 0 0 0 0 0 0 0 0 0 .25 6 8 13 23 29 1 0 5 16 30 131 2 2 3 4 4 4 4 4 4 4 35 .50 1 2 4 9 18 1 0 2 5 13 55 24 25 25 25 25 28 25 25 25 25 252 1 14 11 14 12 29 8 4 3 4 7 106 30 30 30 30 30 30 30 30 30 30 control ∆. In benchmarks generated from real-world data such as the one of [START_REF] Rifki | On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours[END_REF], for example, the value of ∆ is not controlled and it is much lower than 0.7 (see Section 5.5).

Ari18 FEA P = B 1 P = B 2 P = B 1 P = B 2 β\∆ .

Experimental Comparison on Vu et al. (2020)'s benchmark

Let us now compare our approach with Ler22 and Vu203 on benchmark B Vu20 which has larger numbers of customers to visit and very tight TWs. In Table 4, we report the number of solved instances and solving times. msa is always outperformed by oia which is always outperformed by fea. This comes from the fact that TWs are very tight: in this case, the propagation of TW constraints and the filtering of arcs based on LDTs remove many edges of E and the simple feasibility check of f fea is often enough to detect inconsistencies.

If fea is able to solve all instances, Ler22 and Vu20 respectively fail at solving two and 19 instances. fea is almost always more than ten times as fast as Ler22 and Vu20 and, for some classes it is more than 100 times as fast. This difference is large enough to allow us to conclude that fea is more efficient than Ler22 and Vu20 (even though the latter was run on a different computer).

The right part of Table 4 also shows us that fea always finds the reference solution very quickly, in a few tenths of a second for all classes except when n = 100 and w = 150, where 3.6 seconds are needed to find it, on average.

Regarding memory, Ler22 used on average 0.8 GB for instances where n = 100, whereas fea, oia and msa all used 0.2 GB. This can be explained by the fact that our bounds prune the search space efficiently because of TW tightness. We cannot report results of Ari18 or Vu20 on B Rif20 as source codes of these approaches are not available. However, TD cost functions of B Rif20 have been generated by computing shortest paths using a realistic traffic simulation.

In this case, ∆ cannot be controlled and it is much smaller than in B Ari18 and B Vu20 : in B Rif20 , ∆ is always smaller than 0.35, and it has an average value of 0.09. As Ari18's performance drops when ∆ < 0.9 (as illustrated in Table 3),

we may assume that Ari18 should have difficulties in solving these instances.

In Table 5, we report performance measures of Ler22 and our approach on this benchmark. The results of our approach are quite similar to those obtained on B Ari18 (see Table 2). In other words, changing the benchmark does not significantly changes the performance of our approach, and oia still offers the best compromise between bound tightness and computational cost.

On the contrary, Ler22's performance is worse on this benchmark than on B Ari18 . Table 5 shows that it failed to solve two instances when n = 21 and β = 0, and solved only 7% of instance class n = 41 and β = 0 whereas it solved 42% of them on B Ari18 . These differences may stem from the fact that the TD travel times functions of this benchmark vary more often (in B Ari18 and B Rif20 , they respectively contain 73 and 120 timesteps). Table 6: Description of TSPTW benchmarks. Each line displays: a reference that describes the benchmark, the name used to refer to this benchmark, the number of instances in the benchmark, the minimum and maximum number of vertices n, and the minimum and maximum value of OTW. Column S contains ✓ whenever cost functions are symmetrical.

Experimental evaluation on the TSPTW

In this section, we experimentally evaluate our approach for solving TSPTW instances. Our approach is adapted to use constant cost functions in a straightforward way, by setting c i,j = max(l i + c i,j , e j) -l i , and replacing a -1 j,k (t) by tc j,k . We use the same set of benchmarks as in [START_REF] Gillard | Improving the Filtering of Branch-and-Bound MDD Solver[END_REF], plus the benchmark introduced in Da Silva & Urrutia (2010), leading to a total of 592 instances. The main features of these benchmarks are described in Table 6.

We compare our approach with the exact and anytime approach of [START_REF] Gillard | Improving the Filtering of Branch-and-Bound MDD Solver[END_REF], denoted Gil21: it is based on DP and relies on state space relaxations to compute lower bounds and on RDP to compute upper bounds, as 110 6 125 4 125 4 125 4 125 7 124 17 125 2 125 2 125 3 Dum 109 188 135 0 135 0 135 0 135 4 135 0 135 0 135 0 135 0 Gen 27 522 117 84 113 44 111 54 129 21 98 154 130 0 130 1 130 explained in Section 3.3. We also compare our approach with the LS-based approach of Da Silva & Urrutia (2010), denoted DaS10. As DaS10 only considers symmetrical instances, we do not report results of DaS10 for Asc, Pes and Pot instances. As DaS10 assumes that triangle inequality is satisfied,

we have preprocessed all symmetrical instances to ensure it. As DaS10 is not deterministic, it was run five times and we report the median value.

We consider the same experimental setting as in Section 5, and both Gil21 and DaS10 were executed on the same hardware as our approach. For asymmetrical instances, reference solutions come from https://lopez-ibanez.eu/ tsptw-instances. For symmetrical instances, ensuring triangle inequality may change the optimal solution (as some costs are decreased) and, as in the previous section, we have computed reference solutions by running oia and msa with a time limit of 3 hours. The reference solution has been proven optimal for all but 18 symmetrical instances (i.e., 4% of them). Reference solution costs never exceed those listed at https://lopez-ibanez.eu/tsptw-instances.

Table 7 reports performance of the considered approaches. On the whole set of 592 instances, fea solves three more instances than oia and msa. However, on two benchmarks with wide TWs (i.e., Pes and Pot), msa solves more instances than fea. The three variants of our approach solve more instances than Gil21 for all benchmarks except Lan (these instances are solved in less than one second by all approaches).

On the left part of Figure 3, we display the evolution of the percentage of solved instances with respect to time, showing that fea is more successful than Gil21 for time limits shorter than one hour, except for execution times smaller than 8 milliseconds (for clarity, we do not display results of oia and msa as they are very close to fea's and fea is slightly better).

If some instances are not solved by our approach within one hour, reference solutions are always found rather quickly for all instances, whereas Gil21 is not able to find them for 13 instances. DaS10 also fails at finding them for 40 instances (i.e., 8% of the 485 symmetrical instances).

On the right part of Figure 3, we display the evolution of the percentage of reference solutions found with respect to time (when considering only the 485 symmetrical instances). DaS10 finds more reference solutions for time limits shorter than one second, but it is outperformed by fea for longer time limits, and also by Gil21 for time limits longer than 23 seconds. This shows us that exact approaches find reference solutions rather steadily, while the heuristic approach DaS10 quickly finds reference solutions to easy instances, but struggles for the harder ones (very few reference solutions are found after 100s). Also, Gil21 finds more reference solutions than fea for very short time limits, smaller than two milliseconds. This may come from the fact that fea spends time propagating TW constraints. However, for longer time limits, fea finds more reference solutions and it is able to find all reference solutions of symmetrical instances whereas Gil21 fails at finding one reference solution.

Finally, let us note that our approach requires less memory than Gil21, but more than DaS10: on average, fea (resp. oia, msa, Gil21, and DaS10) used 2.3 (resp. 0.5, 0.2, 6.7, and 5 * 10 -3) GBs of memory.

Conclusions and perspectives

We have introduced a new approach for the TD-TSPTW which combines ACS, TW constraint propagation, and LS. This approach is both able to quickly find good solutions and to prove optimality given enough time and memory. We have considered three bounds with different tightness/cost trade-offs and experiments have shown us that f oia offers a good compromise. We also proposed new filtering rules based on latest departure times to compute tighter bounds.

Our approach is able to find reference solutions much faster than Ler22, the state-of-the-art DP approach of [START_REF] Lera-Romero | Dynamic Programming for the Time-Dependent Traveling Salesman Problem with Time Windows[END_REF]. It also manages to prove optimality, and does so faster than Ler22 when TWs are tight, and slower otherwise. Our approach also outperforms the ILP approach of Vu et al.

(2020) on all instances of B Vu20 which have very tight TWs, as well as the ILP approach of [START_REF] Arigliano | Timedependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF] on most instances of B Ari18 . Our approach may also be used to solve the TSPTW and we have shown that it outperforms the DP-based approach of [START_REF] Gillard | Improving the Filtering of Branch-and-Bound MDD Solver[END_REF] and the LS-based approach of Da Silva & Urrutia (2010).

We plan to extend our approach to other TD routing problems such as, for example, TD vehicle routing problems [START_REF] Chen | The real-time timedependent vehicle routing problem[END_REF], TD orienteering problems [START_REF] Khodadadian | Time dependent orienteering problem with time windows and service time dependent profits[END_REF], TD inventory routing problems [START_REF] Touzout | An assign-and-route matheuristic for the time-dependent inventory routing problem[END_REF] or TD profitable pickup and delivery problems [START_REF] Sun | Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows[END_REF].

Our approach could also be extended to scheduling problems with transition times between tasks, as they are very close to TSP problems and often have DP formulations [START_REF] Van Hoorn | Dynamic Programming for Routing and Scheduling: Optimizing Sequences of Decisions[END_REF]. In some cases, these transition times appear to be TD such as, for example, agile earth observation satellite scheduling problems with TD transition times and TWs [START_REF] Liu | An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time[END_REF], or order acceptance and scheduling problems with processing times [START_REF] He | Order acceptance and scheduling with sequence-dependent setup times: A new memetic algorithm and benchmark of the state of the art[END_REF].

 -of-the-art exact approaches for the TSP are usually based on ILP[START_REF] Applegate | The Traveling Salesman Problem: A Computational Study[END_REF]. However, the integration of time within ILP models (to add TW constraints or to exploit TD cost functions, for example) usually strongly degrades performance. Time may be discretized into time steps, but this either dramatically increases the number of variables (when considering fine steps) or reduces solution quality (when considering coarse steps).[START_REF] Boland | Perspectives on integer programming for time-dependent models[END_REF] have introduced Dynamic Discretization Discovery to overcome this issue by dynamically refining time steps to strengthen time-indexed ILP models. This approach is used by Vu et al. (2020) for solving the TD-TSPTW. It performs best on instances with very tight TWs, and it dominates the Branch and Cut approach of Montero et al. (2017). A stronger relaxation was proposed by Vu et al. (2022) for routing problems with variable departure time. Cordeau et al. (2014) consider the Ichoua, Gendreau, Potvin (IGP) model introduced by Ichoua et al. (2003) for computing travel times. In this model, the distance between two vertices is assumed to be constant (i.e., the same sequence of road segments is always used to travel between two vertices), whereas speeds are time-dependent and are defined by piecewise-constant functions: the time horizon [t 0 , l n] is decomposed into H time steps and the travel speed v ijh from i to j at time step h ∈ [0, H -1] is constant. They propose to decompose v ijh in three factors: v ijh = u ij b h δ ijh where u ij is the maximum travel speed from i to j during the whole time horizon (i.e., u ij = max h∈[0,H-1] v ijh), b h is the best congestion factor over all arcs during time step h (i.e., b h = max i,j∈V v ijh /u ij), and δ ijh represents the degradation of the congestion factor of arc (i, j) during time step h (i.e., δ ijh = v ijh /(u ij b h)). A key parameter is ∆, the smallest value of all δ ijh values (i.e., ∆ = min i,j∈V,h∈[0,H-1] δ ijh): When ∆ = 1, all arcs (i, j) have the same congestion factor b h for all time steps h ∈ [0, H -1].

 queue is used to represent open(k), where the priority of a state s is defined by f (s). The best state of open(k) is found in constant time. Removals and insertions are performed in O(log 2 (#open(k)). When k = 0, open(k) contains O(n) states and when k > 1, open(k) contains O(nC n k) states. Computation of c i,j (t). The implementation of the function c i,j (t) that returns the travel time from i to j when leaving at time t depends on the considered benchmark. In many benchmarks (such as the ones introduced by Melgarejo et al. (2015) or Rifki et al. (2020)), TD cost functions are provided as piecewiseconstant functions: the time horizon is split into h consecutive time-steps and,

 and Vu et al. (2020) and the state-ofthe-art DP approach of Lera-Romero et al. (2022) (Sections 5.3 and 5.4); and

), denoted Ler22. Measure of TW tightness. The hardness of a TD-TSPTW instance depends on the number of vertices n and also on TW tightness. To allow us to compare the tightness of instances generated with different models, we compute the percentage of customer pairs that have Overlapping TWs, denoted OTW, i.e., OT W = 100 * #{{i,j}⊆C:[ei,li]∩[ej ,lj]̸ =∅} #{{i,j}⊆C} . Benchmark B Ari18 . This benchmark has been used by Arigliano et al. (2018b) evaluate Ari18. It has been randomly generated according to the following parameters: the number of vertices n ∈ {16, 21, 31, 41}, the congestion factor ∆ ∈ {.7, .8, .9, .95, .98} (defined in Section 3), the traffic pattern P ∈ {B 1 , B 2 } and the TW tightness β ∈ {0, .25, .50, 1}. All TD cost functions contain 73 timesteps and are computed with the IGP model (described in Section 3). There are 30 instances for each combination (n, β, ∆, P), leading to a total of 4800 instances. The smaller β, the wider the TWs: the average OTW for instances with β = 0 (resp. .25, .50, and 1) is equal to 100 (resp. 90, 67, and 15).

E

 s (oia) allows us to solve 62 more instances. To compare solving time distributions, we display in the top part of Figure1the evolution of the percentage

Figure 1 :

 1 Figure 1: Comparison of variants on 60 instances of B Ari18 with n=31 and β ∈ {0, .25, .50}. Top: Evolution of the percentage of solved instances with respect to time. Bottom: Evolution of the average gap to the reference solution (in percentage) with respect to time.

Figure 2 :

 2 Figure 2: Evolution of the average gap (%) to the reference solution with respect to time for fea, oia and msa on the instances with n = 41 and β ∈ {0, .25, .50} (300 instances per class).

 Performance of Ler22, Vu20, fea, oia, and msa on B Vu20 (40 instances per row when w ∈ {100, 120, 150}, and 120 instances per row when w ≤ 80) 5.5. Experimental Comparison on Rifki et al. (2020)'s benchmark

Figure 3 :

 3 Figure 3: Left: Evolution of the percentage of solved instances by fea and Gil21 with respect to time, for the full set of 592 TSPTW instances. Right: Evolution of the percentage of reference solutions found by fea, Gil21, and DaS10 for the 485 symmetrical instances.

Table 1 :

 1 Performance of oia variants on a subset of B Ari18 instances with n = 31 (60 instances per value of β). Left: Number of solved instances (#s) and solving time (ts). Right: Number of reference solutions found (#r) and time to reference solution (tr).

			Solved instances			Reference solutions
		oia 0	oia 1	oia 2	oia 3	oia	oia 0	oia 1	oia 2	oia 3	oia
	β #s	t s #s	t s #s	t s #s	t s #s t s #r t r #r t r #r t r #r t r #r t r
		0	-1 3213 1 3065 1 3100 59 819 29 907 54 662 53 674 54 652 60 18
	.25	0	-53 1487 56 1333 56 1333 60 220 58 91 60 13 60 13 60 12 60 3
	.50 45 1612 60 26 60 18 60 18 60 6 60 1 60 0 60 1 60 0 60 0
	Total 45	114	117	117	179	147	174	173	174	180
			Wide TWs (β=0)						

Table 2 :

 2 Performance of Ari18, Ler22, fea, oia, and msa on B Ari18 (300 instances per row).

	0 155 1631 300 1788 300 496 294 808 235 1334 300 64 300 20 300 67
	.25 199 1274 300 1084 300 145 300 219 299 637 300 19 300 5 300 12
	.50 157 1433 300 389 300	5 300	6 300 16 300 1 300 0 300 1
	1 233 608 300	0 300	0 300	0 300	0 300 0 300 0 300 0
	41 0 110 2263 126 2778	0	-	0	-	0	-160 450 234 567 200 700
	.25 131 1950 244 2593 35 2444 16 2986	0	-209 315 280 207 265 282
	.50 55 2276 300 1837 252 566 280 645 235 1069 299 75 300 6 300 19
	1 106 528 300	0 300	0 300	0 300	0 300 0 300 0 300 0
	Total 3461	4570		4187		4190		4069	4568	4714	4665

 Table2also presents results for Ari18. Even if it has been run on a different computer, we can see that our approach is more successful on many classes: oia solves 729 more instances than Ari18 on the full benchmark and, on a large number of classes the difference in solving times cannot only come from the fact that they have been run on different computers. However, when n = 41 and β ∈ {0, 0.25}, only 35 (resp. 16) instances are solved by fea (resp. oia)

Table 3 :

 3 Number of instances solved by Ari18 and fea with respect to P , ∆ and β for n = 41 (30 instances per class).

	300

Table 5 :

 5 Performance of Ler22, fea, oia, and msa on B Rif20 (150 instances per row).

		Ler22	FEA		OIA		MSA	FEA	OIA	MSA
	n β #s	t s #s	t s #s	t s #s	t s #r t r #r t r #r t r
	21 0 148 363 150	0 150	1 150	2 150 0 150 0 150 0
	.25 150 89 150	0 150	0 150	0 150 0 150 0 150 0
	.50 150 15 150	0 150	0 150	0 150 0 150 0 150 0
	1 150	0 150	0 150	0 150	0 150 0 150 0 150 0
	31 0 149 2176 149 397 148 488 136 1151 150 67 150 19 150 67
	.25 150 1503 150 84 150 68 149 152 150 11 150 1 150 3
	.50 150 431 150	1 150	1 150	3 150 0 150 0 150 0
	1 150	0 150	0 150	0 150	0 150 0 150 0 150 0
	41 0	11 2902	0	-	0	-	0	-69 414 138 448 117 622
	.25 132 2744 12 2236 27 1950 15 1800 120 413 149 51 147 199
	.50 149 1450 150 40 150 35 150 120 150 1 150 1 150 3
	1 150	0 150	0 150	0 150	0 150 0 150 0 150 0
	Total 1639	1511		1525		1500	1689	1787	1764
		Reference			Name #inst	n	OTW	S
									Min Max Min Max
	Ascheuer (1996)		Asc		50	11 232 5.3 100.0
	Da Silva & Urrutia (2010)	DaS	125 201 401 0.2	4.5 ✓
	Dumas et al. (1995)		Dum	135	21 201 3.9 58.9 ✓
	Gendreau et al. (1998)		Gen	130	21 101 21.3 88.9 ✓
	Langevin et al. (1993)		Lan		70	20	60 2.0 12.9 ✓
	Ohlmann & Thomas (2007) Ohl	25 151 201 24.2 37.2 ✓
	Pesant et al. (1998)		Pes		27	20	45 24.1 100.0
	Potvin & Bengio (1996)	Pot	30	4	46 23.3 100.0

 #s t s #s t s #s t s #r t r #r t r #r t r #r t r #r t r

	Solved instances	Reference solutions
	Gil21 FEA OIA MSA Gil21 DaS10 FEA OIA MSA
	#s t s Asc 22 384 50 18 49 1 49 2 47 56	-	-50 0 50 0 50 0
	DaS		

Table 7 :

 7 Performance of Gil21, fea, oia, and msa on TSPTW benchmarks.

	42

Source code available at https://github.com/romainfontaine/tdtsptw-ejor23

In the special case of benchmarks based on the IGP model, a -1 i,j (t) can be computed using the backward algorithm described in[START_REF] Ichoua | Vehicle dispatching with time-dependent travel times[END_REF].

Results of Vu20 have been sent to us by authors in a personal communication.

Acknowledgements. We thank Gillard et al. and Lera-Romero et al. for helping us to reproduce their results, as well as Vu et al. for sharing their benchmark and results.