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ABSTRACT

Learned image compression neural networks have difficulties
adapting to certain satellite image characteristics, especially
high frequencies that disappear at a high bit-rate in the blur
generated in the reconstruction. To answer this problem we
describe a joint end-to-end trainable neural network. It is
separated into a general compression network and a smaller
specialised network. We train a specialized network to com-
press the residual part of the image to best preserve the high-
frequency details present in the satellite images. The pro-
posed model achieves higher rate-distortion performance than
current lossy image compression standards and also manages
to retrieve details previously poorly reconstructed.

Index Terms— Deep Image Compression, Satellite Ap-
plication, Residual Compression

1. INTRODUCTION

With the increasing amount of Earth observation data for
all types of applications, there is a growing need to develop
efficient compression solutions to transmit satellite images.
Satellite images have the characteristic of having pixel-sized
detail and therefore high frequencies. The major challenge in
compressing these images is to be able to distinguish in the
high-frequency information what is due to noise and what is
the signal for accurate on-ground interpretation.

Learning-based compression, which has made great
progress thanks to VAEs [1, 2, 3] (variational auto-encoder),
is well suited to satellite images. Because these images have
particular statistics, different from natural images, and that
learning allows to adapt to these statistics [4, 5, 6, 7]. How-
ever, a limitation of these approaches is that they saturate
at high rates and cannot reconstruct pixel details. Indeed,
blur is an artefact added during compression that results in a
lack of detail in fine-grained images such as satellite images
with a tendency to have high distortion for high-frequency
details. To mitigate this behaviour and still gain from im-
provements brought by auto-encoder networks, we propose
to jointly compress the high frequencies contained in the
residual image with a specialized network alongside a gen-
eral compression scheme.

2. COMPRESSION SCHEME

The proposed general and specialized compression neural
networks both share the same architecture, an auto-encoder
based network with a hyper-prior as shown in Figure 1. This
architecture is composed of two variational auto-encoders
(VAE) following one another. The first one encodes the in-
put into a latent representation that is then quantized and
entropy coded into a bit-stream. The decoder of this auto-
encoder transforms this bit-stream back into a reconstructed
image. The second auto-encoder, the hyper-prior, extracts
entropy parameters from the latent representation to improve
the entropy model.

Compression networks are usually trained over a rate-
distortion trade-off. However, this leads to a little blur added
during compression due to the l2 norm being the reference
pixel-based metric [4]. This is troublesome for satellite
images as they have high entropy and thus high-frequency
details that we want to recover for analysis purposes have
disappeared because of a low-band filter effect of the com-
pression. To mitigate this source of error we add a perceptual
metric in our rate-distortion trade-off to preserve the high-
frequency structures in our images, like stripped patterns. We
know that there is a trade-off between distortion and percep-
tual distance [8]. However, there is a metric for which this
trade-off is less severe, VGG [9]. Therefore, we define a
loss function based on this network to extract the structures
within our features and guide the learning towards a better
reconstruction at high frequency [5].

P (x, x̂) =
1

nm
(V GG0:2(x, x̂)
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The first layers of VGG are selected because they are respon-
sible for low-level shape extraction [10].

Learning parameters are now optimised with a rate-
perception-distortion trade-off [5]:

L = λ1D(x, x̂) + λ2P (x, x̂) + αR(ŷ) (2)

With D being the distortion metric MSE, P a perceptual loss
based on VGG and R the rate.

To optimise the various terms of the cost function, we use
an multi-loss balancing strategy that automatically tunes both



Fig. 1. General compression architecture [4]. The specialised architecture has the same structure with a reduced filter size.

λ1 and λ2 so that the loss terms are of the same order of mag-
nitude during training [11].

λk(t) = 2.
exp(wk(t)

T )∑
i exp(

wi(t)
T )

, wk(t) =
Lk(t− 1)

Lk(t− 2)
(3)

We can go even further to recover the high frequencies by
filtering the high frequencies and retaining the typical patterns
that clever filters struggle to find, such as striped patterns.

3. FILTERED RESIDUAL COMPRESSION

Instead of relying solely on a general compression network
that inherently has troubles with high frequency details, we
prefer specialized networks, each responsible for a deter-
mined part of the frequency spectrum. It leads to a generic
heavy network for a general compression and a secondary
lighter network to capture high frequency errors in the resid-
ual image. Those errors resulting from a poor reconstruc-
tion of high frequencies in general (noise accounted) and
striped patterns in particular. The network used to compress
the residual is a lighter version of the general compression
scheme. Not all the residual image is compressed equally as
we use a mask to remove as most unstructured noise as possi-
ble. This mask is obtained through filtering and thresholding
of the luminance of the RGB residual image. High fre-
quency details are poorly reconstructed compared to textures
so we try to filter out random noise induced by compres-
sion and keep blocks of meaningful details. The following
hand-crafted filter is used to keep only stripped patterns.
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Images we are working on, have a 50 cm spatial resolution
and it results in having details at a pixel level. So we focus
on patterns that have a 2-pixel period. This is displayed in
the filter with a spacing of each component. This filter high-
lights areas of a certain pattern at the expense of the other. We
threshold the result to retain homogeneous patches of errors.
Finally, this mask is used on the original residual image to
remove unstructured noise expensive to compress.

In Figure 2, we distinguish easily between random and
structured errors. The whole process of filter and threshold is
to emphasize those meaningful areas that have not been prop-
erly compressed so that the specialized compression network
only focuses on those few patches of errors.

(a) True residual (b) Post-processing residual

Fig. 2. Effect of our filtering/thresholding mask on residual
error

4. EXPERIMENTS

4.1. Training Details

The data set used includes 300 12-bits RGB satellite images
(2000x2000) with 50cm geometric resolution [4], 5% are
used for testing, and the rest for training. All images are



located around Lyon, France with images of the city, the
outskirts and the surrounding countryside. To achieve rota-
tional invariance, each batch of photos is cropped into patches
and randomly enhanced with rotation. The neural network
compression models were created using the CompressAI
Python module [12], an overlay for neural network compres-
sion models. Experiments were conducted on NVIDIA A40
GPUs for 200 epochs. Encoder and decoder inference times
are around 1 and 1.5 seconds, respectively.

4.2. Qualitative Results

Figure 3 shows the results obtained with different methods
in comparison with the ground truth, for a satellite image
with a geometric resolution of 50 cm of a train station shelter
roof. The reference image is compressed to 2 bpp using JPEG
2000 reference processing, the compression network and the
compression network with residual compression added. All
the images are well reconstructed since we are aiming for a
high bit rate. However, high-frequency details, such as the
striped patterns on the roof, have disappeared for model (c)
despite a better SNR than JPEG 2000. Model (d) with the ad-
dition of residual compression comes close to recovering all
these details. Our model with both a general and specialized
residual compression recovers locally much more informa-
tion as some large striped patterns found in cities (pedestrian
crossings, rooftops) that were unsuccessfully reconstructed
are now compressed with low distortion.

(a) Ground truth (b) JPEG 2000, SNR=74

(c) Network, SNR=112 (d) Network+Residual, SNR=113

Fig. 3. Visual comparison of compressed images at the same
bit rate (2 bpp) with the ground truth.

4.3. Quantitative Results

As an objective metric, we use the signal-to-noise ratio
(SNR). Given a reference signal I and its damaged processed
image Î we compute the SNR [13]:

SNR =

√√√√ ∑
pix I[pix]

2∑
pix(I[pix]− Î[pix])2

(4)

This gives information on the quantity of noise that has been
added to the signal during compression and facilitates com-
parison between degraded signals.

Figure 4 evaluates the efficiency of our general compres-
sion network. We compare it to JPEG 2000 as it is similar
to the standard used for RGB images [14] using DCT trans-
forms. For deep learned algorithms comparison, we re-train
the compression network from [6] on our data set. Our gen-
eral compression outperforms all other models, especially for
high bit-rate. The effect of the residual compression is not
added to the graph because its impact on the overall compres-
sion performance is low in comparison of the general com-
pression network. On a quantitative side, the specialized net-
work will increase the performances up to 2 SNR at a rate
increase of 0.3 bpp. As seen in previous sections, the gain
of this secondary compression network is more about locally
recovering high-frequency details.

Fig. 4. Our general network compared to baselines

5. CONCLUSION

In this work, we have proposed a compression model de-
signed for RGB satellite images with increased distortion per-
formance compared to traditional sequential processing. The
reconstruction is further improved by adding a second net-
work dedicated to compressing the image residue. This com-
pressed residual allows much more information to be recov-
ered locally as some striped patterns found in cities that could
not be fully reconstructed are now compressed with low dis-
tortion.
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