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Diverse locomotor behaviors emerge from the interactions between the spinal central

pattern generator (CPG), descending brain signals and sensory feedback. Salamander

motor behaviors include swimming, struggling, forward underwater stepping, and

forward and backward terrestrial stepping. Electromyographic and kinematic recordings

of the trunk show that each of these five behaviors is characterized by specific patterns

of muscle activation and body curvature. Electrophysiological recordings in isolated

spinal cords show even more diverse patterns of activity. Using numerical modeling

and robotics, we explored the mechanisms through which descending brain signals

and proprioceptive feedback could take advantage of the flexibility of the spinal CPG

to generate different motor patterns. Adapting a previous CPG model based on abstract

oscillators, we propose a model that reproduces the features of spinal cord recordings:

the diversity of motor patterns, the correlation between phase lags and cycle frequencies,

and the spontaneous switches between slow and fast rhythms. The five salamander

behaviors were reproduced by connecting the CPG model to a mechanical simulation

of the salamander with virtual muscles and local proprioceptive feedback. The main

results were validated on a robot. A distributed controller was used to obtain the

fast control loops necessary for implementing the virtual muscles. The distributed

control is demonstrated in an experiment where the robot splits into multiple functional

parts. The five salamander behaviors were emulated by regulating the CPG with two

descending drives. Reproducing the kinematics of backward stepping and struggling

however required stronger muscle contractions. The passive oscillations observed in the

salamander’s tail during forward underwater stepping could be reproduced using a third

descending drive of zero to the tail oscillators. This reduced the drag on the body in

our hydrodynamic simulation. We explored the effect of local proprioceptive feedback
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during swimming and forward terrestrial stepping. We found that feedback could replace

or reduce the need for different drives in both cases. It also reduced the variability of

intersegmental phase lags toward values appropriate for locomotion. Our work suggests

that different motor behaviors do not require different CPG circuits: a single circuit can

produce various behaviors when modulated by descending drive and sensory feedback.

Keywords: central pattern generator (CPG), proprioceptive sensory feedback, descending drive, distributed

control, salamander, locomotion, numerical modeling, robotics

INTRODUCTION

Many motor behaviors in animals require coordinated rhythmic
activation of multiple muscles. Neural networks capable of
producing such activity patterns without rhythmic input from
other networks or from sensory feedback are called central
pattern generators (CPGs). It has been shown that CPGs
in the spinal cord underlie locomotion in many vertebrate
species (for review, Grillner and El Manira, 2020). Drive
signals descending from brain neurons control locomotion
initiation, speed and gait transitions (Brocard et al., 2010;
Capelli et al., 2017; Caggiano et al., 2018; Josset et al., 2018)
and steering movements (Fagerstedt et al., 2001; Ryczko et al.,
2016b; Cregg et al., 2020). Sensory feedback plays an important
role in modulating the CPG activity to adapt the locomotor
pattern to the environment (e.g., Wyart et al., 2009; Akay
et al., 2014; Hubbard et al., 2016; Knafo et al., 2017). These
feedback signals depend on the interactions between the neural
networks, the mechanical properties of the body and the
environment, making it a challenge to fully understand the
operation of the CPG even at a high level of abstraction.
Numerical models of the complete system can be used to
investigate the effect of sensory feedback on the CPG, but
some aspects such as hydrodynamic and friction forces are
difficult to simulate reliably. Robots are thus useful to validate
simulation results in the real world, with real physics. Here,
we used numerical simulations and robotics to investigate
the generation of different behaviors in the salamander, an
interesting animal model as it can move underwater and on
ground (Ryczko et al., 2020). In particular, we addressed the
following questions:

1. Can different motor behaviors be generated by a single
spinal CPG circuit as opposed to requiring several dedicated
CPG circuits?

2. What are the roles of descending drives in generating these
different motor behaviors, and how many independent drives
are necessary?

3. What is the potential role of sensory feedback
in shaping the patterns and in reducing the
variability of CPG activity observed in isolated spinal
cords?

We used the Salamandra robotica II robot (Crespi et al.,
2013) driven by a spinal CPG model and virtual muscles
to reproduce the five salamander behaviors documented
in Ryczko et al. (2015): forward swimming, forward
and backward terrestrial stepping, forward underwater

stepping, and struggling. To match the biological data
from that study, we focused on reproducing the patterns
of muscle activation and body curvature along the
body axis.

For the CPG, our starting point was the abstract oscillator
model of Ijspeert et al. (2007), with modifications to allow for
the flexible coordination of limb and axial network activities
(Knüsel et al., 2013). This flexibility is required to reproduce
the observations from Ryczko et al. (2015). Here, we extended
the model to comprise 25 segments and introduced random
parameters to account for the differences between individuals.
The main hypotheses are the following: (1) limb oscillators
project only to the axial oscillators close to the corresponding
girdles; (2) couplings between axial oscillators are stronger in
the head-to-tail direction; (3) limb oscillators saturate1 at lower
excitatory drives than axial oscillators; (4) hindlimb oscillators
are intrinsically slower than forelimb oscillators. Hypotheses 1
and 2 make the model’s intersegmental phase lag flexible and
controllable (Knüsel et al., 2013). Hypotheses 3 and 4 allow the
model to reproduce the distribution of phase lags of recordings
in vitro.

We modeled the biomechanical properties of the body axis
using virtualmuscles that determine the torques of the axial joints
based on the CPG activity and the current joint position and
velocity (Ekeberg, 1993). The joint positions were also used for
proprioceptive feedback, simulating stretch receptors that send
phasic inputs to the local CPG segments. The virtual muscle
model requires a small time step for stability and accuracy of
the numerical integration, which is challenging to achieve with
eight joints given the limited bandwidth and processing power
of the robotic platform. We solved this difficulty by distributing
the computation of the CPG and muscle models in the eight
active modules, so that each module calculates the part of the
model that controls its own joint. The modules use peer-to-peer
communication, such that splitting the robot results in several
functional pieces (unlike most robots).

The isolated CPG model was tuned to reproduce the diversity
of coordination patterns observed in isolated spinal cords. To
determine values for the proprioceptive feedback and virtual
muscle parameters, we systematically explored the parameter
space using a mechanical simulation of the robot: Using the
same tonic drive for all oscillators, we identified parameter values

1When the excitatory inputs to the spinal cord increase beyond a certain level,
CPG units saturate: they cease to produce rhythmic output. In the model, this is
implemented as a decrease of oscillation amplitude toward zero (see the left part of
Figure 3 for an illustration).
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that allowed feedback to have a positive effect on swimming
speed whilemaintaining stable CPG rhythms.We then attempted
to reproduce the five salamander behaviors without sensory
feedback, by varying the tonic drive sent to different parts of the
CPG, adapting other model parameters when necessary. Further
simulations were made to investigate the effect of proprioceptive
feedback during swimming and forward terrestrial stepping.
Finally, we used the real robot to validate simulation results.
Each behavior was reproduced on the robot using different
“individuals” from the family of models used inmodeling isolated
spinal cords, to check the robustness of the control architecture
to individual variations.

MOTOR CONTROL IN SALAMANDERS

The salamander spinal CPG produces the rhythmic movements
of the limbs (Cheng et al., 1998; Lavrov and Cheng, 2004; Ijspeert
et al., 2007), trunk (Delvolvé et al., 1999; Branchereau et al., 2000;
Ryczko et al., 2010), and tail (Charrier and Cabelguen, 2013). This
spinal circuitry is controlled by the brainstem in salamanders
as in other vertebrates (for review, see Ryczko and Dubuc,
2013). Stimulation of the salamander mesencephalic locomotor
region elicits stepping at low stimulation intensities, whereas
swimming requires higher intensities (Cabelguen et al., 2003).
These descending commands are carried to the spinal cord by
reticulospinal neurons (Ryczko et al., 2016a, see also Ryczko et al.,
2020 for a recent review).

The coordination of muscles along the body axis plays an
important role in salamander locomotion, to generate thrust
during swimming and to maximize the stride length during
terrestrial stepping (Delvolvé et al., 1997). So far, at least five
salamander motor behaviors have been characterized: forward
swimming, forward and backward terrestrial stepping, forward
underwater stepping, and struggling (Ryczko et al., 2015).
Forward terrestrial stepping generally takes the form of a walking
trot, but lateral sequence walks have also been observed (reviewed
in Chevallier et al., 2008, see also Ashley-Ross et al., 2009).
During forward underwater stepping, the salamander progresses
at the bottom of water, with periods of suspension in water
without ground contact. Struggling refers to the behavior of
the salamander when it is firmly grasped at the pelvic girdle.
Electromyographic (EMG) recordings of multiple segments in
the salamander mid-trunk show that each of the five behaviors
is characterized by a specific pattern of muscle activation, in
terms of cycle frequencies and intersegmental phase lags: (1)
rostrocaudal waves occur during forward swimming and, with
lower cycle frequencies, during backward terrestrial stepping; (2)
slow caudorostral waves occur during struggling; (3) standing
waves are stable during forward terrestrial stepping but more
variable during forward underwater stepping (Ryczko et al.,
2015).

Kinematic recordings show similar patterns of trunk
curvature. However, kinematic intersegmental phase lags are
significantly larger during forward terrestrial stepping and
swimming (Frolich and Biewener, 1992; Ryczko et al., 2015).
In other words, the delay between muscle activation and body

bending gets larger toward the tail. This suggests that the
mechanical properties of body tissues play an important role
during these behaviors, as suggested by a lamprey modeling
study (Tytell et al., 2010).

The increasing EMG-mechanical delay toward the tail also
suggests that proprioceptive feedback might have a different
effect at various points along the body axis. Salamanders
are known to have sensory cells that generate proprioceptive
information relative to axial movements: The skin contains
mechano-sensitiveMerkel cells (Scott et al., 1981; Diamond et al.,
1986), and some cells in the spinal cord are morphologically
similar to the mechano-sensitive “edge cells” (Schroeder and
Egar, 1990) that encode body bending in lampreys (Grillner
et al., 1982, 1984). They also have cerebrospinal fluid contacting
neurons (Kolmer-Agduhr cells, Harper and Roberts, 1993),
which are active during body bending in zebrafish (Böhm et al.,
2016) and provide mechanosensory input to the swimming CPG
(Wyart et al., 2009; Hubbard et al., 2016, Orts-Del’Immagine
et al., 2020, see also Jalalvand et al., 2016 in lampreys). The limbs
are another source of proprioceptive feedback, as they contain
fibers that respond to stretch similarly to muscle spindles in other
species (Bone et al., 1976).

According to in vitro recordings of the salamander spinal cord,
the isolated CPG can generate stable patterns for the three types
of axial waves (caudorostral, standing and rostrocaudal waves),
with occasional switches between two wave types (Ryczko et al.,
2015). The intersegmental phase lags generated by the isolated
CPG cover a greater range than those observed in EMG recording
(−12.6 to +12.4% of a cycle duration for recordings in vitro,
and −4.8 to +6.4% for EMG recordings), with a distribution
showing three peaks centered on −9.6, −1.0, and +6.6%. The
salamander CPG thus provides a flexible ground onto which
sensory feedback and descending drives could act to influence the
spinal motor output.

RELATED MODELING WORK

Previous studies have modeled the CPG components using
abstract oscillators (Ijspeert et al., 2005, 2007; Knüsel et al.,
2013; Yin et al., 2016), single bursting neurons (Liu et al.,
2018, 2020), integrate-and-fire neurons (Ijspeert, 2001; Bem
et al., 2003; Harischandra et al., 2011; Knüsel et al., 2013)
and detailed networks of three compartment Hodgkin-Huxley
neurons (Bicanski et al., 2013).

The mechanical body of the salamander has been modeled
with varying accuracy. Many models include four joints between
the girdles and a single degree of freedom (DOF) per limb
(Ijspeert, 2001; Ijspeert et al., 2005, 2007; Suzuki et al., 2019a) or
three DOFs per limb (Harischandra et al., 2010, 2011; Liu et al.,
2018, 2020). The simplest model has one of each (Yin et al., 2016),
while other models have one joint between the girdles and two
DOFs per limb (Zhong et al., 2018; Suzuki et al., 2019b). Bem
et al. (2003) have modeled the swimming salamander as a chain
of ten links, corresponding roughly to three trunk joints and no
limbs. Themost accuratemodel has five joints between the girdles
and four DOFs in each limb (Karakasiliotis et al., 2016; Horvat
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and Ijspeert, 2017; Horvat et al., 2017). Mechanical properties
(damping and elasticity) of the body tissues were included in the
muscle models used by Ijspeert (2001; 2005) Bem et al. (2003),
Harischandra et al. (2010, 2011), and Liu et al. (2018, 2020), and
in the controller of Suzuki et al. (2019b).

The effect of sensory feedback on the activity of the
salamander CPG has only been investigated in simulation (Bem
et al., 2003; Ijspeert et al., 2005; Harischandra et al., 2011;
Liu et al., 2020). The role of sensory feedback in body-limb
coordination has also been investigated using controllers without
CPG, both in simulations (Horvat and Ijspeert, 2017) and with a
robot (Suzuki et al., 2019a).

Most studies have focused on the reproduction of forward
terrestrial stepping (with a walking and/or trotting gait),
swimming, transitions between these behaviors, and turning.
The exceptions are the works of Karakasiliotis et al. (2016)
which reproduced underwater stepping in addition to swimming
and forward terrestrial stepping (though using predefined
joint trajectories rather than a CPG) and Liu et al. (2018)
which reproduced backward terrestrial stepping in addition
to forward terrestrial stepping (using dedicated networks for
each gait).

Table 1 summarizes the particularities of past studies and how
they compare to the present one. To our knowledge, the present

TABLE 1 | Related studies.

CPG Trunk

joints

Limb

DOFs

Robot Biomech Proprio.

feedback

Force

feedback

Behaviors Turning Transition

Trunk Limbs Trunk Limbs Swim Walk Trot Back

step

U.w.

step

Struggle

Bem et al.

(2003)

IF • • •

Bicanski

et al. (2013)

HH

Knüsel et al.

(2013)

AO+IF

Ijspeert

(2001)

IF • • • • •

Ijspeert et al.

(2005)

AO • • • • •

Ijspeert et al.

(2007)

AO • • • • •

Harischandra

et al. (2010)

• • • • • • •

Harischandra

et al. (2011)

IF • • • • • • •

Yin et al.

(2016)

AO • •

Karakasiliotis

et al. (2016)

• • • • • • • • •

Horvat et al.

(2017)

• • • • • • • • •

Horvat and

Ijspeert

(2017)

• • • • • • • • •

Liu et al.

(2018)

BN • • • • • • •

Zhong et al.

(2018)

• • •

Suzuki et al.

(2019a)

• • • • •

Suzuki et al.

(2019b)

AO • • •

Liu et al.

(2020)

BN • • • • • • •

This study AO • • • • •

CPG: IF, Integrate and fire; HH, Hodgkin-Huxley; AO, Abstract oscillators; BN, Bursting neurons. Trunk joints: counting joints between girdles (a joint on the girdle counts as a half).

DOFs: degrees of freedom. The number of black dots represents the number of trunk joints and limb degrees of freedom respectively. Biomech: mechanical properties from body tissues

such as muscles. Walk: forward terrestrial stepping with lateral sequence walking. Trot: forward terrestrial stepping with walking trot. Colors indicate different groups of model features:

mechanical model (green), sensory feedback modalities (orange), behaviors (gray).
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FIGURE 1 | Robot with distributed controller with the spinal central pattern generator (CPG) model, axial proprioceptive feedback, descending drives and virtual

muscles. (A) The robot Salamandra robotica II. (B) The axial CPG was divided in 8 groups (gray rectangles) to distribute the computations in the 8 robot modules with

active joints. Left: tonic descending drives are applied to limb (blue), trunk (green) and tail (yellow) oscillators. Virtual stretch receptors (orange triangles) project to the 3

nearest segments with opposite ipsilateral (excitatory) and contralateral (inhibitory) weights. Feedback from the neck joint (dashed orange) was disabled for robot

experiments (see Results). Black lines indicate bidirectional couplings between oscillators (see Figure 2A). Middle: 2 outputs xi , xi+25 of each group (purple horizontal

arrows) govern left (l) and right (r) muscle activities Mi from which the muscle model calculates an output torque Ti . Right: the torque Ti is applied at each axial joint

(orange circles). The joint position φi and velocity φ̇i are fed back (orange arrows) to the muscles. Virtual stretch receptors only receive φi . The phases θi of limb

oscillators (red horizontal arrows) determine the limb positions.
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work is the first to incorporate biomechanical properties and
proprioceptive sensory feedback in a real salamander robot.

MATERIALS AND METHODS

CPG Model
The model was developed using the Codyn framework and
exported to C code to run on the robot microcontrollers. Only
the 25 most rostral axial segments (each comprising 1 left and
1 right hemisegments) are modeled out of the 40 segments
that salamanders typically have (for review see, Chevallier et al.,
2008). Four additional oscillators control the limbs. The 25 axial
segments control the active part of the robot. The caudal half
of the robot tail is a passive, flexible caudal fin (Figure 1A).
Each axial hemisegmental oscillator and each limb oscillator is
modeled as a phase oscillator with controllable amplitude, and
the connections between oscillators are functions of the phase
difference between sender and receiver:

θ̇i = 2πνi +
∑

j

rjwij sin
(

θj − θi − ϕij

)

−
si

ri
sin θi

ṙi = a (Ri − ri) + si cos θi

xi = ri (1+ cos θi)

νi = diei

Ri = diP
(

di, d
th
i

)

A positive output xi (which determines the muscle activation)
is calculated from the instantaneous phase θi and amplitude
ri. The intrinsic frequency νi is proportional to the oscillator
excitability ei and to a drive di that represents the excitation
from descending drives. The intrinsic amplitudeRi increases with
increasing drive until it approaches a saturation threshold dthi
after which it decreases progressively to zero due to the sigmoid

function P
(

d, dth
)

=
1

1+eb(d−dth)
with b the saturation rate. The

excitability ei determines the intrinsic frequency of a particular
oscillator as a function of the external drive. The excitability
of each oscillator is drawn from a Gaussian distribution with
different means for forelimb, hindlimb and axial oscillators.
The saturation thresholds of the forelimbs, hindlimbs and axial
network are also drawn from a Gaussian distribution with
different means for the axial and limb networks. The coupling
from oscillator j to oscillator i is characterized by a strength
wij and phase bias ϕij. The gain a determines the speed of
convergence for the amplitude. The symbol si represents the
feedback signal from simulated stretch receptors (see below). The
terms − si

ri
sin θi and si cos θi are the polar coordinate equivalent

of adding si to the derivative ẋ of an oscillator in Cartesian
coordinates (see Supplementary Materials for the derivation).

The network connectivity is described in Figure 2A and
Table 2. Other parameter values are provided in Tables 3, 4.

Simulations of the Isolated CPG
For simulations of in vitro electrophysiological recordings of
the isolated salamander spinal cord reported in Ryczko et al.
(2015), the same drive di = d was used for all oscillators

FIGURE 2 | The CPG model. (A) The axial (i.e., trunk and tail) spinal network

model is constituted by a double chain of 50 oscillators, i.e., 25 segments of

which 19 are shown (green). Four oscillators (blue) control the limbs. Thicker

arrows denote stronger couplings. For simulations of the isolated CPG, a

randomly fluctuating tonic drive mimicking the pharmacological activation used

in Ryczko et al. (2015) was applied to all oscillators. (B) Intersegmental phase

lags from 10,000 simulations of the isolated CPG using different random seeds

(intersegmental phase lag calculated by taking the average of intersegmental

phase lags between segments 8–12, see Methods). Simulations are ordered

by decreasing intersegmental phase lag on the vertical axis. A positive phase

lag corresponds to a rostrocaudal traveling wave (i.e., from head to tail), a zero

phase lag to a standing wave, and a negative phase lag to a caudorostral

traveling wave. (C) Trimodal distribution of intersegmental phase lags. (D)

Cycle durations vs. intersegmental phase lags. A linear fit was applied to the

dataset. The square of the correlation coefficient and the significance of the fit

are given.

to represent a tonic pharmacological stimulation, with small
fluctuations over time added in the form of a mean reverting
random walk: ḋ = c

(

d0 − d
)

± σ with d0 the drive picked
from a Gaussian distribution, c a convergence factor, and ±σ a
random process yielding positive and negative steps with equal
probability. Multiple simulations were performed with different
random seeds to reflect the diversity of coordination patterns
observed in individual spinal cord preparations.

Muscle Model
A linear spring-damper model with variable stiffness (Ekeberg,
1993) was used to model a pair of antagonist muscles and
calculate the resulting torque at each axial joint (Figure 1B):

Ti = α

(

Ml
i −Mr

i

)

− β

(

Ml
i +Mr

i + γ

)

φi − δφ̇i

An active term is calculated from the difference of the left and
right muscle activations Ml

i and Mr
i multiplied by a gain α. A

stiffness term is calculated from the muscle activities, the tonic
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TABLE 2 | CPG coupling parameters.

Coupling type Strength wij Phase bias ϕij (rad.)

Intersegmental, rostrocaudal 5 0.066·2π

Intersegmental, caudorostral 1 −0.066·2π

Intrasegmental, lateral 10 π

Interlimb, rostrocaudal 3 π

Interlimb, caudorostral 30 π

Interlimb, lateral 10 π

Limb to axial oscillators 30 4 (BTS: 5.5*)

Axial to limb oscillators 2.5 −4 (BTS: −5.5*)

*BTS, backward terrestrial stepping.

TABLE 3 | Other CPG parameters.

Name Symbol Value (mean ± SD)

Amplitude convergence

factor

a 5

Saturation rate b 500

Drive random walk

convergence factor

c 0.001 (in vitro)

0 (in vivo)

Drive random walk step

size

σ 0.03 (in vitro)

0 (in vivo)

Drive di See Table 4

Saturation threshold dthi 0.3 (axis, in vitro)

3 (axis, in vivo)

0.09 ± 0.02 (limbs, in vitro)

1.27 ± 0.02 (limbs, in vivo)

Excitability ei 1.1 ± 0.07 (axis)

0.8 ± 0.05 (forelimbs)

0.5 ± 0.03 (hindlimbs)

Axial proprioceptive

feedback, ipsilateral

wipsi See Table 4

Axial proprioceptive

feedback, contralateral

wcontra -wipsi

stiffness γ , a stiffness gain β and the joint angle φi. A damping
term is calculated from a damping constant δ and the joint
angular velocity φ̇i. Parameter values are given in Table 5.

In simulations, a delay of 10ms was introduced between the
CPG outputs xi, xi+25 and the corresponding muscle activations
Ml

i , M
r
i , respectively, as a minimum to account for the muscle

activation dynamics. This delay was not necessary in robot
experiments since the motor torque controller already introduces
a larger delay of the order of 50ms, which is consistent with the
reported range (50ms to 1 s) of the low-pass filter properties of
muscle contraction (Partridge, 1965).

Limb Joints
For the limbs, the oscillator phase θi is used directly as a
representation of the desired position, with a piece-wise linear
transfer function that modulates the swing and stance rotation
speeds such as to obtain a duty factor of 77% (Ashley-Ross and
Lauder, 1997; Ashley-Ross et al., 2009). For backward terrestrial

stepping the direction of limb rotation was inverted by using−θi
instead of θi.

Sensory Feedback
Proprioceptive feedback signals si are derived from the joint
angles φi by simulating the activity of stretch receptors: si =

wipsisi
ipsi + wcontrasi

contra, with si
ipsi and si

contra the positive part
of φi and −φi, respectively, for the left side (−φi and φi for the
right side), and wipsi and wcontra the feedback weights. Since the
axial part of the CPG model has 25 segments (each containing 2
hemisegmental oscillators) and the robot only 8 active axial joints
(Figure 1B), some mapping is necessary. The signal from each
joint is sent to the 3 neighboring segments, while only the middle
segment is used to drive the joint muscles (Figure 1B). This
leaves segments 3 and 16 without feedback, which is reasonable
since the amplitude of the body curvature is smallest at these
positions in the animal (Karakasiliotis et al., 2013).

In some simulations, an additional term was added to
the θ̇i equation for limb oscillators to represent excitatory
proprioceptive feedback from the limbs, as used in a previous
study (Harischandra et al., 2011). Here a simplified form
was used:

θ̇i = 2πνi +
∑

j

rjwij sin
(

θj − θi − ϕij

)

+wlimbmax

(

0, 1−

∣

∣φi − φ0
i

∣

∣

π
2

)

Here wlimb is the feedback weight, φi the joint angle of the robot
rotational limb and φ0

i the angle at the transition from stance
to swing. The feedback is maximal at the end of the stance and
decreases linearly on either side until it reaches zero. The rate of
decrease is such that the feedback is non-zero for half of the leg
rotation. The value is always positive or zero, so this feedback
term can only have an accelerating effect.

Mechanical Simulation
3D simulations of the robot were performed using the Webots 6
software (Cyberbotics, Switzerland), which is based on the Open
Dynamics Engine (ODE, www.ode.org). The physics engine was
extended with a hydrodynamics model that includes reactive
and resistive forces (Porez et al., 2014). The passive tail fin was
modeled as a chain of 10 small segments with passive stiffness.
The physics was simulated with a time step of 0.5ms. The robot
controller used a time step of 1ms, theminimum value supported
by Webots. This was just too high for a stable simulation of the
muscles, so the physics plugin was used to implement the muscle
model and set the joint torques.

Robot Hardware
The robot Salamandra robotica II (Crespi et al., 2013) is made of
a head module (9.6 cm long), 8 active modules (9.6 cm long each)
and a 24.6 cm long, passive, flexible caudal fin (Figure 1A). This
allowed the robot to approximately reach the tail length/total
body length ratio of the real animal (around 0.5–0.6, see Ryczko
et al., 2015). Each module actuates an axial joint with motion
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TABLE 4 | Parameters regulating the CPG activity.

Drives di Feedback weights

Seg. 1–3 Seg. 4–25 Limbs wipsi wlimb

Robot experiments with 5 individuals (Figure 5)

Swimming 1 10 0

Forward terrestrial stepping 0.60 ± 0.02 1.00 ± 0.04 0 0

Forward underwater stepping 0.42 ± 0.01 0.71 ± 0.03 0 0

Backward terrestrial stepping 0.23 ± 0.01 0.46 ± 0.02 0 0

Struggling 0.27 ± 0.01 0.38 ± 0.01 0 0

Other robot experiments

Swimming without regulation (Supplementary Movie 1) 1 0 0

Swimming with differential drive (Supplementary Movie 2) 0.9 1 0 0

Forward terrestrial stepping with feedback (Figure 6E) 0.61 0.98 from

−10 to 6

0

Simulations

Isolated CPG (simulation of in vitro experiments) (Figures 2, 3) 0.1 ± 0.01 0 0

Swimming without regulation (Supplementary Figure 4A) 1.34 0 0

Swimming with differential drive (Supplementary Figure 4B) 1.03 1.34 0 0

Swimming with axial feedback (Supplementary Figures 4C,D) 1.34 21 0

Forward terrestrial stepping without regulation (Figure 6A) 0.98 0 0

Forward terrestrial stepping with differential drive (Figure 6B) 0.63 0.98 0 0

Forward terrestrial stepping with axial feedback (Figure 6C) 0.98 −0.65 0

Forward terrestrial stepping with limb feedback (Figure 6D) 0.98 0 3.7

Robot experiments used lower drives for swimming to stay in the robot operating range (see Results). Standard deviations for the drive reflect variations between the simulated individuals.

Drive values are shown centered across two or three columns in cases where the same value was applied to the corresponding groups of oscillators.

TABLE 5 | Muscle parameters.

Name Symbol Value

Muscle active gain (N·m) α 0.4 (BTS, ST: 4*) (simulation)

0.5 (BTS, ST: 5*) (robot)

Muscle stiffness gain (N·m/rad) β 1.2 (BTS, ST: 12*)

Muscle tonic stiffness (no unit) γ 0.2

Muscle damping (N·m·s/rad) δ 0.1

*BTS, backward terrestrial stepping; ST, struggling.

restricted to the horizontal plane; the two girdle modules also
include rotational joints for the limbs. The entire robot measures
111 cm and weighs 2.48 kg. The robot modules have LEDs on
the covers which were used to track the robot’s motion with two
Basler A622F video cameras (15 frames/s) to cover the whole
track length (6m) with an accuracy of± 1 cm. The Supplemental
Movies of the robot were captured with another camera at 15
or 30 frames/s. Two adaptations were made to the robot to
reproduce the different behaviors. During forward underwater
stepping, the buoyancy was adjusted by adding 72 g of lead in
the head. This corresponds to +2.9% of the total robot weight,
or + 41.8% of the normal weight of the head module (172 g).
During struggling, tape was added under the feet to increase
slipping, mirroring the conditions of the animal experiments
(Ryczko et al., 2015).

Distributed Electronics and Control
Software
The robot controller is distributed: each module reads the
position and velocity of the local joint and computes the control
loop for the corresponding part of the CPG and the joint’s
virtual muscles, with a time step of 10ms. The numerical
integration of CPG segments with floating-point operations
required a modification to the hardware described by Crespi
et al. (2013): the modules were upgraded to include an LPC2129
ARM7TDMI microcontroller running at 60 MHz, as already
present in the head. Communications between modules are
restricted to drive signals from the head and CPG couplings
between adjacent modules, sent over the CAN bus running at
1 Mbps. The leg positions are set by PD controllers using the
motor encoders. The axial torques are set by PI controllers using
current sensing. The CPG state from each module was recorded
by logging coupling and debug messages sent over the CAN
bus. This logging was done on an external computer, by spying
on the bus using long, thin wires attached to the caudal end
of the robot. Two modifications were made to the distributed
controller between the initial tests and the final version (see
Results): (1) The numerical integration of the CPG was changed
to estimate the phases θj and amplitudes rj of coupling sources at
the time of integration using a linear extrapolation of the values
from the two latest CAN messages and their times of arrival
(coupling terms are dropped entirely from the integration if
the two previous CAN messages are older than 200 or 400ms,
respectively); (2) The phases and amplitudes were encoded in
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CANmessages as 16-bit half-floats rather than 32-bit floats, such
that coupling signals from a module to a particular neighbor
would fit in a single message.

Selection of Parameter Values
The CPG parameters were hand-tuned to reproduce the
distribution of intersegmental phase lags and cycle durations
from in vitro recordings of isolated spinal cords (Ryczko et al.,
2015). To emulate the motor behaviors displayed by the animal
in vivo, the CPG model was subjected to higher excitatory
drives which were tuned to reproduce typical electromyographic
patterns for each of the five motor behaviors, in terms of cycle
frequency and intersegmental phase lags (Ryczko et al., 2015).
However, the cycle frequencies targeted with the model were set
to half that of the in vivo recordings. This was chosen to reflect
the scaling of locomotion frequency with body mass observed
in animals (Bejan and Marden, 2006). For robot experiments,
the target frequency for swimming was further lowered to 1.1Hz
due to the limits of operation of the robot (in particular torque
limits). Other than the drive levels and sensory feedback, the
only changes from in vitro to in vivo CPG conditions were in the
average saturation thresholds which had to be increased to match
the higher drives used in vivo.

The parameter space for the virtual muscles and
proprioceptive feedback was explored systematically using
the 3Dmechanical simulation of the robot during swimming. An
“average individual” was used by setting the standard deviations
of the CPG excitabilities to zero, to increase reproducibility (this
restriction was relaxed for robot experiments). We used uniform
muscle parameter values for trunk joints, and progressively
smaller values in the tail to emulate body taper: the values of α

and β in modules 6, 7, and 8 were multiplied by a factor 0.7, 0.5,
and 0.2, respectively. The same feedback parameter values were
used for all joints, and the same feedback weights (with opposite
signs) were used for ipsilateral and contralateral projections.
Initial tests were made with a tonic muscle stiffness γ = 0:
this parameter is mostly redundant with the stiffness gain β for
a given (non-zero) amplitude of CPG oscillations. A uniform
excitatory drive was used for all oscillators, which in absence of
feedback results in high intersegmental phase lags inappropriate
for swimming. The drive was set to 1.34, corresponding to a
swimming frequency of 1.47Hz (in absence of sensory feedback),
which is close to our target of half the frequency observed in
the animal (2.78Hz and 3.12Hz during EMG and kinematic
recordings, respectively, Ryczko et al., 2015). We selected muscle
and feedback parameter values that showed a significant increase
in swimming speed and high stability of the CPG and kinematic
patterns, while keeping the joint torques close to the robot’s limit
of 0.7Nm (Supplementary Figures 1–3).

The five salamander behaviors were first reproduced in
simulation without sensory feedback, by tuning the CPG
drive levels and optimizing the limb-body phase bias for
speed of locomotion. Additional simulations were done with
varying strengths of axial proprioceptive feedback during
forward terrestrial stepping and swimming. Further simulations
were made with proprioceptive limb feedback during forward
terrestrial stepping.

FIGURE 3 | The CPG spontaneously switches between axial motor patterns

as a function of a fluctuating background drive strength. The strength of the

simulated pharmacological drive applied to the CPG is shown together with

the outputs of the oscillators of the left forelimb, left trunk segments 8 and 10,

and the left hindlimb. Before the switch, limb oscillators (blue lines) are

saturated by the drive strength. Therefore, they show low amplitude

oscillations and are entrained to the higher frequency of the trunk oscillators,

and the motor pattern in the trunk segments (green) is a rostrocaudal wave

(white dots). Then, a progressive decrease in drive strength occurs through

random fluctuations, and this progressively de-saturates the limb oscillators.

The de-saturation allows limb circuits to oscillate at higher amplitude, causing

a switch (arrows) from a fast rostrocaudal wave to a slower caudorostral wave

(black dots). After the switch, the de-saturated limbs show high amplitude

oscillations and therefore entrain to their slower frequency the trunk oscillators,

because effective connection strength in the model is proportional to the

amplitude of oscillations from the sender (see Methods). The same switches

have been observed in the isolated spinal cord [Figures 5A,B of Ryczko et al.

(2015)].

The limb-body phase bias was optimized again on the robot,
due to the different zero-point reference and the backlash in the
gears. The main simulation results were then reproduced on the
robot with five different “individuals,” which were modeled by
initializing the CPG parameters using different random seeds.
The descending drives were adjusted for each “individual” and
each motor behavior. Other parameters were sometimes adjusted
between behaviors but always using the same values for all
individuals (see Results). The movies shown in the Supplemental
Materials were prepared using an average individual.

Data Processing
The joint angles from simulations and robot experiments were
calculated in Matlab by fitting the kinematic chain of the
robot to the positions of the LEDs. The CPG and kinematic
intersegmental phase lags were calculated in Matlab from
the CPG output and joint angle oscillations using the same
algorithm: The timing of each cycle was defined as the centroid
of the positive part of each oscillation (Knüsel et al., 2013). These
timings were used to calculate a median phase lag (over time) for
each pair of consecutive segments (CPG lag) or consecutive joints
(kinematic lag). The CPG intersegmental phase lag was calculated
using the average of the median phase lags between segments 8 to

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2020 | Volume 14 | Article 604426

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Knüsel et al. A CPG for Five Behaviors

12. For simulations, the kinematic intersegmental phase lag was
calculated using the average of the median phase lags between
joints 3 to 5. For robot experiments, joint 5 was often an outlier
due to the robot torque limits, so joints 2 to 4 were used instead.

Statistics
Data are given as means ± standard deviation (SD) unless
specified otherwise. Correlations between variables were
evaluated in SigmaPlot 11.0 using the Pearson Product Moment
Correlation test.

RESULTS

The Isolated CPG Model Reproduces the
Main Features of Recordings From Isolated
Spinal Cords
We found that asymmetric intersegmental couplings, together
with different excitabilities and saturation thresholds between
forelimb, hindlimb and axial oscillators, enabled the spinal
cord model to reproduce the trimodal distribution of phase
lags observed in vitro during fictive locomotion (Ryczko
et al., 2015). The values shown in Tables 2, 3 were found
to produce a range of phase lags similar to the biological
data, with peaks centered on 6.7 ± 1.3, 1.3 ± 1.3, and
−6.1 ± 1.0% (Figures 2B,C). The positive correlation between
phase lag and cycle duration (Ryczko et al., 2015) was also
reproduced (Figure 2D). Furthermore, the small fluctuations in
the excitatory drive over time allowed the model to reproduce the
spontaneous switches between slow caudorostral waves and fast
rostrocaudal waves of axial activity reported in the isolated spinal
cord (Delvolvé et al., 1999; Ryczko et al., 2015). Figure 3 shows
an example of the model producing such a switch.

Improving Swimming With Proprioceptive
Feedback Requires Specific Muscle
Stiffness and Damping Properties
Using a uniform drive yielded an intersegmental phase lag of
6.6% in an average individual (leftmost peak of the distribution).
This resulted in inefficient swimming, with toomany nodes in the
traveling wave (Supplementary Movie 1). We looked for muscle
parameters that would allow proprioceptive feedback to improve
swimming by decreasing the phase lag towardmore physiological
values. For the active gain α, a value of 0.4 proved optimal, as
higher values (together with higher stiffness β or γ ) would have
given higher swimming speeds but would have required torques
beyond our robot’s limits. Systematic tests in the β , δ,wipsi space
showed a single region where feedback increased the swimming
speed thanks to a decrease of the phase lag, while keeping the
CPG rhythm stable. This stable region corresponds to a stiffness
gain β between 1.6 and 2.3, a damping δ between 0.05 and
0.15 and feedback weights wipsi = −wcontra between 17 and
22 (Supplementary Figures 1–3). Further tests in the β , γ ,wipsi

space showed that we could trade some fitness gain β for tonic
stiffness γ . We settled on β = 1.2, γ = 0.2, which give
qualitatively reasonable passive mechanical properties (Table 5).

Simulation Results Transferred to the
Robot Following Some Adaptations
The simulation results could be reproduced on the robot, with
the following changes made based on qualitative judgements:
the muscle active gain α had to be increased from 0.4 to 0.5 to
obtain reasonable amplitudes of oscillation during swimming.
Uniform muscle parameter values were used in all robot joints:
the tapering of the active and stiffness gains was removed to
obtain reasonable amplitudes of oscillations in the tail and good
swimming speeds. Due to the limits of operation of the robot,
the target frequency for swimming had to be lowered down
to 1.1 Hz2. The feedback weights were reduced to 10. Sensory
feedback from the neck joint was removed as it was destabilizing,
leading to aperiodic rhythms. Finally, in simulation we found
that a common limb-body phase bias gave near-optimal speed
for all stepping behaviors. This was not the case with the robot: a
specific limb-body phase bias was required for backward stepping
(Table 2) to obtain the optimal speed for that behavior.

Two Drive Signals Suffice to Reproduce the
Five Motor Behaviors, but Backward
Terrestrial Stepping and Struggling Require
Stronger Muscle Contractions
We found that tonic drives with only two different values
applied to different parts of the CPG were sufficient to
reproduce qualitatively the five motor behaviors with the
robot, as shown by movies (Supplementary Movies 2–6),
frame sequences (Figure 4) and robot kinematics (Figure 5,
Supplementary Figure 4B). In particular, the differences
in CPG and kinematic intersegmental phase lags between
the five behaviors were reproduced (Figures 5F,G), as
well as the differences in cycle durations (Figure 5H).
Figures 5A–E show the CPG outputs and joint oscillations
for a single individual. The rostrocaudally increasing
lag between CPG and kinematic waves is reproduced
(increasing gap between the thick red and thick
black lines).

Swimming could be obtained by sending a strong
drive (i.e., saturating limb oscillators, Hypothesis 3) to
the whole CPG, with a slightly lower drive to the most
rostral oscillators (segments 1-3 in Figure 2) to adjust
the phase lag as proposed in numerical simulation of the
lamprey locomotor CPG (Kozlov et al., 2009). The other
behaviors were obtained by adjusting the drive to the limb
oscillators independently from the drive to the axial oscillators
(Figure 5H, Supplementary Movies 3–6). Higher axial phase
lags required a greater relative difference between the two
drives, and higher frequencies required higher values of
both drives.

While two drives were sufficient to generate the CPG
activity patterns for all behaviors, we found that stronger
forces from the virtual muscles were required to reproduce the

2This meant producing a swimming gait in the frequency range of forward
terrestrial stepping, i.e. with drives under the limb saturation threshold, so limb
oscillators had to be silenced artificially.
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FIGURE 4 | Frame sequences showing from top to bottom one complete stride for the five motor behaviors. Light-emitting diodes were tracked on each module for

kinematic analysis. A black dot was added on each frame to illustrate robot progression. Inter-frame time intervals in ms are, respectively: 200 (swimming, SW); 133.3

(forward underwater stepping, FUS); 166.7 (forward terrestrial stepping, FTS); 400 (backward terrestrial stepping, BTS); 466.7 (struggling, ST). Scale bar (white),

10 cm. The different background colors are due to the different environments: water tank for SW and FUS, wooden board for the other behaviors. The behaviors are

close to those observed in the real animal [Figure 1 of Ryczko et al. (2015)].

kinematics of backward terrestrial stepping and struggling.
To avoid introducing additional parameters, this was
implemented by increasing the muscle gains α and β .
A 10-fold increase was found appropriate to avoid large
deviations between the CPG activity and the kinematics (Table 5,
Figures 5A,E).

Proprioceptive Feedback Can Regulate the
Phase Lag During Swimming and Forward
Terrestrial Stepping, and Reduces
Variability
With axial proprioceptive feedback, swimming could be
reproduced with a single drive to the whole CPG (Figures 5B,I,

Frontiers in Neurorobotics | www.frontiersin.org 11 December 2020 | Volume 14 | Article 604426

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Knüsel et al. A CPG for Five Behaviors

Supplementary Movie 8). In absence of feedback, the axial
network of the five robot “individuals” produces intersegmental
phase lags of 6.1 ± 1.4% (Supplementary Figure 4A,
Supplementary Movie 1). With feedback, this could be reduced
to 1.9 ± 1.1%, which matches the values observed in the animal
(1.89 ± 0.25%, Ryczko et al., 2015). Feedback also reduced the
variability between individuals: Without feedback, the individual
corresponding to the leftmost curve in Figure 5I (dashed lines)
was an outlier. Using feedback with identical weights in all
individuals (solid lines), the outlier showed phase lags similar to
the other individuals.

Axial proprioceptive feedback could also replace differential
drives (i.e., different drive values for different parts of the
CPG) as a means of obtaining axial phase lags close to
zero in simulations of forward terrestrial stepping. However,
this required feedback weights of opposite signs compared
to swimming. Using uniform drives and no feedback, the
CPG generated negative phase lags (Figure 6A). With uniform
drives, positive values of wipsi (as used in swimming) had
a destabilizing effect on the CPG, with oscillators failing to
lock in frequency. With differential drives as in Figure 6B,
we found that positive values of wipsi were counterproductive,
decreasing again the CPG phase lag to negative values. However,
negative values of wipsi produced higher phase lags as desired
and could be used to reproduce forward terrestrial stepping
with uniform drives (Figure 6C). This effect of an increasing
intersegmental phase lag with decreasing feedback weights
during forward terrestrial stepping was reproduced in robot
experiments (Figure 6E).

Instead of axial feedback, the differential drive could
also be replaced with limb proprioceptive signals fed back
to the limb oscillators. This was only tested in simulation
(Figure 6D). The effect of feedback here was again to increase
the negative CPG phase lags toward slightly positive values, close
to zero.

A Passive Tail Decreases the Drag During
Underwater Stepping
During forward underwater stepping, the locomotor
performance could be improved by using “passive” tail
segments (Supplementary Movie 7), similar to the animal
which shows passive tail undulations during this locomotor
behavior (see Cabelguen et al., 2014). This was implemented
using a third drive level of zero to the tail segments. The tail
CPG was then inactive, but the robot modules continued
to generate torques corresponding to the passive parts of
the muscle model (the terms that remain when Ml

i and Mr
i

are 0). Measurements of the hydrodynamic forces in the 3D
mechanical simulation suggest that for this particular gait, the
undulations of passive tail segments allow the caudal fin to
generate more thrust than in the case of active tail segments
(Figure 7). The drag at the head and girdles is also reduced
in the passive case. The net drag on the body axis is thus
reduced from −0.0422 ± 0.0003N to −0.0295 ± 0.0004N
(standard errors).

Coupling Delays Introduce Systematic
Phase Biases in the Distributed Robot
Controller
Initial tests on the robot with the distributed controller gave
non-uniform phase lags along the body, unlike what was
seen in simulation. We investigated the issue using a chain
of 7 simple modules (no girdles) and a CPG model with
symmetrical ascending and descending coupling weights and
phase biases of 5%. We found increased phase lags between
the first modules and decreased phase lags between the more
caudal ones (Figure 8A). An analysis of the coupling terms
used in the numerical integration of the CPG showed that
rostral modules were significantly slowed down by caudal ones
(Figure 8B). This suggested that the θj values (the phases
of the couplings’ source oscillators) used in the numerical
integration of the target oscillators were out of date. We
modified the numerical integration to estimate the state of
the source oscillator at the time of integration using a
linear extrapolation of the two previous coupling messages
and their times of arrival (see Methods). This considerably
reduced the slow-down effect and yielded almost uniform phase
lags (Figures 8C,D). Further improvements (not shown) were
obtained by encoding the coupling phases and amplitudes
as 16-bit half-floats. This halved the number of messages
sent over the CAN bus and helped decrease the rate of
transmission errors.

The Distributed Controller Allows for
Autonomously Moving Robot Parts
We found that the distributed implementations of the CPG
and muscle models have the side effect of making the
robot modular at runtime. We conducted forward terrestrial
stepping experiments with screws between some modules
removed, causing the robot to break into parts (no other
changes were made to the hardware or software). Each part
kept functioning, still coordinated by its own section of the
CPG model. This is demonstrated in Supplementary Movie 9,
Figure 9.

DISCUSSION

A Modulable CPG Architecture
Our results suggest that the answer to question 1 is yes: a
modulable CPG provides a robust framework for generating
multiple motor patterns, such that different motor behaviors
do not necessarily require dedicated CPGs. This concept was
proposed by Grillner (1981) as the “unit burst generator” theory,
which states that independent rhythmogenic circuits can be
flexibly coupled from one behavior to another. Such circuits
have been identified in many animals. In the salamander,
specific spinal hemisegments have been shown to control
muscles of the trunk (Ryczko et al., 2010), tail (Charrier
and Cabelguen, 2013) and limbs (Cheng et al., 1998; Lavrov
and Cheng, 2004; Ijspeert et al., 2007). Other examples
include the spinal hemisegments in the lamprey (Cangiano
and Grillner, 2003, 2005; Cangiano et al., 2012), the flexor
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FIGURE 5 | CPG output and joint kinematics during the five motor behaviors reproduced with the robot. Results obtained using a single drive level and proprioceptive

feedback for swimming, two drive levels (to limb and axial oscillators) and no feedback for the other behaviors, with a third drive of zero for the tail during underwater

stepping. (A–E) and (F,G) emulate the biological data illustrated in Figures 2, 3 of Ryczko et al. (2015), respectively. (A–E) Kinematic angular oscillations (thin black

(Continued)

Frontiers in Neurorobotics | www.frontiersin.org 13 December 2020 | Volume 14 | Article 604426

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Knüsel et al. A CPG for Five Behaviors

FIGURE 5 | lines) and CPG outputs xi (thin red lines) are shown for each joint, with circular markers indicating the centroid of the positive half of each cycle.

Rostrocaudal (A-C, line descending to the right), standing (D, almost vertical line) and caudorostral (E, line descending leftward) kinematic waves (thick black lines)

followed the CPG activity (thick red lines) with variable delays during the 5 motor behaviors: backward terrestrial stepping (BTS), forward swimming (SW), forward

underwater stepping (FUS), forward terrestrial stepping (FTS) and struggling (ST). All figures are from the same simulated individual. (F,G) Intersegmental phase lag

distributions for CPG waves (F) and for kinematic waves (G) in the robot trunk. Each marker represents a single recording. (H) Comparison of the tonic drive signals

applied to the CPG and resulting oscillation frequencies (Hz) for each motor behavior. Data represent mean ± SD over the 5 simulated individuals. The overlap in limb

drive values between SW and FTS is due to reduced drive and limb saturation thresholds during SW to accommodate for the robot’s torque limitations (See Methods).

Without these limitations, the limb and axial drives for SW would be 1.34 as in simulation. (I) Rostrocaudal axial waves generated during SW by the CPG without

sensory feedback (dashed lines) and with sensory feedback (solid lines), with uniform drive di = 1, in the 5 simulated individuals. For each individual, the wave with

feedback is horizontally positioned in the figure to connect to the wave without feedback. The experiments with sensory feedback correspond to the SW data in (F–H).

and extensor networks in the left and right side of the mouse
spinal cord (Hägglund et al., 2013), the crayfish swimmeret
system (Mulloney and Smarandache-Wellmann, 2012) and the
networks controlling individual leg joints in the stick insect
(Büschges et al., 1995). A modeling study of insect locomotion
suggests that the recruitment of a single neural structure for
various behaviors also applies to situations where locomotion
is largely driven by sensory feedback (Schilling and Cruse,
2020).

Oscillator Couplings
Biological data indicate that in salamanders, limb activity
can occur together with traveling waves in vivo and in vitro
(Ryczko et al., 2015). In our previous robotic study (Ijspeert
et al., 2007), limbs projected to all axial oscillators (forelimb
oscillators to trunk oscillators, and hindlimb oscillators to tail
oscillators). Two axial outputs were therefore possible: either
a standing wave when limb oscillators were active (during
stepping), or a rostrocaudal wave when limbs were saturated
(during swimming). Here we made the limb oscillators project
only to neighboring axial oscillators (Hypothesis 1), which gives
more flexibility for the coordination of axial oscillators when
limbs are rhythmically active (Ijspeert et al., 2005; Knüsel et al.,
2013). In the animal, a unidirectional connection from excitatory
interneurons generating the limb rhythm to those generating
the axial rhythm would be sufficient to impose the slow limb
oscillations to the axial segment, according to a detailed model of
salamander spinal networks based on Hodgkin-Huxley neurons
(Bicanski et al., 2013).

In our model, the asymmetry between ascending and
descending coupling weights wij is required to reproduce a
wide diversity of axial phase lags with consistent values along
the axis as observed in vitro and in vivo (Ryczko et al.,
2015). Symmetric weights as used in Ijspeert et al. (2007)
produce non-uniform phase lags along the axis when the
oscillators have different intrinsic frequencies. Future studies
should determine whether such a coupling is present in
salamanders and how it is implemented. Possibilities include
an asymmetry at the neuroanatomical level (dominance of
descending projections, see Buchanan et al., 1989; Buchanan,
2001 in lamprey) or in electrophysiological terms (stronger
synaptic strengths toward caudal segments, see Smarandache
et al., 2009 in crayfish; more spikes per locomotor cycle
in neurons projecting caudally, see Mulloney et al., 2006
in crayfish).

Oscillator Frequencies and Saturation
For our CPG model to be able to generate the three types of
axial waves recorded in vitro and in vivo in salamanders, and
the positive correlation between cycle duration and phase lag
(Ryczko et al., 2015), we had to modify the intrinsic frequency
of limb networks compared to our previous study (Ijspeert
et al., 2007). Forelimb and hindlimb oscillators still have an
intrinsic frequency slower than axial oscillators, but here forelimb
oscillators are faster than hindlimb ones (Hypothesis 4). Data in
mammals suggest that forelimbs deprived of normal interactions
with the hindlimb networks tend to accelerate in vivo. Indeed, in
adult cats where the spinal cord is partially lesioned, forelimb and
hindlimb rhythms often dissociate, and forelimbs adopt a faster
rhythm, yielding a 2:1 forelimb-hindlimb coupling (for review,
see Frigon, 2017). At the cellular level, modification of a single
conductance controlling burst termination should be sufficient
to make limb segments generate slower oscillations, as suggested
by a detailed Hodgkin-Huxley model of a salamander spinal
segment (Bicanski et al., 2013).

A hypothesis that we kept from our previous work (Ijspeert
et al., 2007) is that with a strong descending drive, limb networks
“saturate” whereas axial oscillators do not (Hypothesis 3). Future
studies should examine whether and how such a function is
implemented in the animal. It could be a differential recruitment
of specialized interneuron populations as a function of drive
strength, as documented as a function of speed in zebrafish
(McLean et al., 2007, 2008; Gabriel et al., 2011; Ampatzis et al.,
2014, for review see Berg et al., 2018) and mice (Talpalar
et al., 2013, for review see Kiehn, 2016). It could also involve
a shift in the active set of reticulospinal neurons as a function
of speed/gait. Some reticular neurons increase their firing
specifically during swimming in salamanders (Lowry et al., 1996).
Different reticulospinal neurons are activated as a function of
speed in zebrafish (Kinkhabwala et al., 2011).

Regulation Through Descending Drives
In answer to question 2, our results (Figure 5,
Supplementary Figure 4B, Supplementary Movies 2–6) suggest
that independent drive levels to a few parts of a CPG network
(here two, or three to reproduce passive tail undulations) are
sufficient to emulate a diversity of motor behaviors. In the
model, the regulation of CPG activity by descending drives
can be understood intuitively. The drive signals control the
intrinsic (uncoupled) frequencies of the oscillators. Because
rostrocaudal couplings are stronger than caudorostral couplings,
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FIGURE 6 | Effect of axial or limb proprioceptive feedback on CPG activity and kinematics during forward terrestrial stepping (FTS). (A–D) Joint kinematics (black) and

CPG activity (red, dashed for limb oscillators) in simulation. Circular markers indicate the centroid of the positive half of each cycle. The limb-body phase bias ϕij was

adapted in each case for optimal speed of locomotion. (A) With uniform drive (di = 0.98) and no feedback, the CPG with active (non-saturated) limb oscillators

produces caudorostral waves of activity. (B) Standing waves of CPG activity can be obtained by using a different drive of 0.63 for the limb oscillators. (C) Standing

CPG waves can also be obtained using uniform drives and axial proprioceptive feedback, with wipsi = −wcontra = −0.65. (D) Standing waves of CPG activity could

also be obtained with uniform drives using proprioceptive limb feedback, with wlimb = 3.7. (E) Effect of the axial feedback weight on CPG axial intersegmental phase

lag in robot experiments. Before introducing feedback, differential drives to the limb (di = 0.98) and axial (di = 0.61) oscillators were used to increase the phase lag

toward zero. Positive ipsilateral feedback weights (as those used during swimming with sensory feedback, Figure 5I) decreased the phase lag, whereas negative

ipsilateral weights increased it.

a segment will entrain a slower or faster caudal neighbor, and
the resulting common frequency will be close to the frequency
of the rostral segment. However, the faster segment will lead
the slower one with a delay that increases with the difference
in uncoupled frequencies (this delay being in addition to the
coupling’s natural phase bias). This effect will propagate down
the chain of segments, such that the resulting frequency and
phase lag of the whole chain can be controlled by adjusting two

values: the uncoupled frequency of the first segment, and that of
the other segments.

This mechanism of regulation is close to the “trailing
oscillator hypothesis,” which states that the oscillator of higher
excitability becomes the leader of the chain. This hypothesis is
based on lamprey experimental data showing that increasing
the excitability in caudal segments causes a switch from a
rostrocaudal to a caudorostral wave in isolated spinal cords
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FIGURE 7 | Passive tail CPG segments reduce drag during forward

underwater stepping (FUS) in simulation. The hydrodynamic forces acting on

different parts of the robot modules along the direction of motion are given.

The caudal fin provides more thrust when the tail is passive. Forces on each

module were measured for an “average individual” during 15 s after a warm-up

period of 15 s, and averaged over the 30,000 time steps. The procedure was

repeated 100 times with different starting conditions. The bars show the

means over the 100 repetitions. Error bars for the standard error are shown,

but barely visible (all standard errors are < 0.00013).

(Matsushima and Grillner, 1990, 1992). However, this lamprey
model assumed symmetrical rostrocaudal and caudorostral
couplings, while we found that the coupling asymmetry is
important to maintain a uniform phase lag along the chain of
oscillators. A later lamprey modeling study with a detailed neural
network of Hodgkin–Huxley neurons showed that dominant
descending couplings allow for flexible control of forward and
backward swimming with constant phase lag along the spinal
cord at different speeds: the frequency and intersegmental phase
lag can be controlled by adjusting the excitatory drive of the first
segments compared to the remaining ones (Kozlov et al., 2009).

In our salamander model, the differential excitation of the first
segments can be realized through the strong connections from
the forelimb oscillators (when they are active). The regulation of
the axial CPG pattern is then achieved by adjusting the excitation
of the limb oscillators compared to the axis, instead of the first
axial segments compared to the others as in the swimming case.
This mechanism of regulation has been investigated with abstract
oscillators and validated with a more detailed integrate-and-fire
model (Knüsel et al., 2013).

The coordination of limbmuscles was beyond the scope of this
study: the limbs of our robot have a single rotational degree of
freedom, and the direction of rotation was artificially inverted
for backward stepping. We expect that more drives would be
required in a model with more realistic limbs. Turning was also
not investigated here but can in principle be obtained during
swimming and stepping using different drives for axial oscillators
on the left and right sides (Ijspeert et al., 2007).

The Regulation Mechanism in the Isolated
CPG
The mechanism of regulation described above, together with
the differences in excitability and saturation thresholds between

forelimb, hindlimb and axial oscillators (Table 3), enable the
isolated CPG model to reproduce the trimodal distribution
of phase lags observed in vitro: In the model, hindlimb
oscillators are intrinsically slower than forelimb oscillators.
Given the random nature of the saturation thresholds, forelimbs
or hindlimbs can selectively saturate due to slightly different
threshold values. When all oscillators are active, the hindlimb
oscillators slow down the forelimbs, and the strong local
connections from limb to axial oscillators slow down the girdle
segments, leading to a highly negative phase lag in the trunk
and tail axial networks. This corresponds to the rightmost peak
of the distribution (i.e., negative lags, Figures 2B–D). When the
hindlimb oscillators saturate, the forelimb oscillators accelerate
a bit but continue to slow down the first segments, yielding the
phase lags that make up the middle peak of the distribution (i.e.,
near zero lags, Figures 2B–D). When all limb oscillators saturate,
the axial network is no longer influenced by limb network activity
and generates the higher, positive phase lags found in the leftmost
peak (i.e., positive lags, Figures 2B–D).

This mechanism also explains the spontaneous switches
between slow caudorostral waves and fast rostrocaudal waves
of axial activity: In the isolated CPG model, the transitions
between the active and saturated states are triggered by small
fluctuations in the excitatory drive (Figure 3), which represents
tonic pharmacological excitation as in Ryczko et al. (2010, 2015)
or Delvolvé et al. (1999). The progressive saturation of the
limb oscillators causes their oscillation amplitude to diminish
as the cycle frequency increases. The model thus suggests that
limb burst amplitude in vitro should be higher during slow
caudorostral wave of activity than during a rostrocaudal wave
(Figure 3).

Regulation Through Proprioceptive
Feedback
Recordings from isolated spinal cords show much more
variability among salamander individuals than EMG recordings
of intact animals (Ryczko et al., 2015). In response to
question 3, our results from robot experiments with five
swimming “individuals” suggest that local sensory feedback
could explain this reduction of variability from the in vitro
to the in vivo condition (Figure 5I): sensory feedback made
it unnecessary to tune the drive levels in each individual
(compare the standard deviation of the drives in Figure 5H

for swimming vs. the other behaviors). Results from robot
experiments and simulations also suggest that local sensory
feedback can replace differential drive as a modulator of the
CPG activity to produce forward terrestrial stepping (Figure 6)
and swimming (Figures 5B,I, Supplementary Figures 4A,C,
Supplementary Movies 1, 8), which answers the other part of
question 3.

The regulation of our CPG model by proprioceptive feedback
can be explained with the same mechanism as regulation by
different drive signals. Sensory feedback has been previously
reported to increase the locomotion cycle frequency through
an excitatory effect on the lamprey CPG activity (e.g., Kiemel
and Cohen, 2001). In our model, the addition of proprioceptive
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FIGURE 8 | Systematic phase biases due to the slow-down effect of coupling delays in the robot’s distributed controller. Undesired phase lags in the distributed

controller were analyzed using a chain of 7 simple (non-girdle) robot modules and a CPG model with symmetrical ascending and descending coupling weights and a

uniform intersegmental phase bias of 5%. (A) CPG intersegmental phase lags calculated from the middle segment of each module, as percentage of the cycle

duration. The observed values are higher than the target of 5% in the rostral modules and lower than the target in the caudal ones. (B) Average effect of the ascending

and descending couplings on the left oscillator of the middle segment in each module. Values shown correspond to the coupling terms rjwij sin
(

θj − θi − ϕij
)

, averaged

over the whole recording. The negative red bars show that the net effect of both coupling types is to slow down the oscillation. The effect is stronger in more rostral

modules. (C) Phase lags observed after the implementation of coupling message extrapolation. The observed values are almost uniform and close to the target of 5%.

(D) With coupling message extrapolation, the slow-down effect has almost vanished.

feedback in the axis increases the uncoupled frequency of
the segments in the axial network. If the first segment
receives no feedback, as is the case in robot experiments,
its uncoupled frequency is comparatively reduced. This leads
as expected to a decrease in phase lags during swimming
(Figure 5I).

Interestingly, simulations showed that feedback can
also regulate swimming when neck feedback is included
(Supplementary Figures 1–3, 4C). This suggests that feedback
has a weaker accelerating effect in the first segment than in
the others, even though the feedback amplitude is comparable
(see Supplementary Figure 4C). This can be explained by
looking at the model equations: axial feedback adds the term
−

si
ri
sin θi to the instantaneous frequency θ̇i of the oscillator.

The average value of this term is highly dependent on the

phase relationship between θi and the phase of the feedback
signal si. In particular, if the kinematics follow closely the CPG
output, and if we approximate si with a sine wave, then si will
be proportional to cos θi. Assuming a constant amplitude ri,
the effect of feedback on θ̇i can be written k cos θi sin θi, which
averages to zero over a 2π interval for θi. We conclude that if θi
increases approximately linearly with time, the effect of feedback
on the frequency will approach zero when the CPG-mechanical
phase lag approaches zero. And this lag (the distance between
the red and black dots) is indeed very small for the neck joint in
Supplementary Figure 4C.

We can also explain the need for reversed axial feedback
weights during forward terrestrial stepping: Excitatory axial
feedback (as in swimming) accelerates the mid-trunk oscillators,
which tends to decrease the intersegmental phase lag. This is
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FIGURE 9 | Frame sequences showing the behavior of the robot when split

into several parts. (A) After losing its tail, the robot keeps moving (although

with a malfunction in the pelvic girdle module). The tail modules continue to

oscillate. The tail CPG maintains the coordination in the form of a rostrocaudal

traveling wave. (B) The robot splits behind both girdles. The three robot parts

keep moving independently.

counter-productive since the unregulated intersegmental phase
lag is already too low (Figure 6A). With inverted weights,
axial feedback slows down the mid-trunk and increases the
phase lag as desired. The inclusion of neck feedback has
little importance in this case: when the limbs are active, the
activity of segment 3 is largely determined by the strong
connections from the forelimb oscillators, irrespective of the
activity in the first and second segments. This also means that
we would expect similar results with a model that includes
head stabilization as observed in the animal during forward
terrestrial stepping (Ryczko et al., 2015). Our results with
inverted weights are reminiscent of the reversal of the effects
of sense organs that signal forces on a leg when switching
from forward to backward stepping in the stick insect (Akay
et al., 2007, for review see Mantziaris et al., 2020). The
mechanism underlying such a switch in sensory encoding could
involve an interplay between the descending drive to the CPG
and sensory feedback. In line with this possibility, brainstem
stimulation changes how lamprey motoneurons respond to
rhythmic movements imposed to the spinal cord (Hsu et al.,
2013).

The regulation mechanism also explains the effect of limb
feedback: the excitatory signal increases the frequency of the

limb oscillators. These in turn increase the frequency of the
first segments, and thus the intersegmental phase lag. Such limb
feedback has been proposed in a simulation study as a way
of facilitating the transition from walking to trotting in the
salamander (Harischandra et al., 2011).

The cells underlying proprioceptive axial feedback remain
to be identified in salamanders (see section Motor control
in salamanders). The limb sensory feedback introduced in
simulation could be provided by cutaneous receptors during foot
contact since mechano-sensitive Merkel cells are present on the
skin of salamanders (Scott et al., 1981, Diamond et al., 1986),
and/or stretch receptors of limb muscles that are sensitive to
joint angle, since fibers behaving as muscle spindles have been
identified in salamanders (Bone et al., 1976). In mammals, it is
well-established that limb feedback plays a key role in establishing
the locomotor patterns (e.g., Musienko et al., 2012; Akay et al.,
2014; Takeoka et al., 2014; for review see Frigon, 2017).

Muscles and Passive Biomechanical
Properties
We found that higher muscle torques were required to
emulate struggling and backward stepping (Table 5). Behavior-
dependent changes in limb electromyographic activity have
been reported in salamanders when comparing forward and
backward terrestrial stepping. The electromyographic bursts
increase during backward stepping in the extensor iliotibialis
pars posterior (the homolog of the rectus femoris in mammals,
which elevates the femur and extends the knee), mostly during
the swing phase, whereas the bursts decrease in the other limb
muscles (Ashley-Ross and Lauder, 1997). Future studies should
determine whether an increase in electromyographic activity
occurs in axial muscles during backward terrestrial stepping. A
differential ratio of activation of epaxial vs. hypaxial muscles
in the animal could also occur, as observed when comparing
forward underwater stepping and forward terrestrial stepping in
salamanders (Deban and Schilling, 2009). The same comparative
electromyographic measurements should be done for struggling
in salamanders. Caudorostral waves of axial activity are also used
during struggling in Xenopus and during backward swimming
in eels and lampreys. Lateral body undulations are much larger
during struggling and backward swimming than during forward
swimming in Xenopus (Kahn and Roberts, 1982), in eel (D’Aout
and Aerts, 1999) and in lamprey despite a similar duty cycle of
the electromyographic burst (Islam et al., 2006), suggesting that
an increase in muscle strength occurs during caudorostral waves.

Passive tail segments reduced the drag during forward
underwater stepping in simulation (Figure 7). In line with this,
tail muscles show weak or no activation despite large tail
undulations during forward underwater stepping in salamanders,
suggesting that the body generates thrust by transmitting trunk
movements passively to the tail (Cabelguen et al., 2014).
At the low frequencies of underwater stepping, the passive
biomechanical properties of the tail could be sufficient to
propagate the body undulation, while higher frequencies might
require a higher stiffness and thus active muscles (Blight, 1976,
1977) as observed in the salamander during swimming (Delvolvé
et al., 1997). In salamanders, whether tail deactivation during
forward underwater stepping is due to reduced activity of
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e.g., some reticulospinal neurons remains to be determined.
Biological observations and robotic experiments suggest that
salamanders can use their tail as a “fifth limb” to provide thrust
in slippery conditions (Karakasiliotis and Ijspeert, 2009). This
suggests the existence of reticulospinal neurons that can both
decrease and increase the activity of the tail independently from
the trunk.

Robotic Platform and Distributed Control
Some of the adaptations required to reproduce the simulation
results on the robot can be explained by mechanical differences:
The need for stronger muscle forces (no tapering) in the robot’s
tail might be due to the passive fin exerting more resistance than
in the simulation. The different optimal limb-body phase bias for
backward stepping could be due to the backlash in the leg gears.

Our initial implementation of the controller was centralized
in the head module. This required retrieving the position and
velocity of all joints and sending back the torque setpoints at
each time step over the CAN bus. These are slow operations
since the module has to forward the requests over a local I2C
bus. The resulting control loop was too slow, making the muscle
model unstable. The distributed controller solved this problem
by keeping the communication of joint positions, velocities and
torque setpoints local to each module. This solution shows
interesting similarities with the vertebrate nervous system, which
distributes the processing of sensory signals and the generation
of locomotor patterns along the spinal cord, close to the
target muscles.

Watanabe et al. (2009) have shown that a distributed
controller with proprioceptive feedback can have interesting
fault-tolerance properties, such as robustness to lesions in
the communication pathways. It would be interesting to
experiment with such lesions in our CPG model. The distributed
controller would probably accommodate such experiments: the
Supplementary Movie 9 shows that the different sections of the
CPG continue to function after the robot has been split in several
parts. This is an interesting feature that few robots have. It is
made possible by the distributed computation of the CPG and
muscle model, the multi-master nature of the CAN bus and the
nearest-neighbor couplings of the CPG model.

The distributed controller also introduces a difficulty in the
form of coupling delays, which can be hard to predict when
many modules share the same communication bus. As illustrated
in Figure 8A, these delays can have a significant impact on the
coordination between modules: the phase lags between rostral
modules are markedly increased, while those between caudal
modules are decreased. The asymmetry is probably related to
the priority of messages on the CAN bus: the last modules
have higher CAN identifiers so lower priorities when several
modules attempt to talk at the same time. This means that
ascending couplings will be on average more delayed than
descending couplings, inducing larger lags in the rostral modules
(Figure 8B). The problem was mostly solved by extrapolating in
the receiver module the state of the oscillators at the origin of
the couplings (see Results). Extrapolating these states is easily
done in our CPG model, where the state variables are the phase
and amplitude of the oscillators: during steady state locomotion,
these variables, respectively, grow at an almost constant rate or

stay almost constant. It would be more difficult to extrapolate the
state in a model without explicit phase variables. In conclusion,
the CAN bus, being shared by all modules, limits the benefits
of the distributed controller. A future revision of the robot
should include direct communication between adjacent modules,
in addition to the shared bus, to fully realize the benefits of
distributed control.

CONCLUSION

Following the analogy proposed by Loeb (2001), our study
suggests that the spinal cord is as a puppet on strings, and
that a complex motor repertoire can be generated by pulling a
limited set of “sensory” or “descending” strings, which in turn
take advantage of a flexible spinal motor circuit.
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