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Introduction

Exploratory data analysis (EDA) is the tedious interactive analysis of large datasets to extract insights. EDA is typically conducted by an analyst who specifies queries on a database system either using a text language like SQL or through a dedicated GUI. The resulting sequence of queries is called an EDA session. EDA became more popular as data volumes grew over the last two decades. Furthermore, with the development of open data the main issue for data consumers is no longer how to get access to the data but rather how to fully explore and exploit it.

To answer this problem the data management scientific community has recently moved from assisted exploration approaches ( [START_REF] Drushku | Interest-based recommendations for business intelligence users[END_REF]), which still rely on the human expert, to more holistic and automated approaches such as the generation of EDA sessions ([9, 11, 20, 22]). From the literature on expert EDA sessions and recent works on EDA sessions generation, it emerges that EDA sessions must [START_REF] Aligon | Similarity measures for OLAP sessions[END_REF] present relevant and interesting information to the user, (2) require a limited computational time, and finally (3) be composed of a sequence of queries which appear coherent to the user. We introduced in previous works ( [START_REF] Chanson | The traveling analyst problem: Definition and preliminary study[END_REF][START_REF] Chanson | Automatic generation of comparison notebooks for interactive data exploration[END_REF]) a formal definition of the problem of automatically generating EDA sessions. This problem, named Traveling Analyst Problem (TAP), relates to a well-known family of routing problems called orienteering problems (OP). For instance, assuming that we dispose of a set of database queries, the TAP is defined by an undirected graph G = V, E in which each vertex v i ∈ V represents a query and (v i , v j ) ∈ E represents the action of running query v i before v j . To meet the three requirements of EDA sessions, we introduce for each vertex an interestingness score p i and a service time t i for each vertex v i ∈ V. Besides, for each (v i , v j ) ∈ E, we introduce d i j as the conceptual distance between the two corresponding queries as defined in [START_REF] Aligon | Similarity measures for OLAP sessions[END_REF]. The objective of TAP is to produce a routing s over G such that the overall interestingness score P(s) = |s| i=1 p i is maximum, the overall distance D(s) = |s|-1 i=1 d i,i+1 is minimal and the service time T (s) = |s| i=1 t i is minimal. When there is no ambiguity regarding the routing/solution s we use P, D, T instead of P(s), D(s), T (s). The TAP has been shown to be strongly NP-Hard in [START_REF] Chanson | The traveling analyst problem: Definition and preliminary study[END_REF].

The TAP is closely related to the orienteering problem, it differs from it as they is no service times on the vertices in TAP. The OP was formally introduced by Tsiligirides ( [START_REF] Tsiligirides | Heuristic Methods Applied to Orienteering[END_REF]) who proposed two heuristics to solve it. The first heuristic introduced in [START_REF] Tsiligirides | Heuristic Methods Applied to Orienteering[END_REF] is based on a monte-carlo process generating several feasible solutions and choosing the best one. The second heuristic is based on an earlier vehicle routing heuristic by [START_REF] Wren | Computer scheduling of vehicles from one or more depots to a number of delivery points[END_REF]. It relies on circular subdivisions of the euclidean space to construct solutions. It is therefore only compatible with instances giving explicit vertex coordinates. Solutions provided by both algorithms are then improved by a local search called route improvement ( [START_REF] Tsiligirides | Heuristic Methods Applied to Orienteering[END_REF]) which tries to either introduce new vertices without exceeding the distance budget or to shorten the path length by changing the order of vertices in the route. Chao et al. ([7]) propose a two step heuristic which first builds a set of feasible solutions exploiting geometric features before applying a local search. This one consists in exchanging vertices between the current best solutions and other feasible solutions to improve the former.

Several works describe exact methods for solving the OP. In [START_REF] Fischetti | Solving the Orienteering Problem through Branchand-Cut[END_REF] a branch-and-cut algorithm is proposed and tested on many instances including those from [START_REF] Tsiligirides | Heuristic Methods Applied to Orienteering[END_REF] but also larger ones with up to 500 vertices. They solve those large instances to optimality in a few hours. Most of the extensions of the OP tackled in the literature turn out to be more complex to solve to optimality. In [START_REF] Bianchessi | A branch-and-cut algorithm for the Team Orienteering Problem[END_REF], Bianchetti et al. propose a branch-and-cut algorithm to solve the Team Orienteering Problem (TOP). In contrast, to the OP in the TOP multiple vehicles are available. This algorithm relies on a MIP formulation, with a polynomial number of variables and constraints, along with a custom branch-and-bound procedure. It is able to solve optimally instances up to 102 vertices and 4 vehicles. Two MIP formulations for the OP are proposed in [START_REF] Kara | New Formulations for the Orienteering Problem[END_REF] with a polynomial number of constraints and variables.

In [START_REF] Hu | An iterative three-component heuristic for the team orienteering problem with time windows[END_REF], Hue and Linn tackle an extension of the OP, the Team Orienteering Problem with Time Windows (TOPTW), in which a set of identical vehicles are considered with the same travel capabilities. A vertex can be visited by only one vehicle, and the vertices can only be visited within their specified time windows. Hu and Lin propose a metaheuristic to solve this problem. Several routes are generated, one for each agent. Those routes are then stored in a fixed size pool. Routes from this pool are combined to form complete solutions for the problem. The algorithm also features several operators enabling crossover of routes or swaps of vertices in a route to improve the built solutions. This work, along with [START_REF] Chao | A fast and effective heuristic for the orienteering problem[END_REF] and [START_REF] Tsiligirides | Heuristic Methods Applied to Orienteering[END_REF], points out the importance of reordering vertices when constructing solutions heuristically.

Among the heuristics available in the operations research community, matheuristics have been the matter of a growing interest in the last decade. In the context of the OP and its extensions, two previous works propose matheuristics. In [START_REF] Archetti | A matheuristic for the team orienteering arc routing problem[END_REF] the authors tackle the arc routing team orienteering problem by using a matheuristic, which combines a tabu search and a MILP solver. The algorithm is able to solve 78% of the tested instances to optimality. In [START_REF] Yu | A matheuristic approach to the orienteering problem with service time dependent profits[END_REF], Yu et al. focus on time dependent profits and provide a matheuristic which yields high quality solutions for instances with up to 200 vertices. This algorithm solves first the problem of sequencing vertices before using a MILP solver to find appropriate service times for the computed sequence.

In this paper we propose to leverage the recent works made in the field of matheuristics to produce near-optimal solutions for the TAP within reasonable time. We solve instances with up to 700 vertices within a few minutes which corresponds, in our original EDA problem, in processing small-size databases. For a human expert it would require up to a few hours to sift through for interesting information. It is important to notice that researchers working on the automatic generation of EDA sessions have not yet investigated the use of sophisticated heuristics stemming from operations research. This paper provides consequently a strong contribution by making the link between two research communities. It is organized as follows. In Section 2.2, we propose a mathematical programming model of the TAP. In Section 3, we present two constructive heuristics as well as four matheuristics. In Section 4, we report on experimental evaluations of the proposed algorithms and show their efficiency. In Section 5, we conclude this work and propose further research directions.

Modeling and properties of the TAP

Structural properties

In [START_REF] Chanson | The traveling analyst problem: Definition and preliminary study[END_REF], the TAP is defined as a multi objective optimization problem. Therefore, the optimal solution to a TAP instance is not unique: it is a set of incomparable solutions, called Pareto optima ( [START_REF] Vincent | Multicriteria Scheduling -Theory[END_REF]). Definition 1. Let S be the set of feasible solutions to a TAP instance. The set of Pareto optima of a TAP instance is P = {s ∈ S : s ∈ S, P(s ) ≥ P(s) ∧ D(s) ≥ D(s ) ∧ T (s) ≥ T (s ), with at least one strict inequality}. A solution s ∈ S is called a Pareto optimum.

Besides the Pareto front, we also establish several properties of the instances, notably a dominance condition on vertices.

Definition 2 (Dominance condition). ∀v i v j ∈ V, v i dominates v j iff t i ≥ t j , p j ≤ p i and ∀v k ∈ V \ {v i , v j }, d ik ≤ d jk , with at least one strict inequality.

Lemma 1 (Dominated vertices in Pareto optima). ∀s ∈ P, ∀v i ∈ s, ∀v j v i ∈ V, if v j dominates v i then v j ∈ s Proof: Let s be a Pareto optimum and two vertices v i and v j such that v i ∈ s, v j s and v j dominates v i . Construct s by replacing v i by v j in s. Then, we have P(s ) ≥ P(s), D(s ) ≤ D(s) and T (s ) ≤ T (s) with at least one strict inequality, which contradicts the fact that s ∈ P.

As this dominance condition is unlikely to be satisfied in most instances due to the very restrictive condition on distances, we propose another condition. Definition 3 (Pseudo-dominance condition). ∀v i v j ∈ V, v j dominates v i iff t j ≥ t i , p j ≤ p i , with at least one strict inequality.

Unlike the condition stated in Definition 2, the one stated in Definition 3 is not a dominance condition as applying it may lead to discard optimal solutions. That is the reason why the condition of Definition 3 is called a pseudo-dominance condition. Applying the pseudo-dominance condition we define the notion of pseudo dominance set.

Definition 4 (Pseudo-dominance set). Given an instance, let the pseudo-dominance set of a vertex v j be I j = {v i ∈ V : v j v i , v j satisfies the pseudo-dominance condition over v i }.

As previously mentioned, dominance condition as stated in Definition 2, is unlikely to happen in practice. At the contrary, the pseudo-dominance condition of Definition 3 may be used to prune the search space in the context of a heuristic solution of the TAP. The benefits of using pseudo-dominance conditions will be evaluated in Section 4. Pseudo-dominance conditions can be used during the solving process as follows: whenever a vertex v j is selected, all vertices in its pseudo-dominance set I j are also selected.

In this work we assume that the user is capable of formulating and adjusting bounds on the total distance and time for a given instance. This enables us to use the -constraint method ( [START_REF] Vincent | Multicriteria Scheduling -Theory[END_REF]) to compute a Pareto optimum for the TAP: we maximize P under constraints that T ≤ t and D ≤ d . This method still enables to enumerate all solutions in P by solving all problems with different ( t , d ) values. In the remainder we focus on the solution of the -constraint problem. We now describe how the pseudo-dominance conditions can be used to filter any given instance.

Let N be an upper bound on optimal solution sizes, i.e. such that |V| ≥ N ≥ |s| for any optimal solution s. In this paper N is computed as N = min(k, k ), where k and k are two bounds calculated by exploiting the -constraints of the problem. Assume that service time are ordered such that t 1 ≤ ... ≤ t |V| . Then, k is defined as k j=1 t j ≤ t < |V| j=1 t j . Besides, k is obtained by solving a relaxation of the TAP in which all p i are set to 1, the -constraint on T is dropped along with sub-tour elimination constraints. An optimal solution to this relaxed problem is found in polynomial time by constructing the shortest 2-cycles between vertices until d is reached.

For any given instance we can use the pseudo-dominance sets of vertices and the bound N to design a filtering step: remove vertices v i such that |I i | > N, as any vertex with a pseudodominance set larger than N is unlikely to be in an optimal solution. Remember that this filtering is not optimal as the pseudo-dominance condition may lead to consider vertices as dominated while they are part of some optimal solutions. However, we will see in practice how impacting is this filtering.

A mixed integer programming (MIP) model for the TAP problem

Now, let us introduce a MIP formulation of the TAP. This model relies on two sets of binary variables to represent vertices selection and sequencing of the selected vertices. We have:

∀i ∈ 1..n, y i =        1 if vertex i is selected 0 otherwise and ∀i, j ∈ 0..n + 1, i j, x i j =        1 if vertex i precedes vertex j 0 otherwise
We also introduce integer variables u i ∈ {2, ..., n}, ∀i ∈ 1..n , used for sub-tour elimination.

Objective. max n i=1 p i y i

(1)

Constraints. n i=1 n j=1, j i d i, j x i, j ≤ d (2) 
n i=1 t i y i ≤ t (3) n i=0, j i (x i, j ) -y j = 0, ∀ j ∈ 1..n (4) n+1 j=1, j i (x i, j ) -y i = 0, ∀i ∈ 1..n (5) n j=1 x 0 j = n i=1 x i,n+1 = 1 ( 6 
)
u i -u j + 1 ≤ (n -1)(1 -x i j ), ∀i, j ∈ 1..n, i j (7) 
This model involves (n 2 +5n+1) variables and (n 2 +2n+4) constraints. The objective (1) aims at maximizing the total score, i.e. the interestingness of the sequence of vertices. Constraint [START_REF] Archetti | A matheuristic for the team orienteering arc routing problem[END_REF] ensures that the total distance does not exceed a threshold d . Similarly constraint (3) ensures that the total service time does not exceed a threshold t . Constraints (4) and ( 5) ensure the solution is a path (if a vertex is selected in the solution, then one arc must enter it and one must leave it). Constraint [START_REF] Chanson | Generating personalized data narrations from EDA notebooks[END_REF] ensures there is only one start and one end vertex. Finally, we use classic TSP sub-tour elimination constraints [START_REF] Chao | A fast and effective heuristic for the orienteering problem[END_REF] to ensure a single sequence is computed. Here, we chose those presented in [START_REF] Miller | Integer programming formulation of traveling salesman problems[END_REF].

Constraints corresponding to pseudo-dominance conditions. Using Definition 3 we propose to add an additional set of constraints to the model.

y i ≤ y j , ∀i ∈ 1..n, ∀ j ∈ I i (8) 
Adding those constraints may lead the optimal solution to be infeasible as they are based on the pseudo-dominance condition. We evaluate the impact of adding these constraints in Section 4.

Variable partitioning local search and a local branching heuristics

Matheuristics are hybrid approaches combining metaheuristics and exact methods ( [START_REF] Della Croce | Matheuristics: Embedding MILP solvers into heuristic algorithms for combinatorial optimization problems[END_REF]) by embedding a MIP solver into traditional heuristic processes. The role of the MIP solver can vary from a method to another. A classic one, called Variable Partitioning Local Search (VPLS), has proved to be efficient especially on hard permutation problems ( [START_REF] Della Croce | Matheuristics: Embedding MILP solvers into heuristic algorithms for combinatorial optimization problems[END_REF]). Another method, called Local Branching and introduced in [START_REF] Fischetti | Local branching[END_REF], has also proved to be effective. In this section, we will briefly discuss both methods and propose two algorithms based on each method to solve the TAP. Since both approaches require an initial solution, we present in Section 3.3 two possible initialization heuristics. 

VPLS

The VPLS method improves an incumbent solution by iteratively reoptimizing a part of it. As the reoptimization is done via the solution of a MIP, at each iteration two sets of variables are defined. One set of variables is fixed as in the incumbent solution while the variables of the other set are let free so that they define a small MIP to be solved. Hopefully, this new small MIP can be solved quickly. In the case of the TAP the solution is a sequence: thus, we apply the VPLS method by selecting a sub-sequence of vertices (called the reoptimization window) and freeze the remaining vertices of the solution. Given a solution s t at iteration t, let us denote by w start (respectively w) the starting position (respectively length) of the window. The set of variables fixed to their current values for iteration t + 1 is defined as:

F t+1 = {y i , i ∈ s t \ s t [w start : w start + w]} ∪ {x i j , i ∈ s t \ s t [w start : w start + w], j ∈ 1..n, j s t [w start : w start + w]} ∪ {x ji , i ∈ s t \ s t [w start : w start + w], j ∈ 1.
.n, j s t [w start : w start + w]}. With s t [a : b] being the sub-sequence starting from position a and ending at position b (inclusive). This is an iterative process which can be stopped by a specific convergence criterion like a maximum time limit or a maximum number of iterations.

We provide an example in Figure 1. Figure 1.a shows the current feasible solution

s t = [v 9 , v 1 , v 3 , v 8 , v 2 , v 7 ]
at iteration t, together with the unselected vertices {v 4 , v 5 , v 6 }. Now, assume that we decide to reoptimize the window [v 3 , v 8 ], which is represented by dotted arrows. Figure 1

.b shows s t+1 = [v 9 , v 1 , v 4 , v 8 , v 2 , v 7 ]
which is the solution obtained after solving the corresponding MIP with a reduced set of variables. One of the key points of VPLS relates to the choice of the reoptimization window at each iteration. We propose two methods and both assume that the window length w is a given parameter. The first heuristic called vpls-det, described in Algorithm 1, moves the reoptimization window from the start to the end of the sequence. An additional parameter o may induce an overlap of windows between iterations if set to a non-zero value by the user. This window is positioned back at the beginning of the sequence when, at an iteration t, the solution is improved. The second heuristic, called vpls-random and described in Algorithm 2, randomly selects the window along the sequence. t ← t + 1 7: end while 8: return s t

Local branching

The two other matheuristics we introduce are a direct application of the Local Branching ( [START_REF] Della Croce | Matheuristics: Embedding MILP solvers into heuristic algorithms for combinatorial optimization problems[END_REF]) method with no diversification phase. They rely on the Hamming distance ( [START_REF] Hamming | Error detecting and error correcting codes[END_REF]) between the two sets of decision variables of the MIP, as described in Section 2.2: variables y i represent the presence or absence of a vertex in the solution while the x i, j 's represent the order between selected vertices. Thus, any two solutions can be compared by the Hamming distance, either on the complete set of decision variables or on a subset. For example, assume it is computed w.r.t. only the x i j 's, then the Hamming distance ∆(x, x s ) to a known solution x s is given by:

∆(x, x s ) = n i, j=1,x s i j =1 (1 -x i j ) + n i, j=1,x s i j =0 x i j (9) 
This distance can be used to build a constraint that effectively constrains the solver to search in the neighborhood of an incumbent solution. In contrast to the VPLS approaches, which are limited to modifications within a specific sub-sequence, this approach enables broader transformations of the solutions such as swapping the first vertex and the last vertex of the solution. The two local branching heuristics we propose are denoted by lb-y and lb-yx and are described in Algorithm 3. They simply vary on the constraints they use, [START_REF] Drushku | Interest-based recommendations for business intelligence users[END_REF] for lb-y and (11) for lb-yx. Let s t be the best solution known at iteration t and let (x t , y t ) be its associated variable vector. Then, have:

∆(y, y t ) < h (10) 
∆(x, x t ) + ∆(y, y t ) < h [START_REF] Ori | Automatically generating data exploration sessions using deep reinforcement learning[END_REF] with h a parameter limiting the maximum number of variables to be changed.

Algorithm 3 lb-y / lb-yx Input: A TAP instance (scores, service times, distances, t , d ), the maximum hamming distance h, the maximum number of iterations and the maximum iteration time. A feasible solution s f Output: A solution to the TAP, of service-time at most t and overall distance at most d .

1: t ← 0 2: s t ← s f 3: while t < max. iterations do 4:

s t ← MIP(s t , constraint [START_REF] Drushku | Interest-based recommendations for business intelligence users[END_REF] or [START_REF] Ori | Automatically generating data exploration sessions using deep reinforcement learning[END_REF], max. iteration time) 5:

t ← t + 1 6: end while 7: return s t

Initial solutions

The importance of the initial solution given to the matheuristics is crucial, as the matheuristics can be seen as metaheuristics, which improve a given solution. Hopefully, the latter is obtained quickly and is sufficiently good so that the matheuristic can reach near-optimal solutions. We propose two different heuristics to construct initial solutions. The first one, called h-ks, runs in 3) prevent from more insertions. In addition to this classic knapsack heuristic, whenever a vertex is selected, it is inserted at the position in the partial solution which minimizes the D criterion of the selected solution under construction.

The second algorithm, called h-tsp, is an approach inspired by sub-tour merging heuristics for the traveling salesman problem (TSP). This algorithm produces 2 solutions which are compared and the best one is returned. The algorithm (see Figure 2) starts by solving a relaxed version of the TSP over G with distances d i j when sub-tour elimination constraints are removed. This yields an assignment problem that is solved by the successive shortest path method ( [START_REF] Engquist | A successive shortest path algorithm for the assignment problem[END_REF]) in O(n 3 log(n)) time. This may lead to a potentially non feasible solution composed of sub-tours ( see step a Figure 2). From this point the algorithm computes two solutions. First to compute, Solution A, the algorithm merges all sub-tours (see step b Figure 2). This step is skipped if the assignment problem solution is composed of a single tour. The merging of sub-tours is done by applying an implementation of the minimum spanning tree approach described in [START_REF] Kahng | Match twice and stitch: a new TSP tour construction heuristic[END_REF]. This merging approach was chosen as it outperforms other tour construction heuristics ( [START_REF] Kahng | Match twice and stitch: a new TSP tour construction heuristic[END_REF]). Since after merging sub-tours the distance and/or time -constraint may be violated, we design an additional redcution step to fix this issue (see step e Figure 2). First, if the -bound on time is not answered, queries are eliminated in increasing order of their ratio p i /t i until it is no longer violated. Then, if the -bound on distance is not respected, queries are eliminated in increasing order of p i value, every η eliminated queries the tour is reoptimized by the LKH heuristic 1 

([16]).

Solution B is obtained by considering all sub-tours as single elements in a Multi-Dimensional Knapsack. Each sub-tour is associated to its total length, service-time and interestingness score (see step c Figure 2). This Multi-Dimensional Knapsack problem is solved to extract a set of sub-tours that are next merged (see step d Figure 2) using the same merging approach as Solution A. The same reduction step as Solution A can be applied if any -constraint is violated.

Finally, Solution A and Solution B are compared, and the best (feasible) one in terms of P value is returned.

Computational experiments

We organize this experimental section as follows: first, we describe the different types of instances we use and their properties; second, we evaluate the impact of filtering and adding constraints as described in Section 2.2; third, we compare the quality of solutions produced by initialization heuristics; fourth, using the best initialization heuristic for each instance we evaluate the solution quality of the four matheuristics. Finally, we compare the performance of the heuristics and matheuristics to CPLEX given a similar time budget on large instances.

For all experiments, we used the CPLEX solver version 20.10 running on a Fedora Linux (kernel 5.11.13-200) workstation, with two 2.3 Hz Intel Xeon 5118 with 377GB of memory. To show realistic running times the CPLEX solver is run in single-thread mode whenever a MIP model has to be solved. We provide an open source implementation of all algorithms in our Git repository https://github.com/AlexChanson/TAP-Matheuristics. This repository also contains all TAP instances used in this section.

Instances generation

No suitable benchmark for our problem is available in the literature. This due to the added service time and the use of a metric with no triangular inequality. We instead use four families of randomly generated instances.

• The first family of instances, denoted by f1, is designed to be mainly sort of knapsack instances. The interestingness score is a real number drawn from an uniform distribution between 0 and 1. The distance is an integer number drawn from a uniform distributions between 5 and 6. Finally the service time is an integer number drawn from a uniform distribution between 5 and 50.

• The second family of instances, denoted by f2, is designed to be mainly sort of TSP instances. The interestingness score is an integer number drawn from an uniform distribution between 1 and 3. The distance is an integer number drawn from a uniform distributions between 1 and 14. Finally the service time is an integer number drawn from a uniform distribution between 5 and 6.

• The third family of instances, denoted by f3, is designed to contain particularly hard knapsack instances (service time and profit are strongly correlated [START_REF] Pisinger | Where are the hard knapsack problems?[END_REF]), while still having a strong routing component. The distance is an integer number drawn from a uniform distributions between 1 and 10. The service time is an integer number drawn from a uniform distribution between 5 and 50. The interestingness score is equal to the service time plus 5.

• The last family of instances, denoted by f4, is similar to real world instances. The interestingness score is a real number drawn from an uniform distribution between 0 and 1.

The distance is an integer number drawn from a uniform distributions between 1 and 10. Finally the service time is an integer number drawn from a uniform distribution between 5 and 50. These constants were set by manually generating a few instances with databases found on the open data platform Kaggle ( [START_REF] Chanson | Generating personalized data narrations from EDA notebooks[END_REF]). For each family of instances, we generate 30 instances for each size n ∈ {40, 60, 80, 100, 200, 300, 400, 500, 600, 700}.

In this work, we will need solve single objective TAP instances. We intend to fix t and d to simplify the interpretation of results. Due to the varying size of instances we express t and d as the expected fraction of queries in the instances in the solution. For example if t is set to 0.35 for a 200 vertices, it means we expect that the time constraint will, on average, lead to solutions containing 70 queries. By choosing different values for t and d we can make one -constraint more restrictive than the other.

To choose a combination of -constraints that is not too simple to solve. We measured the time taken by CPLEX to produce an optimal solution (1h time limit) on 30 instances of f4 with 300 vertices, with various -constraints combinations. We report those results in Figure 3. We decide on t set to 0.6 and d set to 0.3 for the remainder of this work. As this appears to be a hard scenario for the solver, but where it is still practically possible to obtain optimal solutions in a few hours.

Evaluation of pseudo-dominance and filtering

In this section we evaluate the effectiveness of filtering pseudo-dominance conditions. Both approaches were proposed in Section 2.1. We only conduct experiments on instances of family f4, as for those of family f3 pseudo-dominance conditions never apply.

First, we propose to evaluate the impact of adding constraints based on pseudo-dominance to the solution of the MIP. We use CPLEX with default parameters and timeout of two hours, with and without pseudo-dominance. In Table 1 we report the number of nodes #Nodes explored by CPLEX, and the average and maximum deviation, respectively ∆ avg and ∆ max from the optimal solution value (computed without pseudo-dominance). Finally, we report the average and maximum time gained ∆T avg and ∆T max compared to CPLEX without pseudo-dominance: negative values denote lost time over running the vanilla solver. In a set of preliminary experiments it was noted that the pseudo-dominance produced a large number of constraints potentially spoiling the solver. Thus, we also report results for only adding a fraction of the valid constraints, which is achieved by only selecting constraints that relate to vertices with dominance sets larger than κ × |V|, with κ ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

Table 1 shows that adding the constraints (even partially) seems to marginally degrade the solution quality. However, this approach is always requiring more CPU time than CPLEX to solve instances. Even with very few added constraints. We note though that the best case scenario seems to be for κ = 0.8.

As we may eventually use pseudo-dominance in the matheuristics, we test solution quality of CPLEX alone, against CPLEX with added constraints (for κ = 0.8) in a limited 60 seconds time budget. This would be typical of the time taken by one iteration of the matheuristics. Solution quality is reported in terms of average relative deviation to the optimal solution in Table 2 Results from Table 2 show that the approach can provide some improvement for instances of size 200. However, since this trend doesn't extend to instances beyond this size, we choose to discard this approach for the remainder of this work.

For the filtering approach, a preliminary test was first conducted to evaluate the number of vertices the filtering step removes on instances of family f4. Its results are reported in Table 3. This shows that applying the method based on the computed bound N only filters out about 3% of the vertices. This is unlikely to be enough to achieve significant performance improvements. However, since our work focuses on an heuristic approach and the pseudo-dominance condition is not exact, we propose to remove more vertices by sorting them in decreasing order of their dominance set size and by removing the first 10%, 15% and 20% of the most dominated queries. We report in Table 4 the the number of nodes #Nodes explored by CPLEX, and the average and maximum deviation, respectively ∆ avg and ∆ max from the optimal solution value (computed without filtering). Finally, we report the average and maximum time gained ∆T avg and ∆T max compared to running CPLEX on unfiltered instances. Similarly to previous experiments negative values represent lost time. The results in Table 4 show that it is beneficial to remove more queries than only the 3% that would have been removed by using the bound N on optimal the solution size. Removing 10% to 15% of queries yields a significant improvement in the running time (of more than 20 minutes on larger instances) without deteriorating to much the solution quality: the deviation is at most 1.83% with respect to optimal solutions. We observe diminishing returns with 20% of vertices filtered with a lower ∆T avg , we will therefore use a 15% filtering on all further experiments.

vertices removed Size ∆ avg ∆ max ∆T avg (s) ∆T max (s) #

Evaluation of the initialization heuristics

We now propose to evaluate the quality of the initialization heuristics. We compare the running times of h-ks and h-tsp along with their deviation to the optimal solutions computed by CPLEX. We conduct this series of experiments on instances of family f1 and f2. Those sets of instances respectively constitute mainly knapsack and TSP like Thus, we expect h-ks to perform better on f1, and h-tsp to perform better on f2. Additionally, given the results of the previous experiments we propose to test the effect of the filtering approach on the heuristics. We report the average and maximum deviation, respectively ∆ avg and ∆ max from the optimal solution value along with the average running time for each heuristic in Table 5. As expected, the results in Table 5 show a clear advantage of h-ks for the knapsack like instances (family f1). The average deviation of h-ks remains mostly under 1%, with its running time is under 10ms. Meanwhile, h-tsp produces solutions with a deviation of 5-6% with a particularly long running time. When examining the results on instances from family f2 however we note the superiority of h-tsp over h-ks is marginal. Yet, results in Table 6 show that h-tsp produces better solutions than h-ks in some cases. However, due to the low cost of running those heuristics on most instances types, we still believe it is better to run both and pick the best result. Now considering the filtering step, we report the result of running both heuristics on filtered instances in Table 7. The filtering seems marginally degrade the heuristics in a few scenarios. We also note a reduction in the running time of h-tsp on family f1 as a side effect of the filtering. We now compare the four matheuristics by evaluating their deviation to the optimal solution when they are all given a 10 minutes time budget. We conduct this experiment on both instances of family f3 and f4 and with and without the filtering step. For each matheuristic, we run preliminary tests to find an efficient combination of its parameters, and the obtained result can be found in Table 8. Note that for each instance, the matheuristics are given the best initial solution from either h-tsp or h-ks. In Table 9 we report the results of matheuristics running on unfiltered instances, the average and maximum deviation, respectively ∆ avg and ∆ max from the optimal solution value along with the average running time for each matheuristic. For uncorrelated instances (f3) the four algorithms provide extremely low deviations with vpls-det appearing to slightly outperform. However, this advantage doesn't appear to hold for instances of family f4. With those correlated instances it appears that lb-yx performs significantly better with an average deviation under 5% on the largest instances. As explained in Section 4.2 we only report in Table 10 results using the filtering approach on instances of family f4. With this filtering step we observe better results on large instances as matheuristics do not reach their time limit. The deviations are overall extremely low. As for the fastest algorithm , vpls-random manages an average of 66 seconds on instances of 300 vertices.

Algorithm

Performance on large instances

As a final experiment we propose to evaluate the capabilities of the matheuristics with the filtering step to solve large instances of the TAP. We compare the performance of the four matheuristics with a 10 minutes time limit on the largest instances of family f4. We report δ I avg the deviation to the initial (h-tsp or h-ks) solution for each matheuristic in Table 11.

The results in Table 11 show that all matheuristics are equally able to improve the solutions provided by the initialization heuristics. A 2% to 4% improvement is achieved depending on the size of the instances. With the largest instances only improved by 2%.

Conclusion

In this paper we studied the solutions of the Traveling Analyst Problem (TAP) using simple and effective matheuristics based on the VPLS and Local Branching methods. We investigated possible techniques to further accelerate solution of the MIP using filtering and additional constraints both based on pseudo-dominance. We showed that adding constraints to the MIP while reducing the number of possible solutions was detrimental to the solver in both exact mode and limited time. The filtering approach showed however no significant degradation of the solutions and provided significant time savings. We also proposed and studied two polynomial heuristics based on TSP and Knapsack heuristics. They proved effective in solving instances of the TAP close to these two problems. They provide good starting solutions to the matheuristics which are capable of converging to near optimal solutions in a few iterations. shown to produce an optimal or near-optimal solution on many instances. We note a slight dominance of lb-yx among these matheuristics. Notably, when coupled with filtering all matheuristics are able to produce better solutions in less time. Finally, we showed that the matheuristics are still able to improve initial solutions on instances of up to 700 vertices. 
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 1 Figure 1: Example of a solution improved by VPLS algorithm

Figure 2 :

 2 Figure 2: General principle of h-tsp for generating Solution A (top) and Solution B (bottom) starting from a solution to the assignment problem over the distance matrix

Figure 3 :

 3 Figure 3: Average time taken by CPLEX to solve an instance from set f3 to optimallity

κ

  Size ∆ avg ∆ max ∆T avg (s) ∆T max (s) #Nodes avg #Nodes max 0

  Algorithm 1 vpls-det Input: An instance (scores, service times, distances, t , d ), the window width w, window overlap o, the maximum number of iterations, and the maximum iteration time. A feasible solution s f Output: A solution to the TAP, of service-time at most t and overall distance at most d .Algorithm 2 vpls-randomInput: A TAP instance (scores, service times, distances, t , d ), the window width w, the maximum number of iterations, and the maximum iteration time. A feasible solution s f Output: A solution to the TAP, of service-time at most t and overall distance at most d .

	1: t ← 0
	2: s t ← s f
	3: w start ← 0
	4: while t < max. iterations do
	5:	
	7:	w start ← 0
	8:	s t ← s t+1
	9:	else
	10:	
	13:	return s t
	14:	end if
	15:	t ← t + 1
	16: end while
	17: return s t

s t+1 ← MIP(s t , w start , w, max. iteration time) solve reduced MIP 6: if P(s t+1 ) > P(s t ) then w start ← w start + wo 11: end if 12: if w start + w > |s t | and P(s t ) = P(s t+1 ) then 1: t ← 0 2: s t ← s f 3: while t < max. iterations do 4: w start ← pick a random window starting position 5: s t ← MIP(s t , w start , w, max. iteration time) solve reduced MIP 6:

Table 2 :

 2 . Average relative deviation to the optimal solution objective after 60 seconds for varying instance sizes (* deviation reported against near-optimal solutions, MIP gap < 1%)

	Size CPLEX CPLEX with pseudo-dominance (κ = 0.8)
	40	0	0
	60	0	0
	80	0	0
	100	0.05	0.14
	200	30.23	9.31
	300	91.11	90.71
	400*	99.69	99.68

Table 1 :

 1 Solution quality and running time for CPLEX solving instances with pseudo-dominance

	2	40	0	0	-0.74	0.2	69	580
		60	0	0	-1.51	0.84	129	1443
		80	0	0.01	-1.86	17.21	118	1191
		100	0	0	-45.02	51.98	575	3629
		200	0	0.01 -1003.11 1743.38	1702	5950
		300 1.98 21.83 -2363.51	404.39	1720	4265
	0.3	40	0	0	-0.39	0.44	66	630
		60	0	0	-1.01	2.43	83	1024
		80	0	0.01	-2.67	17.77	197	1000
		100	0	0	2.36	99.35	333	2104
		200	0	0.01	-679.46	2068.54	1423	3326
		300 0.05 0.52 -2985.96	-408.19	1748	2804
	0.4	40	0	0	-0.4	0.08	67	503
		60	0	0	-1.17	1.9	68	671
		80	0	0.01	1.34	19.96	42	494
		100	0	0.01	-10.26	68.16	433	2144
		200	0	0.01	-196.64	2043.44	1316	4549
		300	0	0.01 -2099.43	916.81	1351	2717
	0.5	40	0	0	-0.45	0.4	71	585
		60	0	0.01	-0.52	1.63	48	490
		80	0	0.01	-1.54	18.96	149	772
		100	0	0	-10.77	95.47	558	2560
		200	0	0.01	-489.51	1495.5	1457	3434
		300	0	0	-978.76	451.26	974	1584
	0.6	40	0	0	-0.39	0.49	78	482
		60	0	0.01	-1.35	1.06	144	1440
		80	0	0.01	-1.54	21.37	237	1976
		100	0	0	-7.35	81.4	489	1688
		200	0	0.01	-461.65	2107.72	1285	3428
		300	0	0	-2243.49	853.16	1264	2304
	0.7	40	0	0	-0.35	0.42	57	439
		60	0	0	-0.96	1.95	100	1282
		80	0	0	-3.83	19.42	202	1129
		100	0	0	-10.92	113.96	476	1332
		200	0	0.13	-547.39	1786.61	1483	3667
		300 0.01 0.09	-834.5	1164.47	1157	3531
	0.8	40	0	0	-0.24	0.25	61	612
		60	0	0	-0.98	1.79	68	649
		80	0	0.01	-6.87	7.43	312	2012
		100	0	0	-16.14	52.61	486	1827
		200 0.01 0.35	-112.72	1847.14	1050	2550
		300	0	0.05	-1189.3	2137.28	943	2228

Table 3 :

 3 Proportion of vertices removed from instances by the filtering step

Table 4 :

 4 Nodes avg #Nodes max Solution quality and run time for CPLEX solving Filtered instance

	10%	40	0	0	-0.1	0.84	70	510
		60	0	0.01	-0.38	3.14	151	2486
		80	0	0.01	0.65	22	117	1048
		100	0	0.01	0.03	101.14	444	1745
		200	0	0.01	160.61	2252	1462	4563
		300 0.24 1.83 1493.71	5770.97	1017	2420
	15%	40	0	0	0.07	0.76	41	360
		60	0	0	-0.51	2.53	182	1347
		80	0	0.01	1.67	21.97	65	634
		100	0	0	2.89	119.44	430	1200
		200	0	0.01	528.63	3786.35	1201	3919
		300 0.18 1.14 1409.66	6512.28	1220	1924
	20%	40	0.27 2.88	238.87	3586.31	86528	1329708
		60	0.06 1.01	0.19	2.38	13	138
		80	0.02 0.28	1.51	18.71	198	1202
		100	0	0.06	4.22	122.9	562	2021
		200 0.02 0.32	516.67	2800.96	1037	3229
		300 0.03 0.17	148.61	6510.58	1089	1966

Table 5 :

 5 Run time and quality of solutions produced by initialization heuristics on unfiltered instancesFamilly Algorithm Size ∆ avg ∆ max Avg.

	running time

Table 6 :

 6 Number of instances which an heuristic performs better than the other, wuth number of ties.

	Family h-ks h-tsp tie
	f1	175	0	5
	f2	24	32	119
	f3	23	3	154
	f4	152	18	10

Table 7 :

 7 Running time and quality of solutions produced by initialization heuristics on filtered instancesFamilly Algorithm Size ∆ avg ∆ max Avg.

	running time

Table 8 :

 8 Best parameters for the four matheuristics given our preliminary experiments

		m iter t iter	w	k	h
	vpls-det	5	120	15	7	N.A.
	vpls-random	7	90	20	10	N.A.
	lb-y	7	90 N.A. N.A.	15
	lb-yx	5	120 N.A. N.A.	50

Table 9 :

 9 The four matheuristics are Solution quality and running time of matheuristics on instances of families f3 and f4 (without filtering)

	Family	Algorithm	#vertices ∆ avg	∆ max Avg. time (s)
	f3	vpls-det	40	0	0	0.97
	f3	vpls-det	60	0	0	2.71
	f3	vpls-det	80	0	0	8.26
	f3	vpls-det	100	0	0	14.65
	f3	vpls-det	200	0	0.02	143.54
	f3	vpls-det	300	0.19	0.5	514.97
	f3	vpls-random	40	0	0	0.92
	f3	vpls-random	60	0	0	2.68
	f3	vpls-random	80	0	0	8.51
	f3	vpls-random	100	0	0	16.91
	f3	vpls-random	200	0	0.02	172.30
	f3	vpls-random	300	0.25	0.53	451.24
	f3	lb-y	40	0	0	1.14
	f3	lb-y	60	0	0	3.19
	f3	lb-y	80	0	0	9.36
	f3	lb-y	100	0	0	18.90
	f3	lb-y	200	0.04	0.57	173.03
	f3	lb-y	300	0.26	0.53	588.67
	f3	lb-yx	40	0	0	1.01
	f3	lb-yx	60	0	0	2.84
	f3	lb-yx	80	0	0	8.83
	f3	lb-yx	100	0	0	17.27
	f3	lb-yx	200	0.01	0.22	195.25
	f3	lb-yx	300	0.26	0.53	555.34
	f4	vpls-det	40	0	0	0.71
	f4	vpls-det	60	0	0.01	1.70
	f4	vpls-det	80	0	0	2.78
	f4	vpls-det	100	0	0.1	10.59
	f4	vpls-det	200	0.02	0.05	68.17
	f4	vpls-det	300	18.16 99.85	211.16
	f4	vpls-random	40	0	0	0.65
	f4	vpls-random	60	0	0.01	1.54
	f4	vpls-random	80	0	0	3.73
	f4	vpls-random	100	0	0.1	12.53
	f4	vpls-random	200	0.01	0.08	85.17
	f4	vpls-random	300	9.16	99.8	217.31
	f4	lb-y	40	0	0	1.04
	f4	lb-y	60	0	0.01	2.69
	f4	lb-y	80	0	0	6.23
	f4	lb-y	100	0	0	21.69
	f4	lb-y	200	0.45 12.86	210.37
	f4	lb-y	300	6.18 34.96	323.70
	f4	lb-yx	40	0	0	0.89
	f4	lb-yx	60	0	0.01	2.25
	f4	lb-yx	80	0	0	5.14
	f4	lb-yx	100	0	0	19.70
	f4	lb-yx	200	0.23	6.69	198.66
	f4	lb-yx	300	4.81 26.86	227.97

Table 10 :

 10 Solution quality and running time of matheuristics on filtered instances of family f4

Table 11 :

 11 Relative improvement over initial solutions for instances of family f4

	vertices	Algorithm	δ I avg
	400	vpls-det	4.04
	400	vpls-random 4.05
	400	lb-y	4.05
	400	lb-yx	4.01
	500	vpls-det	3.28
	500	vpls-random 3.28
	500	lb-y	3.28
	500	lb-yx	3.28
	600	vpls-det	2.88
	600	vpls-random 2.88
	600	lb-y	2.88
	600	lb-yx	2.88
	700	vpls-det	2.57
	700	vpls-random 2.57
	700	lb-y	2.57
	700	lb-yx	2.57

We use the implementation provided by Helsgaun http://webhotel4.ruc.dk/ keld/research/LKH/