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This is anOpe
Abstract – Under condition of oxidative stress, free radical-catalyzed peroxidation of docosahexaenoic
acid (DHA) and adrenic acid (AdA) generates in vivo neuroprostanes (NeuroPs) and dihomo-isoprostanes
(dihomo-IsoPs), among a large number of key products participating in many pathophysiological processes.
These non-enzymatic oxygenated metabolites display a wide range of biological actions (especially DHA-
metabolites), and some of them are now considered as the most reliable indicators of oxidative stress in
neurogenerative, neurodevelopmental or cardiovascular diseases. In this review, we will present an
overview regarding neuroprostanes and dihomo-isoprostanes and discuss about their biological interests.

Keywords: biomarkers / docosahexaenoic acid / radical peroxidation / neuroprostanes / dihomo-isoprostanes /
bioactive oxylipins / total synthesis

Résumé – F4-neuroprostanes et F2-dihomo-isoprostanes : biomarqueurs et oxylipines bioactives.
Dans des conditions de stress oxydatif, la peroxydation, catalysée par les radicaux libres de l’acide
docosahexaénoïque (DHA) et de l’acide adrénique (AdA) génère, parmi un grand nombre de produits clés
participant à de nombreux processus physiopathologiques, des neuroprostanes (NeuroPs) et dihomo-
isoprostanes (dihomo-IsoPs).Cesmétabolites oxygénésnon-enzymatiques présentent de nombreuses activités
biologiques, et certainsd’entreeuxsontdésormais considéréscomme lesbiomarqueurs lesplusfiablesdustress
oxydatif dans lesmaladies neurogénératives, neurodéveloppementales ou encore cardiovasculaires.Dans cette
revue, seront présentés les différents travaux autour des neuroprostanes et dihomo-isoprostanes, et notamment
leur intérêt biologique.

Mots clés : biomarqueurs / activités biologiques / peroxydation lipidique / acides gras polyinsaturés / neuroprostanes /
dihomo-isoprostanes
1 Introduction

In 1990, Morrow et al. (1990) highlighted the formation in
man of the isoprostanes (IsoPs), isomeric to prostaglandins
(PGs), by a non-enzymatic mechanism involving the radical
peroxidation. These compounds are biosynthetized while
arachidonic acid (C20:4 n-6, AA) is linked to the phospho-
lipids. A large number of diastereoisomers, however with
major cis-configurations between the lateral chains on the
cyclopentane ring, can be generated, as well as several
functions on the 5-member ring (diol, enone, hydroxyketone).
The metabolites are further released from the membrane by a
specific phospholipase A2 (PLA2) (Stafforini et al., 2006).
Medal 2018.
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Later, the same group from the Vanderbilt University
described a similar mechanism for the peroxidation of
docosahexaenoic acid (C22:6 n-3, DHA), one of the main
polyunsaturated fatty acids (PUFAs) in the brain, leading to
neuroprostanes (NeuroPs) (Roberts et al., 1998; Nourooz-Zadeh
et al., 1998).

It should be known that the lipid peroxidation of PUFAs
(here DHA, Fig. 1) begins with the abstraction of an atom of
hydrogen by HO., in one of the 5 bis-allylic positions, either on
C-5, or C-8, or C-12 or C-15 or C-18. The pentadienyl radical
formed reacts with a molecule of dioxygen to form a peroxyl
radical which undergoes a cyclization and the subsequent
radical formed reacts with a second molecular oxygen
molecule to generate a hydroperoxide. Finally, a complete
reduction yields the whole family of F4-NeuroPs with several
series (4, 7, 10, 11, 13, 14, 17, and 20) (Fig. 1), when the partial
ttributionLicense (https://creativecommons.org/licenses/by/4.0), which permits
edium, provided the original work is properly cited.
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Fig. 1. F4-NeuroP products of DHA peroxidation.

Fig. 2. E- and D- type products of PUFA peroxidation.
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reduction yields the D4- and E4-NeuroPs (hydroxyketone
function of the cyclic ring) (Fig. 2). Note that these metabolites
are produced as racemic in vivo.

The increaseof theF4-NeuroPconcentration isdemonstrated
in several pathologies as for example the neurodegenerative and
cardiovascular diseases, and they are now considered as the best
markers of the lipid peroxidation. Their quantification in urine
and plasma allows a precise, non-invasive and representative
measure of oxidative stress (Milne et al., 2007;Mas et al., 2008;
Michel et al., 2008; Vigor et al., 2014).

The quantification processes were developed thanks to the
availability of synthetic compounds provided by organic
chemists able to produce large amount of pure compounds
(Jahn et al., 2008). Furthermore, some metabolites that became
commercially available were studied and a lot of biological
activities were reported over the years (Galano et al., 2017;
Ahmed et al., 2020). For example, to determine whether IsoP
structures possessed intrinsic biological activities, Morrow
et al. (1990) have tested the 15-F2t-IsoP to study blood
pressure. The metabolite was injected in a rat kidney, in the
peripheral vein or directly in the kidney, and a reduction of the
blood pressure as well as the rate of filtration was observed.
IsoPs and other PUFA metabolites thus have biological
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activities which confer them a role of mediator in a context of
OS (Galano et al., 2017; Ahmed et al., 2020).

In mammals, this prolific pathway can occur with different
PUFAs (Fig. 3). If DHA is enriched in the grey matter and
retina, and yields to neuroprostanes (NeuroPs) after peroxida-
tion (Roberts et al., 1998; Nourooz-Zadeh et al., 1998),
another PUFA, adrenic acid (AdA, C22:4 n-6) is mainly
present in the myelin (white matter) and retina and produces
another class of metabolite, the dihomo-Isoprostanes (dihomo-
IsoPs) (Song et al., 2008; VanRollins et al., 2008; De La Torre
et al., 2014, 2015; De Felice et al., 2011). In plants, the
phytoprostanes (PhytoPs) were described, resulting from the
radical peroxidation of a-linolenic acid (ALA, C18:3 n-3)
(Imbusch and Mueller, 2000). It should be mentioned that
twelve years after the discovery of the IsoPs, Fessel et al.
(2002) have highlighted a new class of metabolites containing
a tetrahydrofuran core and named them isofurans (IsoFs).
Later, neurofurans (NeuroFs) (De La Torre et al., 2015) and
dihomo-isofurans (dihomo-IsoFs) were detected (De La Torre
et al., 2014).

The lovely story of some of these molecules, especially
NeuroPs and dihomo-IsoPs will be presented in this review.
Several outcomes in terms of syntheses, diagnosis and
biological activities, gathering almost thirty years of research,
from organic chemistry knowledge through a smart multi-step
synthesis strategy providing many pure compounds, to our
fruitful collaborations with a large number of scientists,
biologists, clinicians all around the world (Galano et al., 2013,
2015).

2 Chemical synthesis

Since the discovery of IsoPs, our group among other
developed several strategies to access PUFA metabolites with
high purity and enantioselectivity (Vigor et al., 2022).
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Fig. 3. Metabolites resulting of the radical peroxidation of PUFAs.
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Nowadays, in our group we are using the last, simple and
highly stereocontrolled strategy developed in 2008 (Oger et al.,
2008). This strategy is based on a bicyclic a,b-epoxy ketone
intermediate (Fig. 4). To this core, and as the key steps,
Horner–Wadworth–Emmons and Wittig reactions permit to
plug the large diversity of lateral chains, thanks to the synthesis
of the appropriate phosphonium salts or phosphonates. The
allylic alcohol on the lateral chain is obtained either as (R) or
(S)-epimer thanks to an enantioselective chemical reduction.
These strategies have allowed us to access IsoPs, dihomo-
IsoPs, NeuroPs and other PhytoPs metabolites (Fig. 4)
(Brinkmann et al., 2010; Oger et al., 2010a, b, 2012; Guy
et al., 2014).

3 New biomarkers

The best technic for the analysis of such metabolites is the
tandem chromatography-mass spectrometry, whether using
gas or liquid chromatograph (GC-MS, LC-MS). Thanks to the
development of MS2, GC-MS/MS and LC-MS/MS technics
are therefore more specific and sensitive, and allow
quantification of particular metabolites found in low abun-
dance in different sample matrices. Both GC-MS/MS and LC-
MS/MS have been used for quantification of a wide range of
isoprostanoids. However, the derivatization process required
for GC-MS analysis to improve the volatility and thermal
stability of the compounds is often time-consuming and lead to
low recovery yields. Indeed, this derivatization process needs
to convert the carboxylic acid into pentafluorobenzyl esters
(PFB) by pentafluorobenzyl bromide (PFBBr) in the presence
of a catalyst such as N,N’-diisopropylethylamine, and the
hydroxyl functions with either O-bis (trimethylsilyl) trifluor-
oacetamideþ 1% trimethylchlorosilane (BSTFAþTMCS) or
N-Methyl-N-trimethylsilyltrifluoroacetamide (Vigor et al.,
2014) to form trimethylsilyl ether derivatives.
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However, derivatization is not a mandatory for LC-MS
technic. Therefore, several methods were developed for LC-
MS/MS studies of PUFAmetabolites (Collado-Gonzales et al.,
2015; Lee et al., 2016; Sánchez-Illana et al., 2017; Rund et al.,
2018). As for example, our group in collaboration with the
group of Justine Bertrand-Michel was able to detect and
quantify more than 50 isoprostanoids synthesized in our group,
in a run a 20min (Fig. 5) (Dupuy et al., 2016). It should be
mentioned that depending of the series of isoprostanoids, this
method permits to separate the two epimers of the allylic
alcohol (Fig. 6). In this sense, the development of new technic
and/or methods to separate diastereoisomers of PUFA
metabolites is still of great interest.

3.1 Neuroprostanes

Our two first examples reporting the interest of F4-NeuroPs
as biomarkers of pathological states were performed by Barden
et al. (1996, 2004, 2012). In a recent study F4-NeuroPs, F2-
IsoPs as well as IsoFs were quantified in maternal plasma and
cord blood of women with pre-eclampsia and normal
pregnancie. Women with pre-eclampsia had significantly
elevated maternal IsoFs and F4-NeuroPs, but no F2-IsoPs. Cord
blood F4-NeuroPs were elevated among neonates of mother
with pre-eclampsia. Interestingly, cord blood IsoFs were
approximately 5-fold higher than those found in maternal
plasma. This could reflect the oxidative challenge presented at
birth when there is transition from a relatively low intra-uterine
oxygen environment to a significantly higher extra uterine
oxygen environment. Maternal F4-NeuroPs were not signifi-
cantly correlated with cord blood F4-NeuroPs in pre-eclamptic
and in normal pregnancies, suggesting the origin of cord F4-
NeuroPs may be independent of maternal plasma. In normal
pregnancy, birth weight was negatively related to maternal F2-
IsoPs, IsoFs and F4-NeuroPs.
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Fig. 4. A fully flexible approach.

Fig. 5. LC-MS/MS> 50 isoprostanoids.
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Fig. 6. Epimer separation for the 8(RS)-8-F3t-IsoP.
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The brain is vulnerable to oxidative insult because of high
oxygen requirements for its metabolism and high PUFA
composition, in particular DHA. Thus, F4-NeuroPs are
considered as specific markers of brain OS. Aneurysmal
subarachnoid hemorrhage (aSAH) and traumatic brain injury
(TBI) are associated with devastating central nervous system
(CNS) injury. Two case-controlled studies have shown a
significant increase in cerebrospinal fluid (CSF) of IsoFs in
aSAH and TBI patients compared with their respective age-
and gender-matched controls. aSAH patients also had
significantly increased levels of CSF F4-NeuroPs and
F2-IsoPs. Patients with TBI had significantly increased CSF
F4-NeuroPs but F2-IsoPs were similar to control (Corcoran
et al., 2011). These data confirm that CNS injury, in case of
aSAH or TBI, results in increased OS and as DHA is the brain
major PUFA, F4-NeuroP levels in CSF could be a much more
specific indicator of neurological dysfunction than F2-IsoPs.
Hsieh et al. (2009) have showed that increased F4-NeuroPs in
CSF of patients with aSAH correlated with poor neurological
outcome. They suggested that F4-NeuroPs might be more
useful than F2-IsoPs in CSF to predict outcome and interpret
the role of hemorrhage in aSAH. Although Farias et al. (2008)
showed increased F2-IsoPs during rat brain ischemia, the
E2/D2-IsoPs were increased to a greater extent, suggesting the
latter may better markers of OS in brain ischemia.

The anti-atherogenic effects of omega-3 fatty acids,
eicosapentaenoic acid (EPA, C20:5 n-3) and DHA are well
recognized but the impact of dietary intake on bioactive lipid
mediator profiles remains unclear. Such a profiling effort may
offer novel targets for future studies into the mechanism of
action of omega-3 fatty acids. Gladine et al. (2014) studied the
impact of DHA supplementation on the profiles of PUFA
oxygenated metabolites and their contribution to atheroscle-
rosis prevention. A special emphasis was given to the non-
enzymatic metabolites knowing the high susceptibility of
DHA to free radical-mediated peroxidation, and the increased
OS associated with plaque formation. Atherosclerosis prone
mice (LDLR2/2) received increasing doses of DHA (0, 0.1, 1 or
2% of energy) during 20weeks leading to a dose-dependent
reduction of atherosclerosis (R2 = 0.97, p= 0.02), triglycer-
idemia (R2 = 0.97, p= 0.01) and cholesterolemia (R2 = 0.96,
p< 0.01). Targeted lipidomic analyses revealed that both the
profiles of EPA and DHA and their corresponding oxygenated
metabolites were substantially modulated in plasma and liver.
Notably, the hepatic level of F4-NeuroPs was strongly
correlated with the hepatic DHA level. Moreover, unbiased
statistical analysis including correlation analyses, hierarchical
cluster and projection to latent structure discriminate analysis
revealed that the hepatic level of F4-NeuroPs was the variable
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most negatively correlated with the plaque extent (p< 0.001)
and along with plasma EPA dihydroxylated metabolites was an
important mathematical positive predictor of atherosclerosis
prevention. Thus, oxygenated n-3 PUFA, and F4-NeuroPs, are
potential biomarkers of DHA-associated atherosclerosis
prevention. While these may contribute to the anti-atherogenic
effects of DHA, further in vitro investigations are needed to
confirm such a contention and to decipher the molecular
mechanisms of action.

3.2 Dihomo-isoprostanes

Rett syndrome (RTT) is a pervasive abnormality of
development affecting almost exclusively females, which is
included among the autism spectrum disorders. RTT is caused
in up to 95% of cases by mutations in the X-linked methyl-
CpG binding protein 2 (MeCP2) genes (De Felice et al., 2012).
Although over 200 different MeCp2 mutations have been
reported to cause RTT, nine most frequent ones (hotspot
mutations) are known to comprise more than three quarters of
all the reported pathogenic mutations. The disease shows a
wide phenotypical heterogeneity, with at least 4 distinct major
clinical presentations, i.e., typical, preserved speech, early
seizure variant, and congenital variant. First, clinical evidence
indicates that F2-IsoPs and F4-NeuroPs are involved in the
intimate pathogenetic mechanisms of RTT (De Felice et al.,
2011). Plasma levels of free F2-IsoPs are significantly higher in
the early stages of RTT, as compared with the late natural
progression of typical RTT. Until 2011, it was thought that the
predominant central nervous system damage in RTT occurred
in gray matter. However, the relative abundance in myelin of
the precursor AdA and the increased level of F2-dihomo-IsoPs,
strongly confirm an early and severe damage to the brain white
matter as suggested by previous brain MRI evidence
(De Felice et al., 2011). Thus F2-dihomo-IsoPs can be
considered early markers of lipid peroxidation in RTT.
F4-NeuroPs also appear to be important biomarkers in RTT.
Plasma F4-NeuroPs levels correlate with disease severity in
RTT and are significantly related to neurological symptoms
severity, mutation type and clinical presentation. Therefore,
F4-NeuroPs may also play a major role along the biochemical
pathway fromMeCp2genemutation to clinical evidence, proving
that a DHA oxidation process occurs (Cortelazzo et al., 2016).

The same group, De Felice and Signorini reported the
importance of neuroprostanes and dihomo-isoprostanes in
differents neurological diseases (Signorini et al., 2018),
KRABBE disease (Signorini et al., 2019), cerebral adrenoleu-
kodystrophie disease (Signorini et al., 2022) andfinally in sperm
capacitation (Signorini et al., 2021).
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Fig. 7. 4(RS)-4-F4t-NeuroP.
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Finally, Vento and collaborators reported also the impor-
tance of neuroprostanes and dihomo-isoprostanes in Alz-
heimer disease and newborns (Garcia-Blanco et al., 2018;
Peña-Bautista et al., 2019; Cascant-Vilaplana et al., 2021).

4 New bioactive lipids

PUFA metabolites are not only biomarkers of lipid
peroxidation but also mediators of oxidant injury, and
especially the NeuroPs.

4.1 Neuroprostanes

It is well reported that an enriched n-3 PUFA diet confers
cardioprotective effects due primarily to the two main PUFA,
EPA and DHA (GISSI-Prevenzione Investigators, 1999). A
large prospective study showed that the most marked effect of
DHA and EPA supplementation is a reduction of sudden
cardiac death in the months following a cardiac infarction.
This benefit has been explained, in part, by a reduction in
arrhythmias and systolic cardiac failure. The anti-arrhythmic
effects of n-3 PUFA have been confirmed in animal models of
cardiac infarction by ligature of the left coronary artery and
reported in 2003 by Judé et al. (2003). These and other studies
in single cardiac cells have shown that EPA and DHA can
modulate the activity of ion channels, the transmembrane
proteins responsible for the electrical activity of the heart.
However, it has been suggested that oxygenated metabolites of
EPA and DHA may also play a role in these actions. In this
regard, it has been shown that some of the effect of DHA on rat
cardiac ion channels was due to an oxygenated metabolite of
DHA, the 4(RS)-4-F4t-NeuroP (Fig. 7) (Roy et al., 2015).

Roy et al. (2015) have tested different F4-NeuroPs on
arrhythmias induced by isoprenaline and stimulation frequen-
cy of isolated ventricular mice cardiac cells. Among them,
some F4-NeuroPs have anti-arrhythmic effects (IC50≈
100 nM). The main metabolite, the 4(RS)-4-F4t-NeuroP,
showed potent dose-dependent in cellulo and also in vivo in
permanent myocardial infarction (PMI) mice. At the cellular
level, the mechanism of action is unlikely to be due to a
b-blocker effect, but the anti-arrhythmic property can instead
be explained by a rycal-like effect; in particular, stabilization
of the RyR2 complex with FKBP12.6 (Andersson and Marks,
2010; Roy et al., 2017).

In 2017, Bosviel et al. (2017) reported that the 4(RS)-4-F4t-
NeuroP and the 14-A4t-NeuroP possess an anti-inflammatory
properties mediated by PPAR receptors, using primary
microglial cells.
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Lacampagne et al. (2022a, b) have tested first the 4(RS)-4-
F4t-NeuroP on Ventilator Induced Diaphragm Dysfunction
(VIDD) and confirmed that this metabolite permits to restore
diaphragm muscular activity on VIDD mice and rat. This
phenomenon is once again mediated again by RYR1
receptor. Later, Lacampagne et al. (2022a, b) validated
the proof of concept on adult pig of the activities of 4(RS)-4-
F4t-NeuroP and another compound on VIDD with a
submicromolar inhibithory concentration and three patents
were published (Le Guennec et al., 2012; Lacampagne et al.,
2022a, b). (WO 2015197562A1 20151230, EP12306519.3,
EP22305460.2, EP22209466.6).

In 2020, Lee et al. (2020) reported for the first time that
native 4(RS)-4-F4t-NeuroP has a regulatory role in neurons for
cell survival on human SH-SYSY neuroblastoma cells.

Geng et al. (2022) have also reported a neuroprotective
effect of 4(RS)-4-F4t-NeuroP on primary mouse microglial and
BV2 cells and that the 4(RS)-4-F4t-NeuroP attenuate LPS-
induced mitochondrial membrane potential loss in BV2 cells.

Finally, Moretti et al. (2023) reported this year that 4(RS)-
4-F4t-NeuroP possess an effect on human sperm and precisely
a role on sperm capacitation mediated again by a ryanodine
receptor.

It should be mentioned that to date, there is no biological
activity reported for the dihomo-IsoPs.

5 Conclusion

Our understanding of the role of PUFA peroxidation in the
pathogenesis of various human diseases is at an early stage.
Regarding DHA, we know that free radical-induced autoxida-
tion of this PUFA occurs in numerous pathological conditions
from cardiovascular disorders to cancers and neurodegenera-
tive diseases. Through our knowledge in organic chemistry, we
can contribute to clinical and basic research by developing
novel synthetic approaches and providing samples for
biological and analytical studies. Several new approaches
for chiral synthesis of NeuroPs and others isoprostanoids such
as dihomo-IsoPs are now available. Some of these products
may be used as markers for the diagnosis and management of
patients and will need to be measured accurately and precisely.
The contribution of each of these unique NeuroPs to tissue and
organ damage has to be clearly ascertained within a complex
network of signalling molecules and mediators. Despite all the
work performed in this field, there is still a lot to discover, and
collaborations between chemists and biologists are in this
sense highly important.
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