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Abstract

Exploratory Data Analysis (EDA), the notoriously tedious task of interactively analyzing datasets
to gain insights, has attracted a lot of attention lately in the data management community. We re-
cently proposed a formal definition of EDA as a multi-objective optimization problem, coined the
Traveling Analyst Problem (TAP) and inspired by the Orienteering Problem (OP). The present
work investigates the use of matheuristics to compute near optimal solutions to the TAP. We in-
troduce four heuristics including two Variable Partitioning Local Search matheuristics and two
Local Branching matheuristics. We present the results of experiments on realistic instances of
various sizes to illustrate their effectiveness.

Keywords: matheuristic, orienteering problem, multiobjective optimization

1. Introduction

Exploratory data analysis (EDA) is the tedious interactive analysis of large datasets to extract
insights. EDA is typically conducted by an analyst who specifies queries on a database system
either using a text language like SQL or through a dedicated GUI. The resulting sequence of
queries is called an EDA session. EDA became more popular as data volumes grew over the last
two decades. Furthermore, with the development of open data the main issue for data consumers
is no longer how to get access to the data but rather how to fully explore and exploit it.

To answer this problem the data management scientific community has recently moved from
assisted exploration approaches ([10]), which still rely on the human expert, to more holistic
and automated approaches such as the generation of EDA sessions ([9, 11, 20, 22]). From the
literature on expert EDA sessions and recent works on EDA sessions generation, it emerges that
EDA sessions must (1) present relevant and interesting information to the user, (2) require a
limited computational time, and finally (3) be composed of a sequence of queries which appear
coherent to the user. We introduced in previous works ([4, 5]) a formal definition of the problem
of automatically generating EDA sessions. This problem, named Traveling Analyst Problem
(TAP), relates to a well-known family of routing problems called orienteering problems (OP).
For instance, assuming that we dispose of a set of database queries, the TAP is defined by an
undirected graph G = 〈V, E〉 in which each vertex vi ∈ V represents a query and (vi, v j) ∈ E
represents the action of running query vi before v j. To meet the three requirements of EDA
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sessions, we introduce for each vertex an interestingness score pi and a service time ti for each
vertex vi ∈ V . Besides, for each (vi, v j) ∈ E, we introduce di j as the conceptual distance between
the two corresponding queries as defined in [1]. The objective of TAP is to produce a routing s
over G such that the overall interestingness score P̄(s) =

∑|s|
i=1 pi is maximum, the overall distance

D̄(s) =
∑|s|−1

i=1 di,i+1 is minimal and the service time T̄ (s) =
∑|s|

i=1 ti is minimal. When there is no
ambiguity regarding the routing/solution s we use P̄, D̄, T̄ instead of P̄(s), D̄(s), T̄ (s). The TAP
has been shown to be strongly NP-Hard in [4].

The TAP is closely related to the orienteering problem, it differs from it as they is no service
times on the vertices in TAP. The OP was formally introduced by Tsiligirides ([25]) who pro-
posed two heuristics to solve it. The first heuristic introduced in [25] is based on a monte-carlo
process generating several feasible solutions and choosing the best one. The second heuristic is
based on an earlier vehicle routing heuristic by [26]. It relies on circular subdivisions of the eu-
clidean space to construct solutions. It is therefore only compatible with instances giving explicit
vertex coordinates. Solutions provided by both algorithms are then improved by a local search
called route improvement ([25]) which tries to either introduce new vertices without exceeding
the distance budget or to shorten the path length by changing the order of vertices in the route.
Chao et al. ([7]) propose a two step heuristic which first builds a set of feasible solutions exploit-
ing geometric features before applying a local search. This one consists in exchanging vertices
between the current best solutions and other feasible solutions to improve the former.

Several works describe exact methods for solving the OP. In [13] a branch-and-cut algorithm
is proposed and tested on many instances including those from [25] but also larger ones with
up to 500 vertices. They solve those large instances to optimality in a few hours. Most of the
extensions of the OP tackled in the literature turn out to be more complex to solve to optimality.
In [3], Bianchetti et al. propose a branch-and-cut algorithm to solve the Team Orienteering
Problem (TOP). In contrast, to the OP in the TOP multiple vehicles are available. This algorithm
relies on a MIP formulation, with a polynomial number of variables and constraints, along with
a custom branch-and-bound procedure. It is able to solve optimally instances up to 102 vertices
and 4 vehicles. Two MIP formulations for the OP are proposed in [19] with a polynomial number
of constraints and variables.

In [17], Hue and Linn tackle an extension of the OP, the Team Orienteering Problem with
Time Windows (TOPTW), in which a set of identical vehicles are considered with the same
travel capabilities. A vertex can be visited by only one vehicle, and the vertices can only be
visited within their specified time windows. Hu and Lin propose a metaheuristic to solve this
problem. Several routes are generated, one for each agent. Those routes are then stored in a
fixed size pool. Routes from this pool are combined to form complete solutions for the problem.
The algorithm also features several operators enabling crossover of routes or swaps of vertices
in a route to improve the built solutions. This work, along with [7] and [25], points out the
importance of reordering vertices when constructing solutions heuristically.

Among the heuristics available in the operations research community, matheuristics have
been the matter of a growing interest in the last decade. In the context of the OP and its exten-
sions, two previous works propose matheuristics. In [2] the authors tackle the arc routing team
orienteering problem by using a matheuristic, which combines a tabu search and a MILP solver.
The algorithm is able to solve 78% of the tested instances to optimality. In [27], Yu et al. focus
on time dependent profits and provide a matheuristic which yields high quality solutions for in-
stances with up to 200 vertices. This algorithm solves first the problem of sequencing vertices
before using a MILP solver to find appropriate service times for the computed sequence.
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In this paper we propose to leverage the recent works made in the field of matheuristics to
produce near-optimal solutions for the TAP within reasonable time. We solve instances with
up to 700 vertices within a few minutes which corresponds, in our original EDA problem, in
processing small-size databases. For a human expert it would require up to a few hours to sift
through for interesting information. It is important to notice that researchers working on the
automatic generation of EDA sessions have not yet investigated the use of sophisticated heuristics
stemming from operations research. This paper provides consequently a strong contribution
by making the link between two research communities. It is organized as follows. In Section
2.2, we propose a mathematical programming model of the TAP. In Section 3, we present two
constructive heuristics as well as four matheuristics. In Section 4, we report on experimental
evaluations of the proposed algorithms and show their efficiency. In Section 5, we conclude this
work and propose further research directions.

2. Modeling and properties of the TAP

2.1. Structural properties

In [4], the TAP is defined as a multi objective optimization problem. Therefore, the optimal
solution to a TAP instance is not unique: it is a set of incomparable solutions, called Pareto
optima ([24]).

Definition 1. Let S be the set of feasible solutions to a TAP instance. The set of Pareto op-
tima of a TAP instance is P = {s ∈ S : @s′ ∈ S, P̄(s′) ≥ P̄(s) ∧ D̄(s) ≥ D̄(s′) ∧ T̄ (s) ≥
T̄ (s′), with at least one strict inequality}. A solution s ∈ S is called a Pareto optimum.

Besides the Pareto front, we also establish several properties of the instances, notably a dom-
inance condition on vertices.

Definition 2 (Dominance condition). ∀vi , v j ∈ V, vi dominates v j iff ti ≥ t j, p j ≤ pi and ∀vk ∈

V \ {vi, v j}, dik ≤ d jk, with at least one strict inequality.

Lemma 1 (Dominated vertices in Pareto optima). ∀s ∈ P,∀vi ∈ s,∀v j , vi ∈ V, if v j dominates
vi then v j ∈ s
Proof: Let s be a Pareto optimum and two vertices vi and v j such that vi ∈ s, v j < s and v j

dominates vi. Construct s′ by replacing vi by v j in s. Then, we have P̄(s′) ≥ P̄(s), D̄(s′) ≤
D̄(s) and T̄ (s′) ≤ T̄ (s) with at least one strict inequality, which contradicts the fact that s ∈ P.

As this dominance condition is unlikely to be satisfied in most instances due to the very
restrictive condition on distances, we propose another condition.

Definition 3 (Pseudo-dominance condition). ∀vi , v j ∈ V, v j dominates vi iff t j ≥ ti, p j ≤ pi,
with at least one strict inequality.

Unlike the condition stated in Definition 2, the one stated in Definition 3 is not a dominance
condition as applying it may lead to discard optimal solutions. That is the reason why the con-
dition of Definition 3 is called a pseudo-dominance condition. Applying the pseudo-dominance
condition we define the notion of pseudo dominance set.

Definition 4 (Pseudo-dominance set). Given an instance, let the pseudo-dominance set of a
vertex v j be I j = {vi ∈ V : v j , vi, v j satisfies the pseudo-dominance condition over vi}.
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As previously mentioned, dominance condition as stated in Definition 2, is unlikely to happen
in practice. At the contrary, the pseudo-dominance condition of Definition 3 may be used to
prune the search space in the context of a heuristic solution of the TAP. The benefits of using
pseudo-dominance conditions will be evaluated in Section 4. Pseudo-dominance conditions can
be used during the solving process as follows: whenever a vertex v j is selected, all vertices in its
pseudo-dominance set I j are also selected.

In this work we assume that the user is capable of formulating and adjusting bounds on the
total distance and time for a given instance. This enables us to use the ε-constraint method ([24])
to compute a Pareto optimum for the TAP: we maximize P̄ under constraints that T̄ ≤ εt and
D̄ ≤ εd. This method still enables to enumerate all solutions in P by solving all problems with
different (εt, εd) values. In the remainder we focus on the solution of the ε-constraint problem.
We now describe how the pseudo-dominance conditions can be used to filter any given instance.

Let N be an upper bound on optimal solution sizes, i.e. such that |V | ≥ N ≥ |s| for any
optimal solution s. In this paper N is computed as N = min(k, k′), where k and k′ are two bounds
calculated by exploiting the ε-constraints of the problem. Assume that service time are ordered
such that t1 ≤ ... ≤ t|V |. Then, k is defined as

∑k
j=1 t j ≤ εt <

∑|V |
j=1 t j. Besides, k′ is obtained

by solving a relaxation of the TAP in which all pi are set to 1, the ε−constraint on T̄ is dropped
along with sub-tour elimination constraints. An optimal solution to this relaxed problem is found
in polynomial time by constructing the shortest 2-cycles between vertices until εd is reached.

For any given instance we can use the pseudo-dominance sets of vertices and the bound N
to design a filtering step: remove vertices vi such that |Ii| > N, as any vertex with a pseudo-
dominance set larger than N is unlikely to be in an optimal solution. Remember that this filtering
is not optimal as the pseudo-dominance condition may lead to consider vertices as dominated
while they are part of some optimal solutions. However, we will see in practice how impacting
is this filtering.

2.2. A mixed integer programming (MIP) model for the TAP problem

Now, let us introduce a MIP formulation of the TAP. This model relies on two sets of binary
variables to represent vertices selection and sequencing of the selected vertices. We have:

∀i ∈ 1..n, yi =

1 if vertex i is selected
0 otherwise

and

∀i, j ∈ 0..n + 1, i , j, xi j =

1 if vertex i precedes vertex j
0 otherwise

We also introduce integer variables ui ∈ {2, ..., n}, ∀i ∈ 1..n , used for sub-tour elimination.

Objective.

max
n∑

i=1

piyi (1)
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Constraints.
n∑

i=1

n∑
j=1, j,i

di, jxi, j ≤ εd (2)

n∑
i=1

tiyi ≤ εt (3)

n∑
i=0, j,i

(xi, j) − y j = 0,∀ j ∈ 1..n (4)

n+1∑
j=1, j,i

(xi, j) − yi = 0,∀i ∈ 1..n (5)

n∑
j=1

x0 j =

n∑
i=1

xi,n+1 = 1 (6)

ui − u j + 1 ≤ (n − 1)(1 − xi j),∀i, j ∈ 1..n, i , j (7)

This model involves (n2+5n+1) variables and (n2+2n+4) constraints. The objective (1) aims
at maximizing the total score, i.e. the interestingness of the sequence of vertices. Constraint (2)
ensures that the total distance does not exceed a threshold εd. Similarly constraint (3) ensures that
the total service time does not exceed a threshold εt. Constraints (4) and (5) ensure the solution
is a path (if a vertex is selected in the solution, then one arc must enter it and one must leave
it). Constraint (6) ensures there is only one start and one end vertex. Finally, we use classic TSP
sub-tour elimination constraints (7) to ensure a single sequence is computed. Here, we chose
those presented in [21].

Constraints corresponding to pseudo-dominance conditions. Using Definition 3 we propose to
add an additional set of constraints to the model.

yi ≤ y j,∀i ∈ 1..n,∀ j ∈ Ii (8)

Adding those constraints may lead the optimal solution to be infeasible as they are based on
the pseudo-dominance condition. We evaluate the impact of adding these constraints in Section 4.

3. Variable partitioning local search and a local branching heuristics

Matheuristics are hybrid approaches combining metaheuristics and exact methods ([8]) by
embedding a MIP solver into traditional heuristic processes. The role of the MIP solver can vary
from a method to another. A classic one, called Variable Partitioning Local Search (VPLS), has
proved to be efficient especially on hard permutation problems ([8]). Another method, called
Local Branching and introduced in [14], has also proved to be effective. In this section, we will
briefly discuss both methods and propose two algorithms based on each method to solve the
TAP. Since both approaches require an initial solution, we present in Section 3.3 two possible
initialization heuristics.
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Figure 1: Example of a solution improved by VPLS algorithm

3.1. VPLS

The VPLS method improves an incumbent solution by iteratively reoptimizing a part of it.
As the reoptimization is done via the solution of a MIP, at each iteration two sets of variables
are defined. One set of variables is fixed as in the incumbent solution while the variables of the
other set are let free so that they define a small MIP to be solved. Hopefully, this new small
MIP can be solved quickly. In the case of the TAP the solution is a sequence: thus, we apply
the VPLS method by selecting a sub-sequence of vertices (called the reoptimization window)
and freeze the remaining vertices of the solution. Given a solution st at iteration t, let us denote
by wstart (respectively w) the starting position (respectively length) of the window. The set of
variables fixed to their current values for iteration t + 1 is defined as: Ft+1 = {yi, i ∈ st \ st[wstart :
wstart + w]} ∪ {xi j, i ∈ st \ st[wstart : wstart + w], j ∈ 1..n, j < st[wstart : wstart + w]} ∪ {x ji, i ∈
st \ st[wstart : wstart + w], j ∈ 1..n, j < st[wstart : wstart + w]}. With st[a : b] being the sub-sequence
starting from position a and ending at position b (inclusive). This is an iterative process which
can be stopped by a specific convergence criterion like a maximum time limit or a maximum
number of iterations.

We provide an example in Figure 1. Figure 1.a shows the current feasible solution st =

[v9, v1, v3, v8, v2, v7] at iteration t, together with the unselected vertices {v4, v5, v6}. Now, assume
that we decide to reoptimize the window [v3, v8], which is represented by dotted arrows. Figure
1.b shows st+1 = [v9, v1, v4, v8, v2, v7] which is the solution obtained after solving the correspond-
ing MIP with a reduced set of variables. One of the key points of VPLS relates to the choice of
the reoptimization window at each iteration. We propose two methods and both assume that the
window length w is a given parameter. The first heuristic called vpls-det, described in Algorithm
1, moves the reoptimization window from the start to the end of the sequence. An additional
parameter o may induce an overlap of windows between iterations if set to a non-zero value by
the user. This window is positioned back at the beginning of the sequence when, at an iteration t,
the solution is improved. The second heuristic, called vpls-random and described in Algorithm
2, randomly selects the window along the sequence.

6



Algorithm 1 vpls-det
Input: An instance (scores, service times, distances, εt, εd), the window width w, window over-

lap o, the maximum number of iterations, and the maximum iteration time. A feasible solu-
tion s f

Output: A solution to the TAP, of service-time at most εt and overall distance at most εd.
1: t ← 0
2: st ← s f

3: wstart ← 0
4: while t < max. iterations do
5: st+1 ← MIP(st,wstart,w,max. iteration time) . solve reduced MIP
6: if P̄(st+1) > P̄(st) then
7: wstart ← 0
8: st ← st+1

9: else
10: wstart ← wstart + w − o
11: end if
12: if wstart + w > |st | and P̄(st) = P̄(st+1) then
13: return st

14: end if
15: t ← t + 1
16: end while
17: return st

Algorithm 2 vpls-random
Input: A TAP instance (scores, service times, distances, εt, εd), the window width w, the maxi-

mum number of iterations, and the maximum iteration time. A feasible solution s f

Output: A solution to the TAP, of service-time at most εt and overall distance at most εd.
1: t ← 0
2: st ← s f

3: while t < max. iterations do
4: wstart ← pick a random window starting position
5: st ← MIP(st,wstart,w,max. iteration time) . solve reduced MIP
6: t ← t + 1
7: end while
8: return st
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3.2. Local branching
The two other matheuristics we introduce are a direct application of the Local Branching

([8]) method with no diversification phase. They rely on the Hamming distance ([15]) between
the two sets of decision variables of the MIP, as described in Section 2.2: variables yi represent
the presence or absence of a vertex in the solution while the xi, j’s represent the order between
selected vertices. Thus, any two solutions can be compared by the Hamming distance, either on
the complete set of decision variables or on a subset. For example, assume it is computed w.r.t.
only the xi j’s, then the Hamming distance ∆(x, xs) to a known solution xs is given by:

∆(x, xs) =

n∑
i, j=1,xs

i j=1

(1 − xi j) +

n∑
i, j=1,xs

i j=0

xi j (9)

This distance can be used to build a constraint that effectively constrains the solver to search
in the neighborhood of an incumbent solution. In contrast to the VPLS approaches, which are
limited to modifications within a specific sub-sequence, this approach enables broader transfor-
mations of the solutions such as swapping the first vertex and the last vertex of the solution. The
two local branching heuristics we propose are denoted by lb-y and lb-yx and are described in
Algorithm 3. They simply vary on the constraints they use, (10) for lb-y and (11) for lb-yx. Let
st be the best solution known at iteration t and let (xt, yt) be its associated variable vector. Then,
have:

∆(y, yt) < h (10)

∆(x, xt) + ∆(y, yt) < h (11)

with h a parameter limiting the maximum number of variables to be changed.

Algorithm 3 lb-y / lb-yx
Input: A TAP instance (scores, service times, distances, εt, εd), the maximum hamming distance

h, the maximum number of iterations and the maximum iteration time. A feasible solution
s f

Output: A solution to the TAP, of service-time at most εt and overall distance at most εd.
1: t ← 0
2: st ← s f

3: while t < max. iterations do
4: st ← MIP(st, constraint (10) or (11), max. iteration time)
5: t ← t + 1
6: end while
7: return st

3.3. Initial solutions
The importance of the initial solution given to the matheuristics is crucial, as the matheuristics

can be seen as metaheuristics, which improve a given solution. Hopefully, the latter is obtained
quickly and is sufficiently good so that the matheuristic can reach near-optimal solutions. We
propose two different heuristics to construct initial solutions. The first one, called h-ks, runs in
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Figure 2: General principle of h-tsp for generating Solution A (top) and Solution B (bottom) starting from a solution to
the assignment problem over the distance matrix

O(n2) time and exploits the knapsack structure of the problem. First, vertices are selected by
decreasing order of their ratio pi/ti, until constraints (2) and (3) prevent from more insertions.
In addition to this classic knapsack heuristic, whenever a vertex is selected, it is inserted at the
position in the partial solution which minimizes the D̄ criterion of the selected solution under
construction.

The second algorithm, called h-tsp, is an approach inspired by sub-tour merging heuristics for
the traveling salesman problem (TSP). This algorithm produces 2 solutions which are compared
and the best one is returned. The algorithm (see Figure 2) starts by solving a relaxed version
of the TSP over G with distances di j when sub-tour elimination constraints are removed. This
yields an assignment problem that is solved by the successive shortest path method ([12]) in
O(n3log(n)) time. This may lead to a potentially non feasible solution composed of sub-tours (
see step aO Figure 2). From this point the algorithm computes two solutions. First to compute,
Solution A, the algorithm merges all sub-tours (see step bO Figure 2). This step is skipped
if the assignment problem solution is composed of a single tour. The merging of sub-tours is
done by applying an implementation of the minimum spanning tree approach described in [18].
This merging approach was chosen as it outperforms other tour construction heuristics ([18]).
Since after merging sub-tours the distance and/or time ε-constraint may be violated, we design
an additional redcution step to fix this issue (see step eO Figure 2). First, if the ε-bound on time
is not answered, queries are eliminated in increasing order of their ratio pi/ti until it is no longer
violated. Then, if the ε-bound on distance is not respected, queries are eliminated in increasing
order of pi value, every η eliminated queries the tour is reoptimized by the LKH heuristic1 ([16]).

Solution B is obtained by considering all sub-tours as single elements in a Multi-Dimensional
Knapsack. Each sub-tour is associated to its total length, service-time and interestingness score
(see step cO Figure 2). This Multi-Dimensional Knapsack problem is solved to extract a set
of sub-tours that are next merged (see step dO Figure 2) using the same merging approach as
Solution A. The same reduction step as Solution A can be applied if any ε-constraint is violated.

Finally, Solution A and Solution B are compared, and the best (feasible) one in terms of P̄

1We use the implementation provided by Helsgaun http://webhotel4.ruc.dk/ keld/research/LKH/
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value is returned.

4. Computational experiments

We organize this experimental section as follows: first, we describe the different types of
instances we use and their properties; second, we evaluate the impact of filtering and adding
constraints as described in Section 2.2; third, we compare the quality of solutions produced
by initialization heuristics; fourth, using the best initialization heuristic for each instance we
evaluate the solution quality of the four matheuristics. Finally, we compare the performance of
the heuristics and matheuristics to CPLEX given a similar time budget on large instances.

For all experiments, we used the CPLEX solver version 20.10 running on a Fedora Linux
(kernel 5.11.13-200) workstation, with two 2.3 Hz Intel Xeon 5118 with 377GB of memory. To
show realistic running times the CPLEX solver is run in single-thread mode whenever a MIP
model has to be solved. We provide an open source implementation of all algorithms in our Git
repository https://github.com/AlexChanson/TAP-Matheuristics. This repository also
contains all TAP instances used in this section.

4.1. Instances generation

No suitable benchmark for our problem is available in the literature. This due to the added
service time and the use of a metric with no triangular inequality. We instead use four families
of randomly generated instances.

• The first family of instances, denoted by f1, is designed to be mainly sort of knapsack
instances. The interestingness score is a real number drawn from an uniform distribution
between 0 and 1. The distance is an integer number drawn from a uniform distributions
between 5 and 6. Finally the service time is an integer number drawn from a uniform
distribution between 5 and 50.

• The second family of instances, denoted by f2, is designed to be mainly sort of TSP in-
stances. The interestingness score is an integer number drawn from an uniform distribution
between 1 and 3. The distance is an integer number drawn from a uniform distributions
between 1 and 14. Finally the service time is an integer number drawn from a uniform
distribution between 5 and 6.

• The third family of instances, denoted by f3, is designed to contain particularly hard knap-
sack instances (service time and profit are strongly correlated [23]), while still having a
strong routing component. The distance is an integer number drawn from a uniform dis-
tributions between 1 and 10. The service time is an integer number drawn from a uniform
distribution between 5 and 50. The interestingness score is equal to the service time plus
5.

• The last family of instances, denoted by f4, is similar to real world instances. The inter-
estingness score is a real number drawn from an uniform distribution between 0 and 1.
The distance is an integer number drawn from a uniform distributions between 1 and 10.
Finally the service time is an integer number drawn from a uniform distribution between
5 and 50. These constants were set by manually generating a few instances with databases
found on the open data platform Kaggle ([6]).
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Figure 3: Average time taken by CPLEX to solve an instance from set f3 to optimallity

For each family of instances, we generate 30 instances for each size n ∈ {40, 60, 80, 100,
200, 300, 400, 500, 600, 700}.

In this work, we will need solve single objective TAP instances. We intend to fix εt and εd to
simplify the interpretation of results. Due to the varying size of instances we express εt and εd as
the expected fraction of queries in the instances in the solution. For example if εt is set to 0.35
for a 200 vertices, it means we expect that the time constraint will, on average, lead to solutions
containing 70 queries. By choosing different values for εt and εd we can make one ε−constraint
more restrictive than the other.

To choose a combination of ε−constraints that is not too simple to solve. We measured the
time taken by CPLEX to produce an optimal solution (1h time limit) on 30 instances of f4 with
300 vertices, with various ε−constraints combinations. We report those results in Figure 3. We
decide on εt set to 0.6 and εd set to 0.3 for the remainder of this work. As this appears to be a
hard scenario for the solver, but where it is still practically possible to obtain optimal solutions
in a few hours.

4.2. Evaluation of pseudo-dominance and filtering
In this section we evaluate the effectiveness of filtering pseudo-dominance conditions. Both

approaches were proposed in Section 2.1. We only conduct experiments on instances of family
f4, as for those of family f3 pseudo-dominance conditions never apply.

First, we propose to evaluate the impact of adding constraints based on pseudo-dominance to
the solution of the MIP. We use CPLEX with default parameters and timeout of two hours, with
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and without pseudo-dominance. In Table 1 we report the number of nodes #Nodes explored by
CPLEX, and the average and maximum deviation, respectively ∆avg and ∆max from the optimal
solution value (computed without pseudo-dominance). Finally, we report the average and max-
imum time gained ∆Tavg and ∆Tmax compared to CPLEX without pseudo-dominance: negative
values denote lost time over running the vanilla solver. In a set of preliminary experiments it was
noted that the pseudo-dominance produced a large number of constraints potentially spoiling the
solver. Thus, we also report results for only adding a fraction of the valid constraints, which
is achieved by only selecting constraints that relate to vertices with dominance sets larger than
κ × |V |, with κ ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

Table 1 shows that adding the constraints (even partially) seems to marginally degrade the
solution quality. However, this approach is always requiring more CPU time than CPLEX to
solve instances. Even with very few added constraints. We note though that the best case scenario
seems to be for κ = 0.8.

As we may eventually use pseudo-dominance in the matheuristics, we test solution quality of
CPLEX alone, against CPLEX with added constraints (for κ = 0.8) in a limited 60 seconds time
budget. This would be typical of the time taken by one iteration of the matheuristics. Solution
quality is reported in terms of average relative deviation to the optimal solution in Table 2.

Size CPLEX CPLEX with pseudo-dominance (κ = 0.8)
40 0 0
60 0 0
80 0 0

100 0.05 0.14
200 30.23 9.31
300 91.11 90.71

400* 99.69 99.68

Table 2: Average relative deviation to the optimal solution objective after 60 seconds for varying instance sizes (*
deviation reported against near-optimal solutions, MIP gap < 1%)

Results from Table 2 show that the approach can provide some improvement for instances of
size 200. However, since this trend doesn’t extend to instances beyond this size, we choose to
discard this approach for the remainder of this work.

For the filtering approach, a preliminary test was first conducted to evaluate the number of
vertices the filtering step removes on instances of family f4. Its results are reported in Table 3.
This shows that applying the method based on the computed bound N only filters out about 3%
of the vertices. This is unlikely to be enough to achieve significant performance improvements.
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κ Size ∆avg ∆max ∆Tavg (s) ∆Tmax (s) #Nodesavg #Nodesmax

0 40 0 0 0 0 0 0
60 0 0 0 0 0 0
80 0 0 0 0 0 0
100 0 0 0 0 0 0
200 0 0 0 0 0 0
300 0 0 0 0 0 0

0.2 40 0 0 -0.74 0.2 69 580
60 0 0 -1.51 0.84 129 1443
80 0 0.01 -1.86 17.21 118 1191
100 0 0 -45.02 51.98 575 3629
200 0 0.01 -1003.11 1743.38 1702 5950
300 1.98 21.83 -2363.51 404.39 1720 4265

0.3 40 0 0 -0.39 0.44 66 630
60 0 0 -1.01 2.43 83 1024
80 0 0.01 -2.67 17.77 197 1000
100 0 0 2.36 99.35 333 2104
200 0 0.01 -679.46 2068.54 1423 3326
300 0.05 0.52 -2985.96 -408.19 1748 2804

0.4 40 0 0 -0.4 0.08 67 503
60 0 0 -1.17 1.9 68 671
80 0 0.01 1.34 19.96 42 494
100 0 0.01 -10.26 68.16 433 2144
200 0 0.01 -196.64 2043.44 1316 4549
300 0 0.01 -2099.43 916.81 1351 2717

0.5 40 0 0 -0.45 0.4 71 585
60 0 0.01 -0.52 1.63 48 490
80 0 0.01 -1.54 18.96 149 772
100 0 0 -10.77 95.47 558 2560
200 0 0.01 -489.51 1495.5 1457 3434
300 0 0 -978.76 451.26 974 1584

0.6 40 0 0 -0.39 0.49 78 482
60 0 0.01 -1.35 1.06 144 1440
80 0 0.01 -1.54 21.37 237 1976
100 0 0 -7.35 81.4 489 1688
200 0 0.01 -461.65 2107.72 1285 3428
300 0 0 -2243.49 853.16 1264 2304

0.7 40 0 0 -0.35 0.42 57 439
60 0 0 -0.96 1.95 100 1282
80 0 0 -3.83 19.42 202 1129
100 0 0 -10.92 113.96 476 1332
200 0 0.13 -547.39 1786.61 1483 3667
300 0.01 0.09 -834.5 1164.47 1157 3531

0.8 40 0 0 -0.24 0.25 61 612
60 0 0 -0.98 1.79 68 649
80 0 0.01 -6.87 7.43 312 2012
100 0 0 -16.14 52.61 486 1827
200 0.01 0.35 -112.72 1847.14 1050 2550
300 0 0.05 -1189.3 2137.28 943 2228

Table 1: Solution quality and running time for CPLEX solving instances with pseudo-dominance
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Size Min. Filtered (%) Avg. Filtered (%) Max. Filtered (%)
40 0.00 2.25 7.50
60 0.00 3.06 8.33
80 0.00 3.00 7.50

100 1.00 3.37 6.00
200 1.50 3.13 5.00
300 1.33 3.23 5.00
400 1.25 3.15 5.25
500 0.80 2.93 5.40
600 2.17 2.88 3.67
700 2.00 2.99 4.43

Table 3: Proportion of vertices removed from instances by the filtering step

However, since our work focuses on an heuristic approach and the pseudo-dominance con-
dition is not exact, we propose to remove more vertices by sorting them in decreasing order of
their dominance set size and by removing the first 10%, 15% and 20% of the most dominated
queries.

vertices removed Size ∆avg ∆max ∆Tavg (s) ∆Tmax (s) #Nodesavg #Nodesmax

10% 40 0 0 -0.1 0.84 70 510
60 0 0.01 -0.38 3.14 151 2486
80 0 0.01 0.65 22 117 1048
100 0 0.01 0.03 101.14 444 1745
200 0 0.01 160.61 2252 1462 4563
300 0.24 1.83 1493.71 5770.97 1017 2420

15% 40 0 0 0.07 0.76 41 360
60 0 0 -0.51 2.53 182 1347
80 0 0.01 1.67 21.97 65 634
100 0 0 2.89 119.44 430 1200
200 0 0.01 528.63 3786.35 1201 3919
300 0.18 1.14 1409.66 6512.28 1220 1924

20% 40 0.27 2.88 238.87 3586.31 86528 1329708
60 0.06 1.01 0.19 2.38 13 138
80 0.02 0.28 1.51 18.71 198 1202
100 0 0.06 4.22 122.9 562 2021
200 0.02 0.32 516.67 2800.96 1037 3229
300 0.03 0.17 148.61 6510.58 1089 1966

Table 4: Solution quality and run time for CPLEX solving Filtered instance

We report in Table 4 the the number of nodes #Nodes explored by CPLEX, and the average
and maximum deviation, respectively ∆avg and ∆max from the optimal solution value (computed
without filtering). Finally, we report the average and maximum time gained ∆Tavg and ∆Tmax

compared to running CPLEX on unfiltered instances. Similarly to previous experiments negative
values represent lost time. The results in Table 4 show that it is beneficial to remove more queries
than only the 3% that would have been removed by using the bound N on optimal the solution
size. Removing 10% to 15% of queries yields a significant improvement in the running time (of
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more than 20 minutes on larger instances) without deteriorating to much the solution quality: the
deviation is at most 1.83% with respect to optimal solutions. We observe diminishing returns
with 20% of vertices filtered with a lower ∆Tavg, we will therefore use a 15% filtering on all
further experiments.

4.3. Evaluation of the initialization heuristics

We now propose to evaluate the quality of the initialization heuristics. We compare the
running times of h-ks and h-tsp along with their deviation to the optimal solutions computed by
CPLEX. We conduct this series of experiments on instances of family f1 and f2. Those sets of
instances respectively constitute mainly knapsack and TSP like instances. Thus, we expect h-ks
to perform better on f1, and h-tsp to perform better on f2. Additionally, given the results of the
previous experiments we propose to test the effect of the filtering approach on the heuristics. We
report the average and maximum deviation, respectively ∆avg and ∆max from the optimal solution
value along with the average running time for each heuristic in Table 5.

Table 5: Run time and quality of solutions produced by initialization heuristics on unfiltered instances
Familly Algorithm Size ∆avg ∆max Avg. running time

f1 h-ks 40 0.27 1.87 0.01
f1 h-ks 60 0 0 0.01
f1 h-ks 80 0.05 0.63 0.01
f1 h-ks 100 0.7 4.81 0.01
f1 h-ks 200 0.28 1.34 0.01
f1 h-ks 300 0.09 0.35 0.01
f1 h-tsp 40 6.9 12.49 0.56
f1 h-tsp 60 4.34 8.44 1.35
f1 h-tsp 80 5.8 9.55 2.58
f1 h-tsp 100 6.03 7.61 4.51
f1 h-tsp 200 5.74 8.32 28.66
f1 h-tsp 300 5.73 8.4 390.28
f2 h-ks 40 0.6 1.82 0.01
f2 h-ks 60 0.29 1.16 0.01
f2 h-ks 80 0.22 0.87 0.01
f2 h-ks 100 0.32 0.69 0.01
f2 h-ks 200 0.11 0.33 0.01
f2 h-ks 300 0.07 0.22 0.01
f2 h-tsp 40 0.32 1.82 0.15
f2 h-tsp 60 0.36 1.11 0.58
f2 h-tsp 80 0.19 0.84 0.88
f2 h-tsp 100 0.26 0.69 0.33
f2 h-tsp 200 0.13 0.33 1.35
f2 h-tsp 300 0.04 0.22 3.71

As expected, the results in Table 5 show a clear advantage of h-ks for the knapsack like in-
stances (family f1). The average deviation of h-ks remains mostly under 1%, with its running
time is under 10ms. Meanwhile, h-tsp produces solutions with a deviation of 5-6% with a par-
ticularly long running time. When examining the results on instances from family f2 however
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we note the superiority of h-tsp over h-ks is marginal. Yet, results in Table 6 show that h-tsp
produces better solutions than h-ks in some cases. However, due to the low cost of running those
heuristics on most instances types, we still believe it is better to run both and pick the best result.

Family h-ks h-tsp tie
f1 175 0 5
f2 24 32 119
f3 23 3 154
f4 152 18 10

Table 6: Number of instances which an heuristic performs better than the other, wuth number of ties.

Now considering the filtering step, we report the result of running both heuristics on filtered
instances in Table 7. The filtering seems marginally degrade the heuristics in a few scenarios.
We also note a reduction in the running time of h-tsp on family f1 as a side effect of the filtering.

Table 7: Running time and quality of solutions produced by initialization heuristics on filtered instances
Familly Algorithm Size ∆avg ∆max Avg. running time

f1 h-ks 40 0.27 1.87 0.01
f1 h-ks 60 -0 0 0.01
f1 h-ks 80 0.05 0.63 0.01
f1 h-ks 100 0.7 4.81 0.01
f1 h-ks 200 0.28 1.34 0.01
f1 h-ks 300 0.09 0.35 0.01
f1 h-tsp 40 5.19 10.39 0.43
f1 h-tsp 60 4.18 8.43 0.94
f1 h-tsp 80 4.29 9.2 1.73
f1 h-tsp 100 5.21 9.89 3.00
f1 h-tsp 200 5.17 7.01 18.10
f1 h-tsp 300 4.49 6.62 226.61
f2 h-ks 40 0.6 1.82 0.01
f2 h-ks 60 0.29 1.16 0.01
f2 h-ks 80 0.3 1.61 0.01
f2 h-ks 100 0.39 2 0.01
f2 h-ks 200 0.22 1.67 0.01
f2 h-ks 300 0.09 0.22 0.01
f2 h-tsp 40 0.27 1.82 0.10
f2 h-tsp 60 0.32 1.11 0.46
f2 h-tsp 80 0.27 1.61 0.76
f2 h-tsp 100 0.37 2 0.64
f2 h-tsp 200 0.21 1.67 0.95
f2 h-tsp 300 0.07 0.22 2.33

4.4. Comparison of the matheuristics with optimal solutions
We now compare the four matheuristics by evaluating their deviation to the optimal solution

when they are all given a 10 minutes time budget. We conduct this experiment on both instances
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of family f3 and f4 and with and without the filtering step. For each matheuristic, we run prelim-
inary tests to find an efficient combination of its parameters, and the obtained result can be found
in Table 8. Note that for each instance, the matheuristics are given the best initial solution from
either h-tsp or h-ks.

Algorithm miter titer w k h
vpls-det 5 120 15 7 N.A.

vpls-random 7 90 20 10 N.A.
lb-y 7 90 N.A. N.A. 15
lb-yx 5 120 N.A. N.A. 50

Table 8: Best parameters for the four matheuristics given our preliminary experiments

In Table 9 we report the results of matheuristics running on unfiltered instances, the average
and maximum deviation, respectively ∆avg and ∆max from the optimal solution value along with
the average running time for each matheuristic. For uncorrelated instances (f3) the four algo-
rithms provide extremely low deviations with vpls-det appearing to slightly outperform. How-
ever, this advantage doesn’t appear to hold for instances of family f4. With those correlated
instances it appears that lb-yx performs significantly better with an average deviation under 5%
on the largest instances. As explained in Section 4.2 we only report in Table 10 results using
the filtering approach on instances of family f4. With this filtering step we observe better results
on large instances as matheuristics do not reach their time limit. The deviations are overall ex-
tremely low. As for the fastest algorithm , vpls-random manages an average of 66 seconds on
instances of 300 vertices.

4.5. Performance on large instances

As a final experiment we propose to evaluate the capabilities of the matheuristics with the
filtering step to solve large instances of the TAP. We compare the performance of the four
matheuristics with a 10 minutes time limit on the largest instances of family f4. We report δI

avg
the deviation to the initial (h-tsp or h-ks) solution for each matheuristic in Table 11.

The results in Table 11 show that all matheuristics are equally able to improve the solutions
provided by the initialization heuristics. A 2% to 4% improvement is achieved depending on the
size of the instances. With the largest instances only improved by 2%.

5. Conclusion

In this paper we studied the solutions of the Traveling Analyst Problem (TAP) using simple
and effective matheuristics based on the VPLS and Local Branching methods. We investigated
possible techniques to further accelerate solution of the MIP using filtering and additional con-
straints both based on pseudo-dominance. We showed that adding constraints to the MIP while
reducing the number of possible solutions was detrimental to the solver in both exact mode and
limited time. The filtering approach showed however no significant degradation of the solutions
and provided significant time savings. We also proposed and studied two polynomial heuristics
based on TSP and Knapsack heuristics. They proved effective in solving instances of the TAP
close to these two problems. They provide good starting solutions to the matheuristics which are
capable of converging to near optimal solutions in a few iterations. The four matheuristics are

17



Family Algorithm #vertices ∆avg ∆max Avg. time (s)
f3 vpls-det 40 0 0 0.97
f3 vpls-det 60 0 0 2.71
f3 vpls-det 80 0 0 8.26
f3 vpls-det 100 0 0 14.65
f3 vpls-det 200 0 0.02 143.54
f3 vpls-det 300 0.19 0.5 514.97
f3 vpls-random 40 0 0 0.92
f3 vpls-random 60 0 0 2.68
f3 vpls-random 80 0 0 8.51
f3 vpls-random 100 0 0 16.91
f3 vpls-random 200 0 0.02 172.30
f3 vpls-random 300 0.25 0.53 451.24
f3 lb-y 40 0 0 1.14
f3 lb-y 60 0 0 3.19
f3 lb-y 80 0 0 9.36
f3 lb-y 100 0 0 18.90
f3 lb-y 200 0.04 0.57 173.03
f3 lb-y 300 0.26 0.53 588.67
f3 lb-yx 40 0 0 1.01
f3 lb-yx 60 0 0 2.84
f3 lb-yx 80 0 0 8.83
f3 lb-yx 100 0 0 17.27
f3 lb-yx 200 0.01 0.22 195.25
f3 lb-yx 300 0.26 0.53 555.34
f4 vpls-det 40 0 0 0.71
f4 vpls-det 60 0 0.01 1.70
f4 vpls-det 80 0 0 2.78
f4 vpls-det 100 0 0.1 10.59
f4 vpls-det 200 0.02 0.05 68.17
f4 vpls-det 300 18.16 99.85 211.16
f4 vpls-random 40 0 0 0.65
f4 vpls-random 60 0 0.01 1.54
f4 vpls-random 80 0 0 3.73
f4 vpls-random 100 0 0.1 12.53
f4 vpls-random 200 0.01 0.08 85.17
f4 vpls-random 300 9.16 99.8 217.31
f4 lb-y 40 0 0 1.04
f4 lb-y 60 0 0.01 2.69
f4 lb-y 80 0 0 6.23
f4 lb-y 100 0 0 21.69
f4 lb-y 200 0.45 12.86 210.37
f4 lb-y 300 6.18 34.96 323.70
f4 lb-yx 40 0 0 0.89
f4 lb-yx 60 0 0.01 2.25
f4 lb-yx 80 0 0 5.14
f4 lb-yx 100 0 0 19.70
f4 lb-yx 200 0.23 6.69 198.66
f4 lb-yx 300 4.81 26.86 227.97

Table 9: Solution quality and running time of matheuristics on instances of families f3 and f4 (without filtering)
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Algorithm #vertices ∆avg ∆max Avg. time (s)
vpls-det 40 0 0 0.57
vpls-det 60 0 0.01 1.30
vpls-det 80 0 0.01 3.12
vpls-det 100 0 0.05 9.07
vpls-det 200 0.02 0.07 49.87
vpls-det 300 0.01 0.04 103.94

vpls-random 40 0 0 0.56
vpls-random 60 0 0.01 1.28
vpls-random 80 0 0.01 3.20
vpls-random 100 0 0 10.84
vpls-random 200 0 0.04 94.95
vpls-random 300 0.01 0.04 66.75

lb-y 40 0 0 0.82
lb-y 60 0 0.01 2.13
lb-y 80 0 0.01 5.43
lb-y 100 0 0 19.17
lb-y 200 0 0.03 213.71
lb-y 300 0.01 0.04 274.33
lb-yx 40 0 0 0.68
lb-yx 60 0 0.01 1.80
lb-yx 80 0 0.01 5.21
lb-yx 100 0 0 16.81
lb-yx 200 0 0.01 147.67
lb-yx 300 0 0.04 204.48

Table 10: Solution quality and running time of matheuristics on filtered instances of family f4

shown to produce an optimal or near-optimal solution on many instances. We note a slight domi-
nance of lb-yx among these matheuristics. Notably, when coupled with filtering all matheuristics
are able to produce better solutions in less time. Finally, we showed that the matheuristics are
still able to improve initial solutions on instances of up to 700 vertices.
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