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Abstract

The Time Dependent (TD) Traveling Salesman Problem (TSP) is a general-

ization of the TSP which allows one to take traffic conditions into account

when planning tours in an urban context, by making the travel time between

locations dependent on the departure time instead of being constant. The TD-

TSPTW further generalizes this problem by adding Time Window constraints.

Existing exact approaches such as Integer Linear Programming and Dynamic

Programming usually do not scale well. We therefore introduce a new exact

approach based on an anytime extension of A*. We combine this approach

with local search, to converge faster towards better solutions, and bounding

and time window constraint propagation, to prune parts of the state space. We

experimentally compare our approach with state-of-the-art approaches on both

TD-TSPTW and TSPTW benchmarks.

Keywords: Travelling Salesman, Dynamic Programming, Time-Dependent

cost functions

1. Introduction

The Time Dependent (TD) Traveling Salesman Problem (TSP) is a gener-

alization of the TSP where travel times vary throughout the day, thus allowing

one to take traffic conditions into account when planning delivery tours in an

urban context. The TD-TSPTW further generalizes this problem by adding
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Time Window (TW) constraints. The relevance of considering TD travel times

in an urban context is studied in [42] on realistic data; it is shown that this

reduces TW violations and also, in some cases, tour durations. However, this

generalization makes the problem harder to solve and exact approaches such as

Constraint Programming (CP), Integer Linear Programming (ILP), or Dynamic

Programming (DP) do not scale well.

In this article, we propose a new DP-based approach which aims at finding

approximate solutions quickly while being able to prove optimality. Notations

and definitions are introduced in Section 2, and a literature review is done in

Section 3. Our solving approach is presented in Section 4. It is based on Any-

time Column Search (ACS), an anytime variant of A* introduced by [46] which

progressively widens the exploration of the DP state-transition graph. We com-

bine ACS with TW constraint propagation (to filter the state space) and with

local search (to improve upper bounds found by ACS). We also use bounding

functions to guide the search, and we describe three bounds which provide dif-

ferent trade-offs between computational cost and tightness. We introduce new

rules based on latest departure times to filter edges of the underlying graph as it

is essential for computing better bounds. In Section 5, we present experimental

results. We first analyse the benefits of combining ACS with TW constraint

propagation, local search, and edge filtering by considering the results obtained

when disabling these components. This allows us to show that our new filtering

rules greatly improve the solving process. Then, we experimentally compare

our approach with state-of-the-art approaches based on ILP [47, 3] and DP [31]

on three different benchmarks. We show that our approach is able to find refer-

ence solutions much faster, and that it is also able to prove optimality on most

instances. In Section 6, we experimentally evaluate our approach on classic

TSPTW benchmarks, and we show that it outperforms the DP-based approach

of [22] and the LS-based approach of [14]. Finally, conclusions and future works

are discussed in Section 7.

2. Definitions and Notations related to the TD-TSPTW

The set of vertices to visit is denoted V = {0, . . . , n}: 0 is the starting vertex,

and n the ending vertex (in practice, 0 and n often refer to the same location,

i.e., the depot). C = V \ {0, n} denotes the set of customer vertices. t0 denotes

the starting time from vertex 0. Given i ∈ V, ei and li respectively denote the

earliest and latest visit times of i. We assume that e0 = l0 =en = t0. The latest
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visit time of n, ln, represents the time horizon.

It is possible to arrive before ei on i but, in this case, we have to wait on

i. Given a time t and a TW [ei, li], we note t↑[ei,li] the TW-aware time that

includes a waiting time whenever t < ei and returns ∞ whenever t > li, i.e.,

t↑[ei,li] = ei if t < ei; t↑[ei,li] = t if ei ≤ t ≤ li; and t↑[ei,li] =∞ if t > li.

Given i, j ∈ V, ci,j denotes the TD cost function such that ci,j(t) is the

travel time from i to j when leaving i at time t, and ai,j denotes the arrival

time function such that ai,j(t) = t + ci,j(t). The inverse of ai,j is denoted

a−1i,j : a−1i,j (t) is the time at which i must be left to arrive on j at time t. We

assume that TD cost functions satisfy the First-In First-Out (FIFO) property

introduced by [27]. This property ensures that every arrival time function ai,j

is non-decreasing, i.e., ∀t1, t2 ∈ [t0, ln], t1 < t2 ⇒ ai,j(t1) ≤ ai,j(t2). In other

words, waiting at i cannot allow one to arrive sooner at j. Without loss of

generality, we also assume that cost functions satisfy the triangle inequality, i.e.,

∀i, j, k ∈ V,∀t ∈ [t0, ln], aj,k(ai,j(t)) ≤ ai,k(t). Indeed, whenever this property is

not satisfied, we can enforce cost functions to satisfy it by computing shortest

paths in a pre-processing step (this may be done in polynomial-time provided

that cost functions satisfy the FIFO property [28]).

The goal of the TD-TSPTW is to minimise the makespan, i.e., the arrival

time on n of a path that starts from 0 at time t0, visits each customer i ∈ C once

within its TW [ei, li] and ends on n no later than ln. The objective function is

defined more formally in Section 3.3.

3. Literature Review

The TD-TSP has been introduced by [35]. Since then, different approaches

have been proposed to solve this problem (or its variants) and a review may be

found in [20]. Many approaches are based on metaheuristics such as, for exam-

ple, Ant Colony Optimization [16], Tabu Search [27], or Large Neighborhood

Search [44]. These approaches provide no guarantee on solution quality. In this

section, we first describe exact approaches which ensure finding the optimal so-

lution (given enough time and memory), i.e., CP, ILP, and DP, and then we

describe exact and anytime variants of DP and A* which share similarities with

our approach.

3.1. Constraint Programming

[37] have introduced the global constraint TDNoOverlap which ensures that

a set of tasks is not overlapping when transition times between tasks are time-
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dependent. This constraint may be used to solve the TD-TSPTW, and it is

much more efficient than classical CP models for the TD-TSPTW (based on

allDifferent constraints), but it is not competitive with state-of-the-art ILP ap-

proaches.

3.2. Integer Linear Programming

State-of-the-art exact approaches for the TSP are usually based on ILP [1].

However, the integration of time within ILP models (to add TW constraints

or to exploit TD cost functions, for example) usually strongly degrades perfor-

mance. Time may be discretized into time steps, but this either dramatically

increases the number of variables (when considering fine steps) or reduces so-

lution quality (when considering coarse steps). [9] have introduced Dynamic

Discretization Discovery to overcome this issue by dynamically refining time

steps to strengthen time-indexed ILP models. This approach is used by [47] for

solving the TD-TSPTW. It performs best on instances with very tight TWs,

and it dominates the Branch and Cut approach of [38]. A stronger relaxation

was proposed by [48] for routing problems with variable departure time.

[13] consider the Ichoua, Gendreau, Potvin (IGP) model introduced by [27]

for computing travel times. In this model, the distance between two vertices

is assumed to be constant (i.e., the same sequence of road segments is always

used to travel between two vertices), whereas speeds are time-dependent and are

defined by piecewise-constant functions: the time horizon [t0, ln] is decomposed

into H time steps and the travel speed vijh from i to j at time step h ∈ [0, H−1]

is constant. They propose to decompose vijh in three factors: vijh = uijbhδijh

where uij is the maximum travel speed from i to j during the whole time

horizon (i.e., uij = maxh∈[0,H−1] vijh), bh is the best congestion factor over

all arcs during time step h (i.e., bh = maxi,j∈V vijh/uij), and δijh represents

the degradation of the congestion factor of arc (i, j) during time step h (i.e.,

δijh = vijh/(uijbh)). A key parameter is ∆, the smallest value of all δijh values

(i.e., ∆ = mini,j∈V,h∈[0,H−1] δijh): When ∆ = 1, all arcs (i, j) have the same

congestion factor bh for all time steps h ∈ [0, H − 1]. In this case, the TD-TSP

can be solved as a classical asymmetric TSP with constant travel times. When

∆ < 1, the optimal solution computed with ∆ = 1 provides a lower bound which

is used in the branch-and-bound algorithm of [2]. In [3], the branching strategy

of this algorithm is enhanced with a dominance rule induced by TWs. This

approach performs best when all arcs share rather similar congestion patterns,

i.e., when ∆ is very close to 1.

4



3.3. Dynamic Programming

The DP approach proposed by [7] for the TSP has been extended to handle

TD cost functions by [36] and TWs by [12]. It has also been extended to Vehicle

Routing Problems (VRPs) by [26] and to TD-VRPs by [42].

We describe the basic principles of DP for solving the TD-TSPTW as it is

a starting point for introducing our approach. Given a vertex i ∈ V \ {0} and a

set of vertices S ⊆ C \ {i}, let p(i,S) denote the earliest arrival time of a path

that starts from 0 at time t0, visits each vertex of S exactly once, and ends on i,

while satisfying TW constraints of all vertices in S ∪{i} (if no such path exists,

then p(i,S) =∞). We may recursively define p(i,S) as follows:

p(i,S) =

{
min
j∈S

aj,i(p(j,S \ {j}))↑[ei,li] if S 6= ∅ (1)

a0,i(t0)↑[ei,li] otherwise (2)

The optimal solution corresponds to p(n, C), i.e., the earliest arrival time on n

of a path that starts from 0 at t0 and visits all vertices of C during their TWs.

It may be computed by searching for a path in a state-transition graph. States

are triples (i,S, t) such that i ∈ V \ {0} is the last visited vertex, S ⊆ C \ {i} is

the set of customers that have been visited before i, and t ∈ [ei, li] is the arrival

time on i. A state (i,S, t) is an initial state whenever S = ∅: in this case, i is the

first customer visited after the depot 0, and t = a0,i(t0)↑[ei,li]. A state (i,S, t)
is a final state whenever i = n and S = C: in this case, all customers have been

visited and t is the arrival time on the depot n. Edges of the graph correspond

to transitions between states. More precisely, for each state s = (i,S, t):

• if S∪{i} ⊂ C then, for each customer j ∈ C\(S∪{i}) such that ai,j(t) ≤ lj ,
there is a transition from s to (j,S ∪ {i}, ai,j(t)↑[ej ,lj ]);

• if S ∪ {i} = C and ai,n(t) ≤ ln, there is a transition from s to the final

state (n,S ∪ {i}, ai,n(t)).

The goal is to find a path from an initial state to a final state (n, C, t) such that

t is minimal. This path may be computed in a level-wise manner, starting from

level 0 that contains all initial states: for each level k ranging from 1 to n−1, we

compute every state (j,S, t) such that #S = k and t is minimal by exploiting

the states (i,S \ {i}, t′) of level k − 1 according to Eq. (1).

3.4. Variants of Dynamic Programming

As the number of states explored by DP for the TSP is in O(n ·2n), different

approaches have been proposed to avoid combinatorial explosion. A first pos-
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sibility is to consider a relaxed state space, where some states are merged into

a single one as proposed by [12] and [5]. In this case, the optimal solution in

the relaxed state space provides a lower bound. [31] extended this approach to

the TDTSP-TW and introduced the ti-tour relaxation which outperforms ILP

approaches of [2] and [47]. It is not anytime as it does not yield approximate so-

lutions during search: it either provides the optimal solution (if time or memory

limits are not exceeded) or no solution at all.

Another possibility is to use Restricted DP (RDP), introduced by [36], where

an upper bound is computed by limiting the number of states stored at each level

to the H best ones. RDP is neither exact nor anytime as a single approximate

solution is computed at the final layer.

[8] have introduced a framework based on Multivalued Decision Diagrams for

solving problems that have DP formulations. It is both exact and anytime, i.e.,

it produces a sequence of solutions of increasing quality until proving optimality

(given enough time and memory). It is also generic and it computes bounds

without the need of problem-specific implementations, using both RDP and

state space relaxations. This approach is improved by [22] by computing new

bounds (some of them being problem-specific). Results are presented for several

problems, including the TSPTW. As far as we know, this kind of approach has

never been used to solve the TD-TSPTW.

[24] have introduced A*, which uses heuristics to speed up the search of short-

est paths in state-transition graphs and which is widely used to solve problems

that have DP formulations, such as planning problems for example. A* is not

anytime: it provides a single optimal solution, and it may have to explore an ex-

ponential number of states before finding it. One may convert A* into anytime

algorithms such as, for example, anytime weighted and real-time A* algorithms

[23, 10].

Recently, [33] have introduced Iterative Memory Bounded A* (IMBA*) which

allowed them to win the 2018 ROADEF challenge. The basic idea is to limit

the number of stored states with a parameter D, like in RDP. However, in RDP

the limit is on the number of states in each level, whereas in IMBA* the limit

is on the total number of open states, for all levels. When D = 1, the algorithm

behaves like a pure greedy one; when D =∞, the algorithm is exact. To obtain

an anytime and exact algorithm, IMBA* iterates the process with increasing

values of D, according to a geometric progression. [32] have used a very similar

approach to obtain state-of-the-art results on the sequential ordering problem.

In this paper, we propose to use Anytime Column Search (ACS) which has
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been introduced by [46]. ACS is both exact and anytime and, like IMBA*, it

iterates A*-like searches. However, instead of bounding the number of stored

states, ACS bounds the number of states which are expanded at each level to

the w best ones. [46] report that, for the TSP, ACS performs best when w = 1.

Hence, we set w to 1 in this paper.

4. New Approach for the TD-TSPTW

In this section, we first describe ACS and show how to use it to solve the TD-

TSPTW (Section 4.1) and how to combine it with TW constraint propagation

(Section 4.2) and bounding functions (Section 4.3). Then, we describe a local

search algorithm used to improve upper bounds found by ACS (Section 4.4).

Finally, we discuss some implementation issues (Section 4.5).

4.1. Anytime Column Search

Our instantiation of ACS to solve the TD-TSPTW is described in Algo-

rithm 1. It searches for paths in the state-transition graph defined in Sec-

tion 3.3, from initial to final states. As usual in A*-based algorithms, it uses a

lower bounding function f to evaluate a state (i,S, t): f(i,S, t) is a lower bound

of the arrival time of the fastest path that starts from i at time t, visits every

vertex of C \ (S ∪ {i}) within its TW, and ends on n (three bounding functions

are described in Section 4.3).

States are created during search: starting from initial states, we iteratively

choose an open state and expand it by creating all its successors in the state-

transition graph (we say that a state is open whenever it has been created but

not expanded). For each level k ∈ [0, n− 2], we maintain a set open(k) of open

states (i,S, t) such that #S = k. Also, we maintain a set ND of all created

states that are not dominated by another created state, where state (i,S, t)
dominates state (i,S, t′) whenever t < t′. Initially, ND and open(0) contain all

initial states whereas open(k) is empty for every other level k > 0 (lines 1-2).

We know that an open state s can be safely removed from the state-transition

graph whenever f(s) ≥ ub or s is dominated by a state in ND. Hence, open(k)

should be filtered each time ub is decreased or a new state is added to ND.

As this filtering is expensive, we consider a lazy approach where useless states

are removed only when searching for the next state to expand (lines 5-7). We

introduce the following predicate to decide whether an open state is still useful

or not: useful(s)⇐⇒ (f(s) < ub ∧ ∀s′ ∈ ND , s is not dominated by s′).
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Algorithm 1: ACS for the TD-TSPTW

1 ub← ln; ND ← {(i, ∅, a0,i(t0)↑[ei,li]) : i ∈ C}; open(0)← ND
2 foreach level k ∈ [1, n− 2] do open(k)← ∅;
3 while there exists a state s ∈ ∪k∈[0,n−2]open(k) such that useful(s) do
4 foreach k ∈ [0, n− 2] such that there exists s ∈ open(k), useful(s) do
5 repeat
6 remove from open(k) the state s such that f(s) is minimal
7 until useful(s);
8 let s = (i,S, t) be the last state removed from open(k)
9 if k = n− 2 and ai,n(t) < ub then

10 update ub and ln to ai,n(t) // New solution found

11 else if k < n− 2 then
12 foreach non visited customer j ∈ C \ (S ∪ {i}) do
13 let s′ = (j,S ∪ {i}, ai,j(t)↑[ej ,lj ])

14 if useful(s′) and s′ 6∈ ND then
15 remove from ND every state dominated by s′

16 add s′ to ND and to open(k + 1)

At each iteration of the while loop (lines 3-16), we consider each level k

ranging from 0 to n− 2 and we search for the most promising state in open(k),

i.e., the state s = (i,S, t) that is useful and that minimizes f(s) (lines 5-7).

When k = n − 2, we have already visited all customers and if the arrival time

at n is lower than ub, then we have found a new improving solution (line 10).

When k < n − 2, s is expanded in the loop lines 12-16: for each non visited

customer j, we compute the new state s′ obtained when going from i to j at

time t, and if s′ is useful, we update ND and open(k + 1) (lines 15-16).

ACS ends when open sets no longer contain useful states. In this case, the

last solution found is optimal (see proof in [46]). However, as improving solutions

are found progressively, one may stop ACS when a given limit is reached. If

there are no TWs, a first solution is found at the end of the first iteration of the

loop lines 3-16 and there are O(n2) open states: open(0) contains n−1 states,

and ∀k > 0, #open(k) = #open(k−1)−1. This first solution is the one that

would be computed with a greedy algorithm that selects, at each iteration, the

state s that minimizes f(s) among all successors of the last selected state. Of

course, in presence of TWs it may be necessary to iterate more than once the

loop lines 3-16 before finding a solution. However, TW constraints may also be

used to prune parts of the search space, as described in Section 4.2.
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4.2. Propagation of time window constraints

TW constraints are propagated to infer precedence relations and tighten

other TWs. We use the same propagation rules as [47], which are adaptations

to TD cost functions of the rules described by [15] for the TSPTW. These rules

operate on two sets E and R.

• E is the set of edges that may be used to travel from a vertex to its successor

when building tours: E is initialized to {(0, i), (i, n), (i, j) : i, j ∈ C∧i 6= j}.

• R is the set of precedence relations: it contains every couple (i, j) such that

i must be visited before j in every feasible solution (intermediate nodes

may be visited between i and j). R is initialized to {(0, i), (i, n) : i ∈ C}.

A first set of rules is used to tighten the TW of a vertex k by propagating TWs

of its predecessors and successors in E :

• ek is increased if k can only be reached later than ek, i.e.,

ek ← max
{
ek,min(i,k)∈E ai,k(ei)

}
;

• ek is increased if it implies waiting for all its successors, i.e.,

ek ← max
{
ek,min(k,i)∈E a

−1
k,i(ei)

}
;

• lk is decreased if it implies arriving too late at each successor of k, i.e.,

lk ← min
{
lk,max(k,i)∈E a

−1
k,i(li)

}
;

• lk is decreased if k is always reached before lk when leaving its predecessors

as late as possible, i.e., lk ← min
{
lk,max(i,k)∈E ai,k(li)

}
.

When TWs are tightened, R and E are updated as follows:

• (i, j) is removed from E and (j, i) is added to R whenever ai,j(ei) > lj ;

• A subpath 〈i, j, k〉 is infeasible if ai,j(ei) > lj or if aj,k(max{ej , ai,j(ei)}) >
lk. For all i, j ∈ V, if there exists k such that both 〈i, j, k〉 and 〈k, i, j〉 are

infeasible, then (i, j) is removed from E . If 〈i, k, j〉 is also infeasible, then

(j, i) is added to R.

Finally, the last two rules ensure the transitive closure of R and exploit prece-

dence relations in R to filter E :

• ∀i, j, k ∈ V, if {(i, j), (j, k)} ⊆ R, then (i, k) is added to R and removed

from E .

• For each (i, j) ∈ R, arc (j, i) is removed from E .
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These rules are applied until reaching a fixed point where no more rule can be

applied. This is done at the beginning of Algorithm 1, as a preprocessing step.

This is also done after each improvement of ln (line 10). As far as we know,

it is the first time this procedure is used to prune the search space during the

search. This is particularly relevant in our context as tighter TWs lead to better

relaxations of TD cost functions into constant cost functions, as explained in

Section 4.3. In some cases, these rules may either detect an inconsistency (when

a vertex in V \ {n} has no outgoing edge in E or when a vertex in V \ {0} has

no incoming edge in E), or prove optimality (when the TW of n is tightened to

a single value, i.e., en = ln).

E and R are also used to reduce the number of states explored in the loop

lines 12-16: we only consider the customers j ∈ C \ (S ∪{i}) such that (i, j) ∈ E
and, ∀k ∈ V \ (S ∪ {i}), (k, j) 6∈ R.

4.3. Computation of the lower bound f

Given a state s = (i,S, t), f(s) is a lower bound of the arrival time of the

fastest path that starts from i at time t, visits every customer in C \ (S ∪ {i}),
and ends on n, while satisfying all TWs (f may detect that no such path exists

and return∞). It is used by Algorithm 1 to (i) expand first the most promising

state of each level, and (ii) prune the state space when a state cannot lead to

a solution with a cost smaller than ub. Bounds are widely used in A* and in

Branch & Bound approaches, and there exist many different lower bounds for

the TSP, which are often computed by solving relaxations. In this section, we

describe three lower bounds for the TD-TSPTW, called fFEA, fOIA, and fMSA,

which provide different trade-offs between computational cost and tightness.

fFEA is a new bound whereas fOIA and fMSA combine fFEA with classical TSP

bounds. Before describing bounds, we define constant edge costs and the graph

used for computing these bounds.

4.3.1. Definition of constant costs

The cost of edge (j, k) depends on the departure time from j, which is not

known exactly when computing f(s). To ensure that f(s) is a lower bound,

we compute a lower bound cj,k of the cost of every edge (j, k) ∈ E . To this

end, we first introduce the Latest Departure Time (LDT) from a vertex j to

reach another vertex k no later than lk while leaving j no later than lj , i.e.,

LDT (j, k) = min{lj , a−1j,k(lk)}. The lower bound of the cost of edge (j, k) is the

shortest travel time from j to k for each departure time t ∈ [ej , LDT (j, k)],
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plus the waiting time on k when the arrival time on k is earlier than ek, i.e.,

cj,k = mint∈[ej ,LDT (j,k)] cj,k(t) + max{0, ek − aj,k(t)}. These constant costs are

precomputed and updated every time TWs are tightened using rules described

in Section 4.2.

4.3.2. Definition of the graph Gs used to compute f(s)

Given a state s = (i,S, t), the lower bound f(s) is computed by solving a

relaxation of the shortest Hamiltonian path problem from i to n in a graph

Gs = (Vs, Es) such that Vs = {n} ∪ C \ S. A straightforward definition of Es
is Es = E ∩ ((Vs \ {n}) × (Vs \ {i})) as E contains edges than may be used in

a feasible solution and the path must start from i and end on n. To tighten

the lower bound, we introduce three new rules for removing from Es edges that

cannot be used when the current state is s.

The first two rules are applied on edges that start from i.

• As the path starts from i, we remove any edge (i, k) such that there exists

a vertex l that must be visited before k but has not yet been visited:

Rule 1 = Es ← Es \ {(i, k) : k ∈ Vs \ {i} ∧ ∃l ∈ Vs \ {i}, (l, k) ∈ R}.

• As a vertex must be visited before the end of its TW, we remove any

edge (i, k) such that we cannot reach k on time when leaving i at time t:

Rule 2 = Es ← Es \ {(i, k) : k ∈ Vs \ {i} ∧ t > LDT (i, k)}.

A third rule is applied on edges that start from another vertex j ∈ Vs \ {i}.
For these edges, we know that we first have to travel from i to j and the

departure time from j is lower bounded by ai,j(t). However, as this filtering is

expensive to perform, we do it once for all possible vertices j ∈ Vs \ {i} and,

therefore, we consider a lower bound t′ which is valid for all these vertices, i.e.,

t′ = min(i,j)∈Es ai,j(t). Then, we use t′ to remove any edge (j, k) such that we

cannot reach k on time when leaving j at time t′:

Rule 3 = Es ← Es \ {(j, k) : j ∈ Vs \ {i, n} ∧ k ∈ Vs \ {i} ∧ t′ > LDT (j, k)}.

4.3.3. Feasibility bound ffea

This bound performs a simple feasibility check onGs: If any vertex in Vs\{n}
(resp. Vs \ {i}) has no outgoing (resp. incoming) arc in Es, then s cannot lead

to a feasible solution (as there exists no Hamiltonian path from i to n in Gs).

In this case, ffea(i,S, t) =∞. Otherwise, ffea(i,S, t) = t.

We also experimented with other feasibility checks, such as ensuring that

each node in Vs \ {i} is reachable from i (with a linear-time graph traversal),
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or ensuring that there is a unique topological order among the set of strongly

connected components of Gs (when the topological order is not unique, no

Hamiltonian path exists). Both these feasibility checks were implemented but

discarded as they did not bring enough benefits relatively to their cost.

4.3.4. Outgoing/Incoming Arcs bound foia

This bound is an adaptation to the TDTSP-TW of the I/O bound used

by [32] for the sequential ordering problem. It is weaker than the assignment

relaxation (i.e., the minimum assignment in the bipartite graph between Vs\{n}
and Vs \{i}). Indeed, it relaxes the constraint that each vertex in Vs \{n} must

be connected to a different vertex in Vs \ {i}. It is also an order cheaper to

compute as it is computed in linear time with respect to the number of edges

in Es. As Gs is not necessarily symmetric, we combine two different bounds:

foa, which considers Outgoing Arcs, and fia, which considers Incoming Arcs.

More precisely, foa adds to t the sum of the minimum-weight outgoing arc for

each node in Vs \ {n}, i.e., foa(i,S, t) = t+
∑

j∈Vs\{n}min
{
cj,k : (j, k) ∈ Es

}
,

whereas fia considers incoming arcs, i.e.,

fia(i,S, t) = t+
∑

k∈Vs\{i}min
{
cj,k : (j, k) ∈ Es

}
.

Finally, we define foia(i,S, t) = max {ffea(s), foa(s), fia(s)}, which can be

computed using a single traversal of edge set Es.

4.3.5. Minimum Spanning Arborescence bound fmsa

The Minimum Spanning Arborescence (MSA) is a classic relaxation of the

Asymmetric TSP [43]. We extend it to the TD-TSPTW using the cost lower

bound c and the graph Gs. More precisely, given a state s = (i,S, t), fmsa(s) is

equal to t plus the cost of the MSA rooted at i in Gs. When no such arborescence

exists (i.e., there exists at least one node in Vs \{i} that cannot be reached from

i) or if a node in Vs \ {n} has no outgoing arc, we set fmsa(s) =∞. The MSA

is computed in O(#Es log #Vs) with the algorithm of [19].

4.4. Local Search (LS)

In order to converge faster towards good solutions, we combine Algorithm

1 with a LS procedure which tries to improve every solution provided by ACS

(line 10). We use an approach similar to the one of [14] for the TSPTW, based

on the following neighborhoods: 1-shift (that moves a single vertex backward or

forward in the path), and 2-opt (that reverses a subsequence of vertices of the

path). We exploit the two sets E and R to reduce the size of the neighborhoods.

12



For each possible candidate move, we update visit times of each vertex impacted

by it. If a TW is violated or the travel time exceeds ub, the move is rejected.

Otherwise it is accepted and ub is updated. Moves are repeated until reaching

a local optimum (i.e., a solution that cannot be improved using a single move).

4.5. Implementation Issues

Our algorithm has been implemented in C++ (the source code will be freely

available if the paper is accepted). In this section, we detail some implementa-

tion choices that have a strong impact on time or space.

Data structures. Bitsets are used to efficiently represent the set S in a state

(i,S, t). A hash table is used to represent ND: the key is a couple (i,S), and the

value is the smallest time t such that state (i,S, t) has been created. This allows

us to check in amortized constant time if a state already belongs to ND or if

there is a dominance relation between two states. For each level k, a priority

queue is used to represent open(k), where the priority of a state s is defined

by f(s). The best state of open(k) is found in constant time. Removals and

insertions are performed in O(log2(#open(k)). When k = 0, open(k) contains

O(n) states and when k > 1, open(k) contains O(nCn
k ) states.

Computation of ci,j(t). The implementation of the function ci,j(t) that returns

the travel time from i to j when leaving at time t depends on the considered

benchmark. In many benchmarks (such as the ones introduced by [37] or [42]),

TD cost functions are provided as piecewise-constant functions: the time horizon

is split into h consecutive time-steps and, for each edge (i, j) and each time step

s, there is an input value that gives the travel time from i to j when leaving at

time-step s. This representation is compact, but it does not necessarily verify

the FIFO property. In this case, we use the transformation described by [37] to

ensure the FIFO property. This allows us to compute ci,j(t) in constant time.

In benchmarks that consider the IGP model (described in Section 3), travel

times may be computed from distances and speeds in such a way that the FIFO

property is ensured [27]. This is done in linear time with respect to the number

of time steps involved when traveling from i to j. Similarly to [3] and [47], we

round times to the nearest integer.
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Computation of a−1i,j (t). Our implementation assumes that all times have integer

values. We use binary search1 to search for the value t′ = a−1i,j (t) such that

ai,j(t
′) = t in O(log2(li − ei)). If t′ has not an integer value or if there exist

more than one value for t′ (this occurs when aij has constant parts), we ensure

correctness by returning the largest integer value t′ such that ai,j(t
′) ≤ t.

Computation of Es. Building the graph Gs to compute f(s) is one of the main

bottlenecks of our approach, as filtering arcs according to their LDT (using Rules

2 and 3 of Section 4.3.2) requires O(n2) comparisons and memory accesses. To

speed up this step, we precompute a set Et = {(i, j) ∈ E : t ≤ LDT (i, j)}
for each time t ∈ RT where RT = {LDT (i, j) : (i, j) ∈ E} is the set of all

relevant times. Each set Et is encoded with bitsets (for compact storage and

fast computation of set intersections), and it is updated when E is modified

or TWs are tightened. Given a state s = (i,S, t), we compute Es as follows: if

t > maxRT , then Es = ∅ (as t is larger than the LDT of all edges); otherwise, we

search for the smallest time t′ ∈ RT such that t′ ≥ t and we define Es = E ∩Et′ .
Using bitsets to encode Et allows us to efficiently implement ffea: to check if

a vertex has no outgoing or incoming edges, we test bitset emptiness. Hence,

although ffea and foia have the same asymptotic complexity, fFEA is much

faster in practice.

5. Experimental results on TD benchmarks

In this section, our goal is to (i) evaluate the relevance of the various com-

ponents of our approach (Section 5.2); (ii) compare our approach with the ILP

approaches of [3] and [47] and the state-of-the-art DP approach of [31] (Sec-

tions 5.3 and 5.4); and (iii) evaluate our approach and the one of [31] on a

realistic benchmark (Section 5.5). Before reporting experimental results, we

first describe the experimental setting in Section 5.1.

5.1. Experimental Setting

Considered approaches. We consider three variants of our approach that only

differ on the computation of the lower bound f : fea (resp. oia and msa)

denotes the variant obtained when f = ffea (resp. f = foia and f = fmsa).

1In the special case of benchmarks based on the IGP model, a−1
i,j (t) can be computed using

the backward algorithm described in [27].
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Our approach is compared with the ILP approaches of [3] and [47], respectively

denoted Ari18 and Vu20, and with the DP approach of [31], denoted Ler22.

Measure of TW tightness. The hardness of a TD-TSPTW instance depends on

the number of vertices n and also on TW tightness. To allow us to compare the

tightness of instances generated with different models, we compute the percent-

age of customer pairs that have Overlapping TWs, denoted OTW, i.e.,

OTW = 100 ∗ #{{i,j}⊆C:[ei,li]∩[ej ,lj ]6=∅}
#{{i,j}⊆C} .

Benchmark BAri18. This benchmark has been used by [3] to evaluate Ari18. It

has been randomly generated according to the following parameters: the num-

ber of vertices n ∈ {16, 21, 31, 41}, the congestion factor ∆ ∈ {.7, .8, .9, .95, .98}
(defined in Section 3), the traffic pattern P ∈ {B1, B2} and the TW tightness

β ∈ {0, .25, .50, 1}. All TD cost functions contain 73 time-steps and are com-

puted with the IGP model (described in Section 3). There are 30 instances for

each combination (n, β,∆, P ), leading to a total of 4800 instances. The smaller

β, the wider the TWs: the average OTW for instances with β = 0 (resp. .25,

.50, and 1) is equal to 100 (resp. 90, 67, and 15).

Benchmark BVu20. This benchmark has been used by [47] to evaluate Vu20.

It is an extension of BAri18, where the number of vertices has been increased to

n ∈ {60, 80, 100}, using a similar model to generate TD cost functions except

that only four values of ∆ are considered, i.e., ∆ ∈ {.7, .8, .9, .98}. TWs have

been generated differently: instead of using a parameter β, there is a parameter

w ∈ {40, 60, 80, 100, 120, 150} that determines the TW width (which is the same

for all customers of the instance). There are 10 instances for each combination

of (n,w,∆), leading to a total of 720 instances. TWs of most instances of this

benchmark are much tighter than those of BAri18: the average OTW over the

120 instances with w = 40 (resp. 60, 80, 100, 120, and 150) is equal to 5 (resp.

8, 11, 14, 16, and 20).

Benchmark BRif20. BAri18 and BVu20 have been randomly generated according

to a rather simple model: customers are randomly distributed in three concentric

circular zones which are used to define TD travel speeds, and the distance

between two points is constant. This is not very realistic as in real urban

contexts the fastest path between two customers may change depending on the

departure time. In order to evaluate our approach on more realistic TD cost

functions, we consider the benchmark described by [42], denoted BRif20. TD
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cost functions of this benchmark were generated by computing shortest paths in

the road network of Lyon for all possible departure times, using a realistic traffic

simulation built from real-world data. Different TD cost functions are provided,

depending on two parameters σ and l that define the spatial and temporal

granularity of traffic data. We report results with σ = 100 and l = 6 which are

the finest possible values (similar results were obtained with other values). In

this case, TD cost functions are piecewise-constant functions composed of 120

time-steps. To ease the comparison with results obtained on BAri18, we consider

instances with n ∈ {21, 31, 41} and TWs were generated using the same model,

i.e., TW tightness is controlled by β ∈ {0, .25, .50, 1}. There are 150 instances

for each combination of (n, β), leading to a total of 1800 instances. The average

OTW over the 450 instances with β = 0 (resp. .25, .50, and 1) is equal to 100

(resp. 86, 62, and 16).

Considered hardware. Ler22, fea, oia, and msa are run on 2.1GHz Intel Xeon

E5-2620 v4 processors with 64GB RAM. To favor reproducibility, experiments

were executed on Grid5000 [6]. As suggested by [18], Turbo Boost was disabled

and each machine solved one instance at a time, using a single processor. Run

times of Ari18 and Vu20 are those reported by [3] and [47], as source codes are

not available: Ari18 is run on a 2.33GHz Intel Core 2 Duo processor with 4GB

RAM and Vu20 on a 3.4GHz Intel Core i7-2600 processor (unknown RAM).

Performance measures. We say that an instance is solved by an approach when-

ever it finds the optimal solution and proves its optimality within one hour. #s

denotes the number of solved instances, and ts the average solving time for the

solved instances. #r denotes the number of instances for which the approach

has found the reference solution, and tr denotes the average time needed to find

the reference solution for these instances. The reference solution is either the

optimal solution, when Ler22 or at least one of our approaches has solved the

instance, or the best solution obtained by running oia and msa with an ex-

tended time limit of 3 hours. The reference solution is optimal for all instances

of BVu20 and for all instances of BAri18 and BRif20 such that n ≤ 31 or β ≥ .50.

When n = 41, the percentage of instances for which the reference solution is

known to be optimal is equal to 42% (resp. 96%) for BAri18 when β = 0 (resp.

β = .25), and to 9% (resp. 100%) for BRif20 when β = 0 (resp. β = .25).

When displaying performance measures of different approaches, we underline

the maximal value of #s or #r and we highlight in blue (resp. green) the
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Solved instances Reference solutions

oia0 oia1 oia2 oia3 oia oia0 oia1 oia2 oia3 oia

β #s ts #s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr #r tr

0 0 - 1 3213 1 3065 1 3100 59 819 29 907 54 662 53 674 54 652 60 18
.25 0 - 53 1487 56 1333 56 1333 60 220 58 91 60 13 60 13 60 12 60 3
.50 45 1612 60 26 60 18 60 18 60 6 60 1 60 0 60 1 60 0 60 0

Total 45 114 117 117 179 147 174 173 174 180

Table 1: Performance of oia variants on a subset of BAri18 instances with n = 31 (60 instances
per value of β). Left: Number of solved instances (#s) and solving time (ts). Right: Number
of reference solutions found (#r) and time to reference solution (tr).

smallest value of ts (resp. tr) among all approaches that maximize #s (resp.

#r). For Ari18 and Vu20, we do not report #r and tr as they are not available.

For Ler22, we do not report #r and tr as they are equal to #s and ts, given

this approach is not anytime.

5.2. Analysis of the algorithm’s components

ACS is combined with three key components, i.e., TW constraint propaga-

tion (described in Section 4.2), LS (described in Section 4.4), and rules that

exploit LDTs to filter the set Es of edges used to compute f (described in

Section 4.3.2). To evaluate the relevance of these components, we report re-

sults obtained with different variants obtained by disabling them. We consider

f = foia as similar conclusions are observed with ffea and fmsa. We consider

the following variants:

• oia0 is the variant where the three components are disabled;

• oia1 is obtained from oia0 by enabling TW constraint propagation before

starting the search, during a preprocessing step;

• oia2 is obtained from oia1 by also enabling TW constraint propagation

during the search, each time ub is decreased;

• oia3 is obtained from oia2 by enabling LS;

• oia is obtained from oia3 by enabling the filtering of Es.

In Table 1, we display performance measures of these variants on a represen-

tative subset of 180 instances with n = 31 and β ∈ {0, 0.25, 0.50} coming from

BAri18 (similar results are obtained with other benchmarks). When looking at

the number of solved instances (left side of Table 1), we see that all components

but LS improve performance: oia1, which propagates TW constraints before
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Figure 1: Comparison of oia variants on 60 instances of BAri18 with n=31 and β∈{0, .25, .50}.
Top: Evolution of the percentage of solved instances with respect to time. Bottom: Evolution
of the average gap to the reference solution (in percentage) with respect to time.

the search, solves 69 more instances than oia0; oia2, which also propagates TW

constraints during the search, solves three more instances; and the filtering of

Es (oia) allows us to solve 62 more instances. To compare solving time distri-

butions, we display in the top part of Figure 1 the evolution of the percentage

of solved instances with respect to time. It shows us that similar improvements

are observed for time limits shorter than one hour.

When looking at the number of reference solutions found (right side of Ta-

ble 1), we see that the propagation of TW constraints during the search slightly

degrades performance (oia2 finds one less reference solution than oia1): this

step is rather time consuming and becomes interesting only when the optimal

solution has been found, to shorten the time spent to prove optimality. We

also see that LS allows oia3 to find reference solutions quicker. To compare the

ability of our different variants to quickly converge towards good solutions, we

display in the bottom part of Figure 1 the evolution of the gap to the reference

solution with respect to time. It demonstrates that LS allows oia3 to find better

solutions than oia2 at the beginning of the search, especially for wide TWs.

Finally, let us mention that all components but LS significantly reduce mem-

ory use. For example, when β = .25, oia0 (resp. oia1, oia2, oia3, and oia)

used on average 63.8 (resp. 19.1, 15.6, 15.6, and 1.9) GB of memory.
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Solved instances Reference solutions

Ari18 Ler22 FEA OIA MSA FEA OIA MSA

n β #s ts #s ts #s ts #s ts #s ts #r tr #r tr #r tr

16 0 287 299 300 5 300 0 300 0 300 0 300 0 300 0 300 0
.25 299 143 300 3 300 0 300 0 300 0 300 0 300 0 300 0
.50 299 26 300 2 300 0 300 0 300 0 300 0 300 0 300 0
1 300 2 300 0 300 0 300 0 300 0 300 0 300 0 300 0

21 0 248 660 300 198 300 1 300 1 300 3 300 0 300 0 300 1
.25 286 383 300 87 300 0 300 0 300 1 300 0 300 0 300 0
.50 296 289 300 19 300 0 300 0 300 0 300 0 300 0 300 0
1 300 29 300 0 300 0 300 0 300 0 300 0 300 0 300 0

31 0 155 1631 300 1788 300 496 294 808 235 1334 300 64 300 20 300 67
.25 199 1274 300 1084 300 145 300 219 299 637 300 19 300 5 300 12
.50 157 1433 300 389 300 5 300 6 300 16 300 1 300 0 300 1
1 233 608 300 0 300 0 300 0 300 0 300 0 300 0 300 0

41 0 110 2263 126 2778 0 - 0 - 0 - 160 450 234 567 200 700
.25 131 1950 244 2593 35 2444 16 2986 0 - 209 315 280 207 265 282
.50 55 2276 300 1837 252 566 280 645 235 1069 299 75 300 6 300 19
1 106 528 300 0 300 0 300 0 300 0 300 0 300 0 300 0

Total 3461 4570 4187 4190 4069 4568 4714 4665

Table 2: Performance of Ari18, Ler22, fea, oia, and msa on BAri18 (300 instances per row).

5.3. Experimental Comparison on [3]’s benchmark

Let us now compare our approach with Ari18 and Ler22 on benchmark

BAri18. In Table 2, we report the number of solved instances and solving times.

msa is always outperformed by both oia and fea, showing that a tighter (but

more expensive) bound does not pay off on this benchmark. fea and oia have

very close performance when n ≤ 21. When n = 31, fea solves all instances and

outperforms oia but when n = 41, oia performs better than fea, showing that

a tighter bound pays off when considering larger instances. Similar conclusions

are drawn from the right side of Table 2, which considers the ability to quickly

find reference solutions: oia outperforms both fea and msa.

Ler22 manages to solve more instances than our approach when n = 41

and β ≤ .50. However, when n = 31 and β ≤ .50, fea is faster than Ler22.

Also, unlike Ler22, our approach is anytime: when our approach has not solved

an instance, it has found approximate solutions which are often optimal. To

evaluate the ability of our approach to quickly converge towards good solutions,

we display the evolution of the gap to reference solutions with respect to time

for the hardest instance classes (i.e., n = 41 and β ≤ .50) in Figure 2. It

shows us that oia converges faster than fea and msa and that it reaches an

average gap to the reference solution of 1% in 168s (resp. 5s and .6s) when
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Figure 2: Evolution of the average gap (%) to the reference solution with respect to time for
fea, oia and msa on the instances with n = 41 and β ∈ {0, .25, .50} (300 instances per class).

Ari18 FEA

P = B1 P = B2 P = B1 P = B2

β\∆ .70 .80 .90 .95 .98 .70 .80 .90 .95 .98 Total .70 .80 .90 .95 .98 .70 .80 .90 .95 .98 Total

0 6 8 10 19 28 1 0 3 12 23 110 0 0 0 0 0 0 0 0 0 0 0
.25 6 8 13 23 29 1 0 5 16 30 131 2 2 3 4 4 4 4 4 4 4 35
.50 1 2 4 9 18 1 0 2 5 13 55 24 25 25 25 25 28 25 25 25 25 252
1 14 11 14 12 29 8 4 3 4 7 106 30 30 30 30 30 30 30 30 30 30 300

Total 27 29 41 63 104 11 4 13 37 73 56 57 58 59 59 62 59 59 59 59

Table 3: Number of instances solved by Ari18 and fea with respect to P , ∆ and β for n = 41
(30 instances per class).

β = 0 (resp. β = .25 and β = .50). As a comparison, Ler22 either obtains the

optimal solution, or no solution at all. When n = 41 and β = 0 (resp. β = .25

and β = .50), Ler22 has found 126 (resp. 244 and 300) optimal solutions in an

average time of 2778s (resp. 2593s and 1837s). Regarding memory use, Ler22,

fea, oia and msa respectively used 6, 35, 25 and 7 GB on average, when n=41.

This demonstrates that using tighter bounds reduces memory needs.

Table 2 also presents results for Ari18. Even if it has been run on a different

computer, we can see that our approach is more successful on many classes: oia

solves 729 more instances than Ari18 on the full benchmark and, on a large

number of classes the difference in solving times cannot only come from the

fact that they have been run on different computers. However, when n = 41

and β ∈ {0, 0.25}, only 35 (resp. 16) instances are solved by fea (resp. oia)

whereas Ari18 is able to solve 241 instances.

The success of Ari18 is strongly related to ∆ as it relies on bounds which

are tighter when ∆ is closer to 1, as explained in Section 3. To illustrate this,

we detail in Table 3 the number of solved instances for each value of ∆ and each
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Solved instances Reference solutions

Ler22 Vu20 FEA OIA MSA FEA OIA MSA

n w #s ts #s ts #s ts #s ts #s ts #r tr #r tr #r tr

60 ≤ 80 120 1.0 120 3.3 120 0.1 120 0.1 120 0.1 120 0.0 120 0.0 120 0.0
100 40 8.0 40 15.5 40 0.1 40 0.1 40 0.1 40 0.0 40 0.1 40 0.0
120 40 25.9 40 84.8 40 0.1 40 0.1 40 0.2 40 0.1 40 0.1 40 0.1
150 40 154.7 39 219.6 40 0.2 40 0.4 40 1.3 40 0.1 40 0.1 40 0.1

80 ≤ 80 120 8.4 120 65.4 120 0.2 120 0.2 120 0.2 120 0.1 120 0.1 120 0.1
100 40 52.7 39 198.3 40 0.2 40 0.3 40 0.7 40 0.1 40 0.1 40 0.1
120 40 96.6 37 433.3 40 0.4 40 0.8 40 2.3 40 0.2 40 0.2 40 0.2
150 40 193.2 39 629.4 40 1.5 40 4.3 40 14.3 40 0.2 40 0.2 40 0.3

100 ≤ 80 120 58.2 120 59.4 120 0.4 120 0.5 120 1.2 120 0.2 120 0.2 120 0.2
100 40 219.0 39 292.5 40 1.3 40 3.4 40 11.7 40 0.3 40 0.3 40 0.4
120 40 365.9 39 435.8 40 5.0 40 16.2 40 55.9 40 0.3 40 0.4 40 0.5
150 38 722.5 29 1291.1 40 79.4 39 165.1 39 564.6 40 3.6 40 9.5 40 33.9

Total 718 701 720 719 719 720 720 720

Table 4: Performance of Ler22, Vu20, fea, oia, and msa on BVu20 (40 instances per row
when w ∈ {100, 120, 150}, and 120 instances per row when w ≤ 80)

traffic pattern P when n = 41. It shows us that Ari18 is very sensitive to ∆

and P , whereas our approach is mainly sensitive to the TW width β. Note that

BAri18 has been randomly generated according to a model which allows one to

control ∆. In benchmarks generated from real-world data such as the one of

[42], for example, the value of ∆ is not controlled and it is much lower than 0.7

(see Section 5.5).

5.4. Experimental Comparison on [47]’s benchmark

Let us now compare our approach with Ler22 and Vu202 on benchmark

BVu20 which has larger numbers of customers to visit and very tight TWs. In

Table 4, we report the number of solved instances and solving times. msa is

always outperformed by oia which is always outperformed by fea. This comes

from the fact that TWs are very tight: in this case, the propagation of TW

constraints and the filtering of arcs based on LDTs remove many edges of E and

the simple feasibility check of ffea is often enough to detect inconsistencies.

If fea is able to solve all instances, Ler22 and Vu20 respectively fail at

solving two and 19 instances. fea is almost always more than ten times as fast

as Ler22 and Vu20 and, for some classes it is more than 100 times as fast. This

difference is large enough to allow us to conclude that fea is more efficient than

2Results of Vu20 have been sent to us by authors in a personal communication.
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Solved instances Reference solutions

Ler22 FEA OIA MSA FEA OIA MSA

n β #s ts #s ts #s ts #s ts #r tr #r tr #r tr

21 0 148 363 150 0 150 1 150 2 150 0 150 0 150 0
.25 150 89 150 0 150 0 150 0 150 0 150 0 150 0
.50 150 15 150 0 150 0 150 0 150 0 150 0 150 0
1 150 0 150 0 150 0 150 0 150 0 150 0 150 0

31 0 149 2176 149 397 148 488 136 1151 150 67 150 19 150 67
.25 150 1503 150 84 150 68 149 152 150 11 150 1 150 3
.50 150 431 150 1 150 1 150 3 150 0 150 0 150 0
1 150 0 150 0 150 0 150 0 150 0 150 0 150 0

41 0 11 2902 0 - 0 - 0 - 69 414 138 448 117 622
.25 132 2744 12 2236 27 1950 15 1800 120 413 149 51 147 199
.50 149 1450 150 40 150 35 150 120 150 1 150 1 150 3
1 150 0 150 0 150 0 150 0 150 0 150 0 150 0

Total 1639 1511 1525 1500 1689 1787 1764

Table 5: Performance of Ler22, fea, oia, and msa on BRif20 (150 instances per row).

Ler22 and Vu20 (even though the latter was run on a different computer).

The right part of Table 4 also shows us that fea always finds the reference

solution very quickly, in a few tenths of a second for all classes except when

n = 100 and w = 150, where 3.6 seconds are needed to find it, on average.

Regarding memory, Ler22 used on average 0.8 GB for instances where n =

100, whereas fea, oia and msa all used 0.2 GB. This can be explained by the

fact that our bounds prune the search space efficiently because of TW tightness.

5.5. Experimental Comparison on [42]’s benchmark

We cannot report results of Ari18 or Vu20 on BRif20 as source codes of

these approaches are not available. However, TD cost functions of BRif20 have

been generated by computing shortest paths using a realistic traffic simulation.

In this case, ∆ cannot be controlled and it is much smaller than in BAri18 and

BVu20: in BRif20, ∆ is always smaller than 0.35, and it has an average value of

0.09. As Ari18’s performance drops when ∆ < 0.9 (as illustrated in Table 3),

we may assume that Ari18 should have difficulties in solving these instances.

In Table 5, we report performance measures of Ler22 and our approach on

this benchmark. The results of our approach are quite similar to those obtained

on BAri18 (see Table 2). In other words, changing the benchmark does not

significantly changes the performance of our approach, and oia still offers the

best compromise between bound tightness and computational cost.
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Reference Name #inst n OTW S
Min Max Min Max

[4] Asc 50 11 232 5.3 100.0
[14] DaS 125 201 401 0.2 4.5 X
[17] Dum 135 21 201 3.9 58.9 X
[21] Gen 130 21 101 21.3 88.9 X
[30] Lan 70 20 60 2.0 12.9 X
[39] Ohl 25 151 201 24.2 37.2 X
[40] Pes 27 20 45 24.1 100.0
[41] Pot 30 4 46 23.3 100.0

Table 6: Description of TSPTW benchmarks. Each line displays: a reference that describes
the benchmark, the name used to refer to this benchmark, the number of instances in the
benchmark, the minimum and maximum number of vertices n, and the minimum and maxi-
mum value of OTW. Column S contains X whenever cost functions are symmetrical.

On the contrary, Ler22’s performance is worse on this benchmark than on

BAri18. Table 5 shows that it failed to solve two instances when n = 21 and

β = 0, and solved only 7% of instance class n = 41 and β = 0 whereas it solved

42% of them on BAri18. These differences may stem from the fact that the TD

travel times functions of this benchmark vary more often (in BAri18 and BRif20,

they respectively contain 73 and 120 timesteps).

6. Experimental evaluation on the TSPTW

In this section, we experimentally evaluate our approach for solving TSPTW

instances. Our approach is adapted to use constant cost functions in a straight-

forward way, by setting ci,j = max(li + ci,j , ej) − li, and replacing a−1j,k(t) by

t − cj,k. We use the same set of benchmarks as in [22], plus the benchmark

introduced in [14], leading to a total of 592 instances. The main features of

these benchmarks are described in Table 6.

We compare our approach with the exact and anytime approach of [22],

denoted Gil21: it is based on DP and relies on state space relaxations to com-

pute lower bounds and on RDP to compute upper bounds, as explained in

Section 3.3. We also compare our approach with the LS-based approach of [14],

denoted DaS10. As DaS10 only considers symmetrical instances, we do not

report results of DaS10 for Asc, Pes and Pot instances. As DaS10 assumes

that triangle inequality is satisfied, we have preprocessed all symmetrical in-

stances to ensure it. As DaS10 is not deterministic, it was run five times and

we report the median value.

We consider the same experimental setting as in Section 5, and both Gil21
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Solved instances Reference solutions

Gil21 FEA OIA MSA Gil21 DaS10 FEA OIA MSA

#s ts #s ts #s ts #s ts #r tr #r tr #r tr #r tr #r tr

Asc 22 384 50 18 49 1 49 2 47 56 - - 50 0 50 0 50 0
DaS 110 6 125 4 125 4 125 4 125 7 124 17 125 2 125 2 125 3
Dum 109 188 135 0 135 0 135 0 135 4 135 0 135 0 135 0 135 0
Gen 27 522 117 84 113 44 111 54 129 21 98 154 130 0 130 1 130 0
Lan 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0
Ohl 0 - 20 41 20 61 20 7 25 271 18 520 25 32 25 116 25 42
Pes 8 118 25 152 26 13 27 66 23 143 - - 27 6 27 4 27 1
Pot 15 247 27 14 28 42 29 83 25 52 - - 30 4 30 1 30 9

Tot. 361 569 566 566 579 - 592 592 592

Table 7: Performance of Gil21, fea, oia, and msa on TSPTW benchmarks.

and DaS10 were executed on the same hardware as our approach. For asym-

metrical instances, reference solutions come from https://lopez-ibanez.eu/

tsptw-instances. For symmetrical instances, ensuring triangle inequality may

change the optimal solution (as some costs are decreased) and, as in the previ-

ous section, we have computed reference solutions by running oia and msa with

a time limit of 3 hours. The reference solution has been proven optimal for all

but 18 symmetrical instances (i.e., 4% of them). Reference solution costs never

exceed those listed at https://lopez-ibanez.eu/tsptw-instances.

Table 7 reports performance of the considered approaches. On the whole set

of 592 instances, fea solves three more instances than oia and msa. However,

on two benchmarks with wide TWs (i.e., Pes and Pot), msa solves more

instances than fea. The three variants of our approach solve more instances

than Gil21 for all benchmarks except Lan (these instances are solved in less

than one second by all approaches).

On the left part of Figure 3, we display the evolution of the percentage of

solved instances with respect to time, showing that fea is more successful than

Gil21 for time limits shorter than one hour, except for execution times smaller

than 8 milliseconds (for clarity, we do not display results of oia and msa as

they are very close to fea’s and fea is slightly better).

If some instances are not solved by our approach within one hour, reference

solutions are always found rather quickly for all instances, whereas Gil21 is

not able to find them for 13 instances. DaS10 also fails at finding them for 40

instances (i.e., 8% of the 485 symmetrical instances).

On the right part of Figure 3, we display the evolution of the percentage of

reference solutions found with respect to time (when considering only the 485
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Figure 3: Left: Evolution of the percentage of solved instances by fea and Gil21 with respect
to time, for the full set of 592 TSPTW instances. Right: Evolution of the percentage of
reference solutions found by fea, Gil21, and DaS10 for the 485 symmetrical instances.

symmetrical instances). DaS10 finds more reference solutions for time limits

shorter than one second, but it is outperformed by fea for longer time limits,

and also by Gil21 for time limits longer than 23 seconds. This shows us that

exact approaches find reference solutions rather steadily, while the heuristic ap-

proach DaS10 quickly finds reference solutions to easy instances, but struggles

for the harder ones (very few reference solutions are found after 100s). Also,

Gil21 finds more reference solutions than fea for very short time limits, smaller

than two milliseconds. This may come from the fact that fea spends time

propagating TW constraints. However, for longer time limits, fea finds more

reference solutions and it is able to find all reference solutions of symmetrical

instances whereas Gil21 fails at finding one reference solution.

Finally, let us note that our approach requires less memory than Gil21, but

more than DaS10: on average, fea (resp. oia, msa, Gil21, and DaS10) used

2.3 (resp. 0.5, 0.2, 6.7, and 5 ∗ 10−3) GBs of memory.

7. Conclusions and perspectives

We have introduced a new approach for the TD-TSPTW which combines

ACS, TW constraint propagation, and LS. This approach is both able to quickly

find good solutions and to prove optimality given enough time and memory. We

have considered three bounds with different tightness/cost trade-offs and exper-

iments have shown us that foia offers a good compromise. We also proposed

new filtering rules based on latest departure times to compute tighter bounds.
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Our approach is able to find reference solutions much faster than Ler22, the

state-of-the-art DP approach of [31]. It also manages to prove optimality, and

does so faster than Ler22 when TWs are tight, and slower otherwise. Our

approach also outperforms the ILP approach of [47] on all instances of BVu20

which have very tight TWs, as well as the ILP approach of [3] on most instances

of BAri18. Our approach may also be used to solve the TSPTW and we have

shown that it outperforms the DP-based approach of [22] and the LS-based

approach of [14].

We plan to extend our approach to other TD routing problems such as, for

example, TD vehicle routing problems [11], TD orienteering problems [29], TD

inventory routing problems [45] or TD profitable pickup and delivery problems

[44]. Our approach could also be extended to scheduling problems with tran-

sition times between tasks, as they are very close to TSP problems and often

have DP formulations [26]. In some cases, these transition times appear to be

TD such as, for example, agile earth observation satellite scheduling problems

with TD transition times and TWs [34], or order acceptance and scheduling

problems with processing times [25].
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