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COUNTING ARCS OF THE SAME TYPE

MARIE TRIN

Abstract. We prove a general counting result for arcs of the same type in compact surfaces. We

also count infinite arcs in cusped surfaces and arcs in orbifolds. These theorems are derived from a

result that guarantees the convergence of certain measures on the space of geodesic currents.

1. Introduction

The mapping class group Map(Σ) of a connected oriented surface Σ with genus g and r boundary

components acts on the set of weighted multicurves Cm(Σ). The question of counting the elements

in a given orbit has been studied by M. Mirzakhani for simple curves [15] and later for general

curves [16]. She proved that for any complete finite area hyperbolic metric X on Σ, any weighted

multicurve γ0 ∈ Cm(Σ) and any finite index subgroup Γ of Map(Σ) there is a constant cΓg,r(γ0) such

that

(1.1) lim
L→∞

#{γ ∈ Γ · γ0|`X(γ) ≤ L}
L6g−6+2r

= cΓg,r(γ0) ·mΣ
Thu({`X(·) ≤ 1}),

where mΣ
Thu is the Thurston measure on the measured geodesic laminations of Σ.

Erlandsson-Souto [12] have extended this theorem into a general version where the hyperbolic

length function can be replaced by other notions of complexity for the curves of S: that is any

positive, continuous and homogeneous function on the geodesic currents of S – this applies for

example to the length for any Riemannian metric on Σ or its interior [10], the intersection number

with a filling curve or current [10][19], the word length [8] or the translation length in π1(Σ) when

acting on a metric space [9]...

Now, if Σ is a compact connected oriented surface with non-empty boundary then one can consider

the action of the mapping class group on the set of weighted multiarcs. In this setting, N. Bell [5]

proved a result close to Mirzakhani’s: if X is a complete hyperbolic metric with geodesic boundary

on Σ then for every weighted multiarc α0 there is a constant cMap
g,r (α0) such that

(1.2) lim
L→∞

#{α ∈ Map(Σ) · α0|`X(γ) ≤ L}
L6g−6+2r

= cMap
g,r (γ0) ·mΣ

Thu({`X(·) ≤ 1}),

where the length of an arc α is the length of the unique geodesic arc homotopic to α which is

orthogonal to the geodesic boundary. The main goal of this paper is to obtain a general version
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2 MARIE TRIN

of that result by proving a convergence result for a certain sequence of measures. Indeed, already

Erlandsson-Souto generalization of Mirzakhani’s results relies on the convergence of certain measures

on the space of geodesic currents. Here it is key that curves can be seen as currents. To see arcs as

currents we will work in the doubled surface DΣ of Σ. Denoting by α̂ the curve in DΣ corresponding

to the doubling of an arc α of Σ, we define for any weighted multiarc α0 and for any finite index

subgroup Γ of Map(Σ) the Radon measures

νΓ
α0,L =

1

L6g−6+2r

∑
α∈Γ·α0

δ 1
L
α̂(1.3)

on the space C(DΣ) of geodesic currents of DΣ. We prove that they converge when L tends to

infinity. The following is our main theorem.

Theorem 4.6. If Σ is a compact connected oriented surface with non-empty boundary and negative

Euler characteristic which is not a pair of pants, then for every weighted multiarc α0 ∈ Am(Σ), and

every finite index subgroup Γ of Map(Σ), there is cΓg,r(α0) > 0 such that

lim
L→∞

νΓ
α0,L = cΓg,r(α0) · m̂Σ

Thu.

Here m̂Σ
Thu is a Radon measure on C(DΣ) and the convergence occurs with respect to the weak*

topology on the set of Radon measures on C(DΣ).

Remark. In Theorem 4.6, the measure m̂Σ
Thu is a specific measure on C(DΣ) obtained from the

Thurston measure on the space ML(Σ) of measured laminations on Σ, see Section 2.2 for details.

We will get from Theorem 4.6 a pretty general counting theorem for arcs. We will count arcs with

bounded complexity where the complexity of an arc is given by functions on Am(Σ). We will say

that such a function F extends to currents if there exists a continuous and homogeneous function

on C(DΣ) whose restriction to the set of arcs is F . If this function on currents is also called F , it

means that F (α̂) = 2F (α) for every arc α. Since C(Σ) ⊂ C(DΣ) we will say that F is positive if it

is a positive function on C(Σ).

Corollary 5.1. Let Σ and Γ be as in Theorem 4.6. For any weighted multiarc α0 ∈ Am(Σ) and

any function F on Am(Σ) which extends to a positive function on currents we have

lim
L→∞

#{α ∈ Γ · α0|F (α) ≤ L}
L6g−6+2r

= cΓg,r(α0) ·mΣ
Thu({F (·) ≤ 1}).

For example, F can be the length function for any Riemannian metric with geodesic boundary

on Σ or the intersection number with a filling curve or current of Σ.

In Section 2, we will recall the needed background on geodesic currents and explain how we

double Σ. Section 3 will be dedicated to the proof of a first counting theorem, Theorem 3.3, with a

condition on intersection numbers. That theorem will be a key tool in order to prove Theorem 4.6

in Section 4. In the last section we will prove Corollary 5.1, we will also obtain counting results for

bi-infinite arcs (Theorem 5.4) or for arcs on orbifolds (Theorem 5.5).
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2. Geodesic currents

In this section, we describe some background on geodesic currents, explaining how currents of Σ

can be seen as currents of DΣ. For more details on the notion of geodesic currents, we refer to [1],

[6] or [12].

2.1. Background. Recall that for any (compact) connected, oriented hyperbolic surface X, a ge-

odesic current is a π1(X)-invariant Radon measure on the set of bi-infinite unoriented geodesics

of the universal cover X̃. Note that all the hyperbolic structures on a given topological surface Σ

define the same set of geodesic currents. Hence, for Σ a connected oriented surface with negative

Euler characteristic we denote by C(Σ) the space of geodesic currents of Σ. This space is endowed

with the weak* topology and is then Hausdorff, metrizable, and second countable. Moreover, if the

surface Σ is compact then C(Σ) is locally compact. The two main examples of geodesic currents we

are interested in are weighted-multicurves and measured laminations.

By a curve we mean a free homotopy class of essential (ie. non-null-homotopic and non-

peripheral) closed curves. A weighted multicurve is a formal finite sum of different curves with

positive weights. When a metric is fixed on Σ, a curve is canonically represented by its unique

geodesic representative. Hence, it lifts to the universal cover into a discrete π1(Σ)-invariant set of

bi-infinite geodesics and the counting measure over this set is a geodesic current. The geodesic

currents associated to a weighted multicurve is the corresponding sum of currents. In the following,

we will denote by C(Σ) and Cm(Σ) the sets of curves and weighted multicurves of Σ. They will

mostly be seen as subsets of C(Σ).

The set ML(Σ) of measured laminations can also be seen as a subset of C(Σ). Recall that a

geodesic lamination is a closed subset of the interior of Σ that can be foliated by disjoint simple

geodesics. This definition ensures that the geodesic boundaries can-not be leaves of a lamination.

A measured lamination is a geodesic lamination endowed with a transverse measure and it is that

transverse measure that allows us to see measured laminations as geodesic currents. A point to

notice is that, as geodesic currents of a closed surface, the measured laminations are characterised

by having zero self intersection number. In the case of a surface with boundary, we have to add the

condition that the mesured lamination give no weight to the boundary components:

(2.1) ML(Σ) = {µ ∈ C(Σ)|i(µ, µ) = 0 and µ(∂̃Σ) = 0}.
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We will work with Radon measures on the space of currents. The one we will be mainly interested

in is the Thurston measure mΣ
Thu on ML(Σ) wich extends naturally to a measure on C(Σ). Although

we will not use its precise expression in the following, let us recall that this measure is given by

mΣ
Thu = lim

L→∞

1

L6g−6+2r

∑
γ∈MLZ(Σ)

δ 1
L
γ ,

where MLZ(Σ) is the set of integral weighted simple multicurves. For more details on the Thurston

measure one can refer to [17] or [2].

2.2. Doubling the surface. In the following, Σ is a compact connected oriented surface with

r > 0 boundary components and genus g such that 2 − 2g − r < 0 and (g, r) 6= (0, 3). We endow

it with a fixed hyperbolic metric with geodesic boundary. Note that the orientation on Σ induces

an orientation of the geodesic boundary components. An arc α in Σ is a free homotopy class of

oriented segments based on boundary components and we identify two arcs that deffer from the

orientation. A weighted multiarc α is a finite sum of arcs with positive weights. We ask the arcs not

to be homotopic to a segment of a boundary component. We will denote by A(Σ) the set of arcs

and Am(Σ) the set of weighted multiarcs. Note that since a metric is fixed, an arc α is canonically

represented by the unique orthogeodesic of the homotopy class.

As we mentioned in the introduction, we need to be able to interpret arcs as currents. However,

it is not possible to do it by using the same process as for curves. This is why we will work on the

doubled surface DΣ. The surface DΣ is the closed oriented surface of genus g(DΣ) = 2g + r − 1

corresponding to the doubling of Σ. In that setting, the arcs of Σ will be in bijection with certain

symmetric curves of DΣ.

Figure 1. From Σ to DΣ

We can embed two copies of Σ into DΣ such that they cover DΣ and meet pointwise along their

boundary components. We will denote by Σ+ and Σ− these two copies, i+ and i− the associated

embeddings, and σ : DΣ 7−→ DΣ the involution that exchanges Σ+ and Σ− (it is an orientation

reversing map which is the identity when restricted to the boundary of Σ). The embeddings i+ and

i− naturally extend to embdeddings from the geodesic currents of Σ to the geodesic currents of DΣ
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hence, for an element µ in C(Σ) we will denote by µ̂ its doubled version:

(2.2)
·̂ : C(Σ) ↪→ C(DΣ)

µ 7→ i+(µ) + i−(µ).

To obtain Theorem 4.6, we need to see the Thurston measure as a Radon measure on C(DΣ).

To do so, we pushfoward the measure through the hat operator to obtain a mesure m̂Σ
Thu in C(DΣ)

surpported by M̂L(Σ).

Remark that the elements in the image of the hat operator are fixed by the involution σ. More

generally, we will call symmetric the elements fixed by σ and we will denote by Cσ(∂Σ) the sym-

metric curves of DΣ and MLσ(DΣ) the symmetric measured laminations. Remark that the set

of symmetric measured laminations is larger than the image of ML(Σ) by the hat operator: the

embedded boundary components of Σ are symmetric but are not represented by elements in the

image of ML(Σ) by the hat operator. We record this fact for later reference.

Proposition 2.1. A symmetric measured lamination Λ ∈ MLσ(DΣ) is an element of M̂L(Σ) if

and only if

(1) it does not have connected components of ∂Σ as leaves,

(2) i(Λ, ∂Σ) = 0, where i(·, ·) is the intersection form between currents. �

At last, for any (multi)arc α ∈ A(Σ) its two copies i+(α) and i−(α) into DΣ meet at their

endpoints and their union forms a symmetric (multi)curve of DΣ. We will denote by α̂ that curve:

it is not an image by the above hat operator but this notation is consistant with the one for curves

or measured lamination as their image through ·̂ are the union of their two copies (see Fig. 1). The

curves of DΣ are geodesic currents of DΣ, so, the doubling process implies that we are now able to

see arcs as geodesic currents.

(2.3)
·̂ : Am(Σ) ↪→ Cσm(DΣ) ↪→ C(DΣ)

α 7→ α̂ 7→ α̂.

3. Counting problems with a bound on the intersection number

Our next goal is to prove a particular version of Corollary 5.1, namely the fact that we can count

arcs when we measure them using the intersection with a filling curve. Our argument is inspired by

those of Bell [5][4]. Bell’s approach consists of associating to each arc α the curve γα = α−1 ·a2 ·α·a1,

where a2 and a1 are the boundary components at the end and begining of α — whatever the chosen

orientation for α, the associated curve is the same. It turns out that α and γα are closely related

and we will be able to extend the counting results for γα to results for α.

The above construction of γα for a given curve induces a map from the set of weighted multiarcs

to the set of weighted multicurves of Σ:

I : Am(Σ) → Cm(Σ)∑
aiαi 7→

∑
aiγαi .
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The first point to notice about the map I is that it is equivariant with respect to the mappping

class group, meaning that for any φ ∈ Map(Σ) and α ∈ Am(Σ)

φ · I(α) = I(φ · α).

Secondly, we can prove that α and I(α) are nearby in the sense that they intersect curves

essentially in the same way.

Lemma 3.1. For any α ∈ Am(Σ) there is dα ∈ N such that if µ ∈ Cm(Σ) is a weighted-multicurve

then

(3.1) |i(I(α), µ)− 2i(α, µ)| ≤ 2dαi(µ, µ)

where i(·, ·) is the geometric intersection number. Moreover, dα is invariant under the action of the

mapping class group on Am(Σ).

Proof. For any arc α ∈ A(Σ) there is an immersion, unique up to homotopy, that sends the pair of

pants P into Σ in such a way that the image of the boundary components are a1, a2 and I(α), and

such that α is the image of the unique simple arc between the preimage of a1 and a2.

Let H be the subgroup of π1(Σ) given by the image of π1(P ) under the immersion. The group

H is the free group of rank 2 and the pair of pants lifts homeomorphically to Σ̃�H as a compact

subsurface. Surface groups being LERF [20], there is a finite index subgroup K of π1(Σ) containing

H such that P lifts to Σ̃�K. This means that there is a cover of Σ, of degree dα < ∞, in which

some well chosen lifts ã1, ã2, and Ĩ(α) of a1, a2, and I(α) are the three boundary components of

an embedded pair of pants and such that the unique simple arc between ã1 and ã2 is a lift α̃ of α

(see Fig. 2). If µ is a weighted multicurve of Σ we denote by ˜̃µ its preimage inside this cover.

Figure 2. Immersed and embedded pair of pants

For any finite degree cover of Σ, if α̃ is a lift of α, then there is a lift Ĩ(α) of I(α) equal to I(α̃)

and it is the case for the lifts chosen above. So, in the previous cover we have the following relations

between intersection numbers:

(1) i(I(α), µ) ≤ 2i(α, µ) by construction of I(α),
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(2) i(I(α̃), ˜̃µ) = i(I(α), µ), i(α̃, ˜̃µ) = i(α, µ) and i(˜̃µ, ˜̃µ) = dα · i(µ, µ) by definition of a covering

map,

(3) i(α̃, ˜̃µ) ≤ 1
2 · i(I(α̃), ˜̃µ) + i(˜̃µ, ˜̃µ) because each intersection between α̃ and ˜̃µ comes from a

component of ˜̃µ that enters and leaves the pair of pants, or a component that turns around

the legs and which have some self intersections. A self intersection leads to at most one

intersection with α̃ and a pair of intersections with the boundary (ie intersections with

I(α̃)) to at most one intersection with α̃.

All in all, it occurs that

(3.2) − 2 · dα · i(µ, µ) ≤ 0 ≤ 2 · i(α, µ)− i(I(α), µ) ≤ 2 · dα · i(µ, µ),

and Eq. (3.1) follows for α.

Moreover, since any mapping class φ induces a bijection φ∗ : π1(Σ) → π1(Σ) we can choose dα

to be the same for every arc in a given orbit. We have proved the lemma for arcs and the triangle

inequality gives the results for weighted multiarcs. �

We can consider the restriction of I to the orbit of a given weighted multiarc α0:

I|Map(Σ)·α0
: Map(Σ) · α0 → Map(Σ) · I(α0)

α 7→ I(α),

equivariance under Map(Σ) and Lemma 3.1 imply that this map is finite-to-one.

Proposition 3.2. For all α0 ∈ Am(Σ), the map I|Map(Σ)·α0
is well defined and k(α0)-to-1 for some

k(α0) ∈ N which depends only on the type of α0. �

We are now able to count arcs with respect to the intersection number with a curve. More

precisely, we will count with respect to the intersection number with a filling multicurve – a curve

that cuts the surface into disks and annulus – which ensures that we count finitely many arcs at

each step.

Theorem 3.3. If Σ is a compact connected oriented surface with non-empty boundary and negative

Euler characteristic which is not a pair of pants, and Γ is any finite index subgroup of Map(Σ),

then for any weighted multiarc α0 on Σ and for any µ ∈ Cm(Σ) filling multicurve we have

lim
L→∞

#{α ∈ Γ · α0|i(µ, α) ≤ L}
L6g−6+2r

= cΓg,r(α0) ·mΣ
Thu({i(µ, ·) ≤ 1}).

Here, cΓg,r(α0) is a constant fixed by the type of α0, the group Γ and the topology of Σ.

Proof. The intersection number with a filling multicurve being a positive, homogenuous and con-

tinuous function on the geodesic currents of Σ, [12, Theo. 9.1] or [12, Ex. 9.1] ensure that there

exists cΓg,r(I(α0)) > 0 such that

(3.3) lim
L→∞

#{γ ∈ Γ · I(α0)|i(µ, γ) ≤ L}
L6g−6+2r

= cΓg,r(I(α0)) ·mΣ
Thu({i(µ, ·) ≤ 1}).
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Hence, by Lemma 3.1 and Eq. (3.3) we have

lim sup
L

#{α ∈ Γ · α0|i(α, µ) ≤ L}
L6g−6+2r

≤ kα0 · lim sup
L

#{γ ∈ Γ · I(α0)|i(µ, γ) ≤ 2L+ 2dα0i(µ, µ)}
L6g−6+2r

= kα0 · 26g−6+2r · lim sup
L

#{γ ∈ Γ · I(α0)|i(µ, γ) ≤ 2L+ 2dα0i(µ, µ)}
(2L+ 2dα0i(µ, µ))6g−6+2r

(1 +
dα0i(µ, µ)

L
)6g−6+2r

= kα0 · 26g−6+2r · cΓg,r(I(α0)) ·mΣ
Thu({i(µ, ·) ≤ 1}),

where kα0 comes from Proposition 3.2. With the same computations

lim inf
L

#{α ∈ Γ · α0|i(α, µ) ≤ L}
L6g−6+2r

≥ kα0 · 26g−6+2r · cΓg,r(I(α0)) ·mΣ
Thu({i(µ, ·) ≤ 1}),

and we obtain Theorem 3.3 with cΓg,r(α0) = kα0 · 26g−6+2r · cΓg,r(I(α0)). �

4. Proof of the main theorem

In this section, Σ is still a compact connected oriented surface, with genus g, and r > 0 boundary

components, with negative Euler characteristic and such that (g, r) 6= (3, 0). For technical reasons, Σ

is endowed with a hyperbolic structure with geodesic boundary. Note that it induces a hyperbolic

structure on DΣ. In the following, we fix a weighted multiarc α0 ∈ Am(Σ) and a finite index

subgroup Γ of Map(Σ). The doubling process allows us to see α0 as a current (see Eq. (2.3)) and

to define a sequence (νΓ
α0,L

)L>0 of Radon measures on C(DΣ) from α0 by

νΓ
α0,L =

1

L6g−6+2r

∑
α∈Γ·α0

δ 1
L
α̂ ∀L > 0.(4.1)

The strategy to prove Theorem 4.6 is the following. We will prove that (νΓ
α0,L

)L>0 has accumula-

tion points and that they are all supported by M̂L(Σ). Afterwards, we will use the characterisation

of Map(Σ)-invariant measures on measured geodesic laminations given by Lindenstrauss-Mirzakhani

to show that these accumulation points are all multiples of the pushforward by the hat operator of

the Thurston measure on Σ. We will conclude proving that they are all the same multiple of m̂Σ
Thu.

Note that at each step Theorem 3.3 will play a key role.

Proposition 4.1. The set (νΓ
α0,L

)L>0 is precompact, meaning that for every (Ln)n∈N ∈ RN+ with

Ln →∞, there is a Radon measure m̂ on C(DΣ) with

lim
i→∞

νΓ
α0,Lni

= m̂

for some subsequence Lni,

Proof. The νΓ
α0,Ln

are measures with support in C(DΣ) which is locally compact [6]. Hence the

set of Radon measures on C(DΣ) has the Heine-Borel property: to show that each sequence has a
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convergent subsequence it suffices to show that {νΓ
α0,Ln

} is bounded, that is to show that for every

continuous and compactly supported function f on C(DΣ), lim supn

∫
fdνΓ

α0,Ln
<∞.

Fix a continuous and compactly supported function f on C(DΣ). As f has compact support,

|f | is bounded by some b > 0 and there is some D > 0 such that i(µ, δ̂0) ≤ 2D for every µ in the

support of f , where δ0 is a fixed filling curve of Σ. Hence∫
|f |dνΓ

α0,Ln
≤ b · νΓ

α0,Ln
(Supp(f))(4.2)

≤ b · νΓ
α0,Ln

({µ ∈ C(DΣ)|i(µ, δ̂0) ≤ 2D}).

Moreover, we have

νΓ
α0,Ln

({µ ∈ C(DΣ)|i(µ, δ̂0) ≤ 2D}) =
#{α ∈ Γ · α0|i(α̂, δ̂0) ≤ 2DLn}

L6g−6+2r
n

=
#{α ∈ Γ · α0|i(α, δ0) ≤ DLn}

L6g−6+2r
n

.

Hence, Theorem 3.3 ensures that

νΓ
α0,Ln

({µ ∈ C(DΣ)|i(µ, δ̂0) ≤ 2D}) −−−→
n→∞

D6g−6+2r · cΓg,r(I(α0)) ·mΣ
Thu(i(δ0, ·) ≤ 1),

which together with Eq. (4.2) ensures that lim supn

∫
fdνΓ

α0,Ln
<∞. That concludes the proof. �

We now want to show that every m̂ as above is supported by M̂L(Σ). In some sense, this justifies

the notation m̂.

Proposition 4.2. The measure m̂ in Proposition 4.1 is supported by M̂L(Σ).

Proof. In light of Proposition 2.1, to show that m̂ has support in M̂L(Σ) there are three points to

prove. We need to prove that m̂ is supported by symmetric measured laminations — the fact that

the elements of the support are symmetric comes from the construction of the νΓ
α0,Ln

so we just need

to show that they are measured laminations. The second point to prove is that they do not cross

the image of ∂Σ in DΣ. Finally, we need to argue that they do not have connected components of

∂Σ as leaves.

Regarding this last point, note that if we assume that the support of m̂ is made of symmetric

measured laminations then the elements in the support of νΓ
α0,L

are all orthogonal to ∂Σ so the one

in the support of m̂ are all transversal to ∂Σ.

Let us now show the first two points. We know that m̂ has support in the symmetric currents

so, to show that it is supported by MLσ(DΣ) it suffices to show that for every R > 0,∫
{µ∈C(DΣ)|i(µ,∆0)≤R}

i(µ, µ)dm̂ = 0

where ∆0 is a filling multicurve of DΣ. We can assume that ∆0 decomposes into δ̂0 — where δ0 is

a filling curve of Σ— and a multicurve s of DΣ that completes δ̂0.
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For every L > 0 we have∫
{µ∈C(DΣ)|i(µ,∆0)≤R}

i(µ, µ)dνΓ
α0,L =

1

L6g−6+2r

∑
α∈Γ·α0

i(α̂,∆0)≤LR

i

(
α̂

L
,
α̂

L

)
(4.3)

≤ 1

L6g−6+2r

∑
α∈Γ·α0

i(α̂,δ̂0)≤LR

i

(
α̂

L
,
α̂

L

)

=
1

L6g−6+2r

∑
α∈Γ·α0

i(α,δ0)≤LR/2

2
i(α, α)

L2

=

(
R

2

)6g−6+2r 2i(α0, α0)

L2

#{α ∈ Γ · α0|i(α, δ0) ≤ LR
2 }

(LR2 )6g−6+2r

−−−−→
L→∞

(
R

2

)6g−6+2r

· 0 · cΓg,r(α0) ·mΣ
Thu({i(·, δ0) ≤ 1}) Thm 2.3.

However, there is some Ln −−−→
n→∞

∞ such that mΣ
α0,Ln

−−−→
n→∞

m̂. Hence, Eq. (4.3) ensures that∫
{µ∈C(DΣ)|i(µ,∆0)≤R}

i(µ, µ)dm̂ = 0,

meaning that the elements of the support of m̂ have no self intersection: they are measured lami-

nations of DΣ (see Eq. (2.1)).

The same computations allow us to obtain that for every R > 0,∫
{µ∈C(DΣ)|i(µ,∆0)≤R}

i(µ, ∂Σ)dm̂ = 0.

Hence the measured laminations in the support of m̂ do not cross the boundary of Σ and that

concludes the proof. �

Corollary 4.3. Any measure m̂ as in Proposition 4.1 arises as the pushforward by the hat operator

of a measure m in ML(Σ) defined by

(4.4) ∀U ⊂ML(Σ), m(U) := m̂({λ̂|λ ∈ U}).

�

In the line of [19], to show that the limit element is a multiple of the pulled-back Thurston

measure we will use the following theorem which comes from [13].

Theorem (Lindenstrauss-Mirzakhani). Let µ be a locally finite Map(Σ)-invariant measure on

ML(Σ). If for all simple closed curve γ of Σ

µ({λ ∈ML(Σ)|i(λ, γ) = 0}) = 0,(4.5)

then µ is a multiple of the Thurston measure mΣ
Thu.
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It is certainly known to experts that this theorem is also true for a Γ-invariant measure where Γ

is a finite index subgroup of Map(Σ). Still, let us give a proof.

Lemma 4.4. Let Γ be a finite index subgroup of Map(Σ). If µ is a locally finite Γ-invariant measure

on ML(Σ) such that

µ({λ ∈ML(Σ)|i(λ, γ) = 0}) = 0(4.6)

for every simple closed curve γ of Σ, then µ is a multiple of the Thurston measure mΣ
Thu.

Proof. Since every finite index subgroup Γ of Map(Σ) admits as a subgroup a finite index normal

subgroup of Map(Σ), we can suppose that Γ is normal to begin with.

As the subgroup Γ is finite index, we can choose finitely many elements φ1, ..., φs of Map(Σ) such

that every element ϕ ∈ Map(Σ) can be uniquely written as ϕ = g ◦φi with g ∈ Γ. If µ is a measure

as in the statement then we define

µ̃ :=
s∑
i=1

φi∗µ.

Since Γ is normal and µ is Γ-invariant, the definition is independant of the choice of the φi.

Now, for ψ ∈ Map(Σ), [φ] ∈ Map(Σ)/Γ 7→ [ψ ◦ φ] ∈ Map(Σ)/Γ is well-defined and bijective so

ψ∗µ̃ =
s∑
i=1

ψ∗φi∗µ =
s∑
i=1

(ψ ◦φi)∗µ = µ̃ and µ̃ is a Map(Σ)-invariant locally finite measure on ML(Σ).

Moreover, if γ is a simple curve in Σ then

µ̃({λ ∈ML(Σ)|i(λ, γ) = 0}) =
s∑
i=1

φi∗µ({λ ∈ML(Σ)|i(λ, γ) = 0})

=
s∑
i=1

µ({λ ∈ML(Σ)|i(φ−1
i λ, γ) = 0})

=

s∑
i=1

µ({λ ∈ML(Σ)|i(λ, φiγ) = 0}).

As a consequence, µ̃ satisfies (4.5) as soon as µ does, and is therefore a multiple of the Thurston

measure by Lindenstrauss-Mirzakhani Theorem.

Moreover, we can suppose that φ1 = IdΣ hence µ = φ1∗µ is absolutely continuous with respect

to µ̃ and to mΣ
Thu. However, the Thurston measure is Γ-ergodic [14] so µ is a positive multiple of

mΣ
Thu. �

Lemma 4.5. If m̂ is as in Proposition 4.1 then the associated measure m (see Corollary 4.3) on

ML(Σ) satisfies Eq. (4.5).

Proof. Let γ be a simple curve of Σ, we want to show that m({λ ∈ ML(Σ)|i(λ, γ) = 0}) = 0. By

inner regularity it suffices to show that for every R > 0,

m({λ ∈ML(Σ)|i(λ, γ) < ε, i(λ, δ0) < R}) −−−→
ε→0

0(4.7)

where δ0 is a filling curve of Σ.
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Moreover, if Ln is such that νΓ
α0,Ln

−−−→
n→∞

m̂ then the Portmanteau Theorem ensures that

m({λ ∈ML(Σ)|i(λ, γ) < ε, i(λ, δ0) < R}) = m̂({λ̂ ∈ M̂L(Σ)|i(λ, γ) < ε, i(λ, δ0) < R})

≤ lim inf
n

νΓ
α0,Ln

({λ̂ ∈ M̂L(Σ)|i(λ, γ) < ε, i(λ, δ0) < R}).

Recall that by Proposition 3.2 I|Γ·α0
: α ∈ Γ · α0 7→ I(α) ∈ Γ · I(α0) is kα0-to-1, and that

|i(I(α), δ)− 2i(α, δ)| ≤ 2dα0i(δ, δ) = Cδ for every α ∈ Γ · α0 and δ ∈ Cm(Σ) by Lemma 3.1. Hence,

νΓ
α0,Ln

({λ̂ ∈ M̂L(Σ)|i(λ, γ) < ε,i(λ, δ0) < R}) =
#{α ∈ Γ · α0|i(α, γ) < εLn, i(α, δ0) < RLn}

L6g−6+2r
n

≤ #{α ∈ Γ · α0|i(I(α), γ) < 2εLn, i(I(α), δ0) ≤ 2RLn + Cδ0}
L6g−6+2r
n

≤ kα0 ·
#{τ ∈ Γ · I(α0)|i(τ, γ) < 2εLn}

L6g−6+2r
n

≤ kα0 · νΓ
I(α0),Ln

({λ|i(λ, γ) ≤ 2ε}),

where νΓ
γ0,Ln

= 1
L6g−6+2r

∑
γ∈Γ·γ0

δ 1
L
γ when γ0 ∈ Cm(Σ). We get from [12, Theo. 8.1 or Ex. 8.3] that

(νΓ
I(α0),Ln

)n∈N converges and then

lim inf
n

νΓ
α0,Ln

({λ̂ ∈ M̂L(Σ)|i(λ, γ) < ε, i(λ, δ0) < R}) ≤ kα0 · lim inf
n

νΓ
I(α0),Ln

({λ|i(λ, γ) ≤ 2ε})

≤ kα0 · lim sup
n

νΓ
I(α0),Ln

({λ|i(λ, γ) ≤ 2ε})

≤ kα0 · cΓg,r(I(α0)) ·mΣ
Thu({λ ∈ML(Σ)|i(λ, γ) ≤ 2ε}).

All in all,

m({λ ∈ML(Σ)|i(λ, γ) < ε, i(λ, δ0) < R}) ≤ C ·mΣ
Thu({λ ∈ML(Σ)|i(λ, γ) ≤ 2ε})

and the Lindenstrauss-Mirzakhani characterisation of the Thurston measure proves Eq. (4.7). �

We are now able to prove our main theorem:

Theorem 4.6. If Σ is a compact connected oriented surface with non-empty boundary and negative

Euler characteristic which is not a pair of pants, then for every weighted multiarc α0 ∈ Am(Σ), and

every finite index subgroup Γ of Map(Σ), there is cΓg,r(α0) > 0 such that

lim
L→∞

νΓ
α0,L = cΓg,r(α0) · m̂Σ

Thu,

and the convergence occurs with respect to the weak* topology on the set of Radon measures on

C(DΣ).

Remark. The constant cΓg,r(α0) is the same as in Theorem 3.3.

Proof. First of all, consider m̂ given by m̂ = lim
n→∞

νΓ
α0,Ln

. Lemma 4.5 together with Lemma 4.4

ensures that the associated measure m on ML(Σ) is a multiple of the Thurston measure on Σ and

hence m̂ = c(Ln) · m̂Σ
Thu where c(Ln) > 0.
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Let δ0 be a filling curve of Σ, the function i(δ0, ·) is continuous, homogenous and positive on

C(Σ) hence mΣ
Thu({i(δ0, ·) = 1}) = 0. However, mΣ

Thu({λ ∈ ML(Σ)|i(δ0, λ) = 1}) = m̂Σ
Thu({λ̂ ∈

M̂L(Σ)|i(i+(δ0), λ̂) = 1}) = m̂Σ
Thu(∂{λ̂ ∈ M̂L(Σ)|i(i+(δ0), λ̂) ≤ 1}) and C(DΣ) is locally compact

so by Portmanteau Theorem and Theorem 3.3 we obtain the two following results

νΓ
α0,Ln

({µ ∈ C(DΣ)|i(i+(δ0), µ) ≤ 1}) −−−→
n→∞

c(Ln) · m̂Σ
Thu({λ̂ ∈ M̂L(Σ)|i(i+(δ0), λ̂) ≤ 1})

= c(Ln) ·mΣ
Thu({λ ∈ML(Σ)|i(δ0, λ) ≤ 1})

= c(Ln) ·mΣ
Thu({i(δ0, ·) ≤ 1}),

νΓ
α0,Ln

({µ ∈ C(DΣ)|i(i+(δ0), µ) ≤ 1}) =
1

L6g−6+2r
n

#{α ∈ Γ · α0|i(i+(δ0), α̂) ≤ Ln}

=
#{α ∈ Γ · α0|i(δ0, α) ≤ Ln}

L6g−6+2r
n

−−−→
n→∞

cΓg,r(α0) ·mΣ
Thu({i(δ0, ·) ≤ 1}).

Hence, C(Ln) = cΓg,r(α0) does not depend on the sequence (Ln)n∈N and whatever the sequence

Ln −−−→
n→∞

∞, up to passing to a subsequence ni,

lim
i→∞

νΓ
α0,Lni

= cΓg,r(α0) · m̂Σ
Thu.

Since the previous convergence holds for any Ln −−−→
n→∞

∞,

lim
L→∞

νΓ
α0,L = cΓg,r(α0) · m̂Σ

Thu.

�

5. Application to counting problems

Armed with Theorem 4.6 we are now able to focus on counting problems. In this section we

are interested in counting the elements in the orbit of a given arc for the action of a finite index

subgroup of the mapping class group.

5.1. Counting bounded arcs. For F a function on arcs we want to count #{α ∈ Γ ·α0|F (α) ≤ L}
using Theorem 4.6. To do so, we have to be able to extend F to the currents of DΣ.

The more natural examples for F are

- the length function for any Riemannian metric with geodesic boundary on Σ,

- the intersection number with a filling curve δ0 of Σ,

- the intersection number with a filling current µ0 of Σ,

in that cases, the extension on C(DΣ) is naturally given by

- the length function associated to the corresponding metric on DΣ,

- the intersection number with δ̂0,

- the intersection number with µ̂0.
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So, we will say that a function F on arcs extends to currents if there exists a continuous and

homogeneous function on C(DΣ) whose restriction to the set of arcs is F . If this function on

currents is also called F , it means that F (α̂) = 2F (α) for every arc α. Since C(Σ) ⊂ C(DΣ) we will

say that F is positive if it is a positive function on C(Σ). Note that for any µ ∈ C(Σ) we also want

that F (µ̂) = 2F (µ).

Now, the same process as in the proof of [12, Theo 9.1] allows us to obtain the following Corollary.

Corollary 5.1. Let Σ and Γ be as in Theorem 4.6. For any weighted multiarc α0 ∈ Am(Σ) and

any function F on Am(Σ) which extends to a positive function on currents we have

lim
L→∞

#{α ∈ Γ · α0|F (α) ≤ L}
L6g−6+2r

= cΓg,r(α0) ·mΣ
Thu({F (·) ≤ 1}).

Proof. First of all, since F is continuous on C(DΣ),

∂{µ ∈ C(DΣ)|F (µ) ≤ 2} ⊂ {µ ∈ C(DΣ)|F (µ) = 2}

and as F is positive, continuous and homogeneous on C(Σ)

m̂Σ
Thu({µ ∈ C(DΣ)|F (µ) = 2}) = m̂Σ

Thu({λ̂ ∈ M̂L(Σ)|F (λ̂) = 2})(5.1)

= mΣ
Thu({λ ∈ML(Σ)|F (λ̂) = 2})

= mΣ
Thu({λ ∈ML(Σ)|F (λ) = 1})

= mΣ
Thu({µ ∈ C(Σ)|F (µ) = 1})

= 0.

As a consequence, C(DΣ) being locally compact, the Portmanteau Theorem together with Eq. (5.1)

and Theorem 4.6 ensures that

νΓ
α0,L({µ ∈ C(DΣ)|F (µ) ≤ 2}) −−−−→

L→∞
cΓg,r(α0) · m̂Σ

Thu({µ ∈ C(DΣ)|F (µ) ≤ 2})(5.2)

= cΓg,r(α0) ·mΣ
Thu({λ ∈ML(Σ|F (λ) ≤ 1}).

Moreover, since F is homogeneous we deduce that

#{α ∈ Γ · α0|F (α) ≤ L}
L6g−6+2r

=
#{α ∈ Γ · α0|F (α̂) ≤ 2L}

L6g−6+2r
= νΓ

α0,L({µ ∈ C(DΣ)|F (µ) ≤ 2}),

and Eq. (5.2) concludes the proof.

�

5.2. Counting bi-infinite arcs. We work now on a non-compact surface S of finite type. More

concretely, S has finite genus, finitely many punctures and empty boundary. If X is a fixed finite

area hyperbolic structure on S and α0 a bi-infinite arc between two cusps of S we want to determine

#{α ∈ Map(S) · α0|`X(α) ≤ L}.

To do so, we first have to choose a way to define `X(α). Indeed, with the natural notion of length

every bi-infinite arc has infinite length.
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Remark. In the following, by bi-infinite arc we mean bi-infinite geodesic between two cusps of S.

In such a surface one can define the peripheral self-intersection number iper(γ, γ) of a geodesic γ.

This number tells us how much each excursion of the curve into a cusp intersects itself (see [12, Def.

2.6] or [21] for details on the peripheral self-intersection number). The number of self intersections

of an excursion being in direct link with the depth reached by this excursion into a cusp [3] [21],

knowing the peripheral self-intersection of a bi-infinite arc we know exactly the maximal depth

reached by any finite excursion (it is an excursion that does not leave all compact subsets of the

surface) into a cusp’s neighborhood.

Remark. For a weighted multiarc, we define the peripheral self-intersection number as the maximal

peripheral self-intersection number of its components.

In the line of [21, Prop. 2.2] we obtain the following lemma.

Lemma 5.2. Let S be a finite type surface with negative Euler characteristic, no boundary com-

ponents and finitely many cusps. If γ is a bi-infinite arc of S with iper(γ, γ) > 0 then the finite

excursions of γ stay in the compact core of S bounded by the horospheres of length 1/k if and only

if iper(γ, γ) ≤ 4k.

Since the peripheral self-intersection number is stable through the action of Map(S) we have a

natural way to associate a finite length to each infinite arc and that definition will be relevant if we

want to count the elements in a given orbit of the mapping class group.

Remark. We need the notion of length we will define for bi-infinite arcs to be compatible with the

length of the measured laminations of the surface. To do so, note that for any hyperbolic metric

X on S the support of every λ ∈ ML(S) is included in X1, the compact core of X bounded by the

horospheres of length 1.

Definition 5.3. Let S be a finite type surface with negative Euler characteristic, no boundary and

finitely many cusps. For a fixed hyperbolic structure, we define the compact length of a bi-infinite

arc α of S by

`X(α) :=

{
`X(γ ∩Xiper(α,α)/4) if iper(α, α)/4 > 1

`X(γ ∩X1) otherwise.

Where for any k ≥ 1, Xk is the compact core of X bounded by the embedded horospheres of length

1/k.

Theorem 5.4. Let S be a connected oriented surface with r > 0 punctures and negative Euler

characteristic but not a pair of pants. For any hyperbolic structure X on S, if α0 a weighted

bi-infinite multiarc and Γ is a finite index subgroup of Map(S) then

lim
L→∞

#{α ∈ Γ · α0|`X(α) ≤ L}
L6g−6+2r

= cΓg,r(γ0) ·mS
Thu({`X(·) ≤ 1}).
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Figure 3. How to compute `.

Proof. If S has genus g and r cusps then we call Σ the compact surface of genus g with r boundary

components. From nowon X is a fixed hyperbolic structure on S and we want to construct a metric

on Σ from X.

Fix the bi-infinite multiarc α0, there is k > 0 such that `X(α) := `X(γ ∩Xk). If we cut S along

the embedded horospheres of length 1/k then we obtain a CAT (−1) metric structure on Σ̃ (see

[7, Ex. 1.16 p168]) for which the horosphere boundaries are geodesic, hence the associated gluing

metric on DΣ given by the corresponding length function `DΣ is also CAT (−1) (see [7, Theo. 11.1

p347]) on D̃Σ.

In a CAT (−1) space the length and the stable length coincide hence the length of curves `DΣ

coming from X is equal to the stable length for the action π1(DΣ) y D̃Σ. However, the stable

length for any discrete and cocompact isometric action of a torsion-free hyperbolic group on a

geodesic metric space extends to a continuous, positive and homogeneous function on currents (see

[9, Theo. 1.5]). Hence, Corollary 5.1 applied with F = `X which extends to `DΣ and for the

measured laminations the different notions of length coincide and that concludes the proof. �

Remark. There are many ways to decide how to truncate an infinite arc in order to take an interest

in its length. See for example [5] or [18] for other ways to do so. For example, `tX is the length

function on infinite arcs such that the length of a cusps-to-cusps arc is the length of this arc beteween

the first time it enters Xt and the last time it leaves it. The advantage of this definition is that it

does not depend on the chosen arc and is more visual in the universal cover (Fig. 4 shows how to

see `tX in the universal cover).

Figure 4. How to compute `tX
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This notion of length differs from `X by a constant hence as an immediate corollary of Theo-

rem 5.4 we have that for all t ≥ 1 and any infinite weighted multiarc α0

lim
L→∞

#{α ∈ Map(Σ) · α0|`tX(α) ≤ L}
L6g−6+2r

= cΓg,r(α0) ·mS
Thu({`X(·) ≤ 1}).

5.3. Counting arcs on orbifolds. We now work on a compact orientable orbifold O rather than

on Σ or S. We denote by g its genus and r the number of boundary components and singularities,

assuming that it has non-empty boundary. As for surfaces, we will assume that (g, r) 6= (0, 3).

One can define Cor(O) the set of geodesic currents for O, and a notion of Thurston measure in

Cor(O) (see [11]). In the line of the known results for curves it appears [11] that for every γ0 ∈ Cm(O)

and Γ finite index subgroup of Mapor(O) there is a positive constant cΓg,r(γ0) such that

lim
L→∞

1

L6g−6+2r

∑
γ∈Γ·γ0

δ 1
L
γ = cΓg,r(γ0) ·mO

Thu,(5.3)

where the convergence occurs with respect to the weak* topology on the set of Radon measures on

the set of geodesic currents of O. As a consequence, for every continuous, homogeneous and positive

function F on Cor(O),

lim
L→∞

#{γ ∈ Γ · γ0|F (γ) ≤ L}
L6g−6+2r

= cΓg,r(γ0) ·mO
Thu({F (·) ≤ 1}).(5.4)

This naturally raises the question of applying the results of this paper to the case of orbifolds:

(1) Fuschian groups are LERF [20] so Lemma 3.1 is still true,

(2) Eq. (5.4) ensures that we still have Theorem 3.3 for orbifolds,

(3) for a compact orbifold the set of geodesisc currents is still locally compact [11, Section 4.1]

so with the same proof as in the case of surfaces, Proposition 4.1 happens in the orbifold

case,

(4) the same caracterisations of measured laminations as in the surface case are true for orbifolds

what ensures that Proposition 4.2 is still true,

(5) the Thurston measure on O can be seen as the pushforward for some application of the

Thurston measure on the surface associated to O [11, Lem. 4.1], which ensures that

Lindenstrauss-Mirzakhani characterisation of the Thurston measure and Lemma 4.4 are

true for orbifolds,

(6) finally, Eq. (5.3) implies that we are able to prove Lemma 4.5 for O.

All the constructions of this paper apply in the orbifold case which gives us a version of Theorem 4.6

and Corollary 5.1 for orbifolds.

Theorem 5.5. If O is a compact, connected, oriented orbifold with non-empty boundary such that

(g, r) 6= (0, 3), and Γ is a finite index subgroup of Mapor(O) then for every α0 ∈ Am(O) weighted

multiarc

lim
L→∞

νΓ
α0,L = cΓg,r(α0) · m̂O

Thu.



18 MARIE TRIN

The convergence occurs with respect to the weak* topology on the set of Radon measures on Cor(DO)

and cΓg,r(α0) is a constant comming from Theorem 3.3 and [11].

Corollary 5.6. With the same conditions as above, for any function F on Am(O) which extends

to a positive function on currents we have

lim
L→∞

#{α ∈ Γ · α0|F (α) ≤ L}
L6g−6+2r

= cΓg,r(α0) ·mO
Thu({F (·) ≤ 1}).

Here, the notion of extension of a function is the same as in Corollary 5.1. In the line of what

we have done for surfaces, it is also possible to count bi-infinite arcs in non-compact orbifolds.

References

[1] J. Aramayona and C. Leininger. Hyperbolic Structures on Surfaces and Geodesic Currents. In J. González-
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