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Abstract

Computational Intelligence has achieved considerable successes in recent years
and numerous applications rely on it. However, its use crucially relies on human
experts, from feature engineering to algorithm selection. Since the performance
of a given approach depends on the qualities of the algorithm regarding the
targeted data and task, the design of new application becomes more and more
difficult. Benchmarking, algorithm selection and hyperparameter tuning thus
become tools of choice for helping non-experts to rigorously design the method
that will solve their problem. This presentation aims at introducing the
(relatively) new scientific field arising around the progressive automation of
computational intelligence.
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Part 1

Automated Design Problem
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Context
Computational Intelligence

Artificial Intelligence:
• Computational Intelligence
• Neural Networks
• Evolutionary Computing
• Fuzzy Logic
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Context
e.g. Machine Learning

Tasks:
• Data Management
• Design of Features
• Selection of Model
• Model Parameters Tuning
• Design Topology of NN
• Postprocess Models
• Analyze Results

Demands for off-the-shelf, automated, tools.
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Why?
Simple example in bioinformatics

• Olson et al., Data-driven advice for applying machine learning to
bioinformatics problems, Pacific Symposium on Biocomputing 2018
• 13 scikit-learn algorithms
• 165 bioinfo classification problems
• model selection & hyperparameters tuning
• with a grid « search »
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Why?
Performances

• Improvement in accuracy
compared to the average
on each dataset.
• 20% av. increase in

accuracy
• up to more than 60%
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Main problem
Optimization

Design, Selection, Tuning = Optimization

Given a random set of problem instances I ∼ I drawn in all the possible
problems I = P(I), the algorithm selection problem is to find the mapping
from problems to algorithms f : I 7→ A that maximize a measure of central

tendency of the performance metric distribution:

f (I) = arg max
A⊂A

E
i∈I

p(i ,A(i))

Key difference: representation of A
Key feature: p is non-differentiable
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Main problem
Sub-problems

• Hyperparameter Optimization / Algorithm Configuration
• Algorithm Selection
• Neural Architecture Search
• Algorithm Design
• Meta-Learning / Dynamic Algorithm Configuration / Learning to Learn
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Meta-Learning example
Landscape-aware hyperparameters tuning
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Meta-Learning example
Landscape-aware hyperparameters tuning

12 | Johann Dreo | AutoML for Bioinformatics | 2022-06-21



Part 2

Solutions
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Algorithmics

Two main families:
• Bayesian Optimization
• Evolutionary Algorithms

Common issue: how to assess performance
• Reproducible Benchmarking
• Cross-validation
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Algorithmics
Randomized Search

Common features:
• Sample the search space
• Bias toward bests areas
• Iteratively

Bayesian:
• Manage the randomization of the problem
• Compromise perf/uncertainty
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Algorithmics
A gradient

Response surface

Optimal solution(s)
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Algorithmics
Software Tools

Generic libraries:
• AutoWEKA (selection and tuning), Auto-sklearn
• Auto-PyTorch (tuning and archi)
• AutoGluon (tuning, model selection, archi)
• H2O AutoML (model selection)
• MLBox (feature selection, tuning)
• TPOT (pipeline optimization)
• Nevergrad (benchmarking, tuning, selection)

+ tons of dedicated solvers.
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Part 3

Perspectives
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Pareto analysis

• Search for trade-offs
• Between various

performances metrics
• Another kind of

meta-learning
• Allow the user to have

preferences
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Interactive / Explainable

• Parameters importance / Automatic Ablation Studies
• Visualizations
• Human-guided search
• Automated integration of results in the OPTION Ontology
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Interactive / Explainable
Data integration in OPTION: why?
• Backup
• Reproducibility
• Help algorithmicians
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Engineering

• So far, in the ascending phase
• Lot (too many) of options to choose from
• Which platform will win?

22 | Johann Dreo | AutoML for Bioinformatics | 2022-06-21



Engineering
Link

• https://www.automl.org
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Part 4

Hands on
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What’s needed

• Type of objective: mono-objective
• Type of function: noisy
• Problem generator:
• Several [ML] models
• Several hyper-parameters
• Automated call to single runs (e.g. cross-validation)
• Probably a working SLURM-compatible pipeline

• Type of parameters: continuous, qualitative or mixed?
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Elpida
How to expose the problem to a solver?

• (Advertisement) Elpida protocol: https://github.com/jdreo/elpida

• Messages exchange: Problem server ⇐⇒ Solver client
• Simple JSON messages
• Read files
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Elpida
JSON messages

You receive:
{

"query_type":"call",
"solution": [10,10]

}

You answer:
{

"query_type": "value",
"value": [3.14]

}
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Elpida
Read files

import json
# Wait for a query:
with open("query",'r') as fd:

squery = fd.read()
# Parse the message:
jquery = json.loads(squery)
# Extract the solution:
sol = jquery["solution"]
# Compute the value of the objective function:
val = sum(sol)
# Forge a JSON `value` reply:
sreply = json.dumps( { "query_type":"value", "value":[val] } )
# Send the reply:
with open("reply",'w') as fd:

fd.write(sreply)

(in a loop)
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Elpida
FIFO named pipes

Client reply query Server

block wait
query >

>
>

wait block process
<

<
< reply

29 | Johann Dreo | AutoML for Bioinformatics | 2022-06-21



Elpida
Example: plugging SMAC3

Using elpida/examples/smac3/smac3-elpida-cli.py:
parser.add_argument("-x", metavar="X", type=float,

help="A variable")
parser.add_argument("-y", metavar="Y", type=float,

help="Another variable")

Test a single run:
../python/problem_server.py # Run problem server
./smac3-elpida-cli.py 0 1 2 3 4 -x 2 -y 3 # One design
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Running SMAC3

scenario.txt:
algo = smac3-elpida-cli.py
paramfile = configspace.pcs
run_obj = quality
runcount_limit = 10
deterministic = 1

configspace.pcs:
# name [min,max] [default]
x [-5,10] [0]
y [0,15] [0]

Run SMAC:
smac.py --scenario scenario.txt
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Thanks for your attention!

And don’t worry, I will help you.

Public benefit
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75724 Paris Cedex 15 — France


	Abstract
	Automated Design Problem
	Context
	Why?
	Main problem
	Meta-Learning example

	Solutions
	Algorithmics

	Perspectives
	Pareto analysis
	Interactive / Explainable
	Engineering

	Hands on
	What’s needed
	Elpida
	Running SMAC3


