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Abstract
This paper investigates how to solve image classification with Hopfield neural networks (HNNs) and oscillatory neural

networks (ONNs). This is a first attempt to apply ONNs for image classification. State-of-the-art image classification

networks are multi-layer models trained with supervised gradient back-propagation, which provide high-fidelity results but

require high energy consumption and computational resources to be implemented. On the contrary, HNN and ONN

networks are single-layer, requiring less computational resources, however, they necessitate some adaptation as they are

not directly applicable for image classification. ONN is a novel brain-inspired computing paradigm that performs low-

power computation and is attractive for edge artificial intelligence applications, such as image classification. In this paper,

we perform image classification with HNN and ONN by exploiting their auto-associative memory (AAM) properties. We

evaluate precision of HNN and ONN trained with state-of-the-art unsupervised learning algorithms. Additionally, we adapt

the supervised equilibrium propagation (EP) algorithm to single-layer AAM architectures, proposing the AAM-EP. We test

and validate HNN and ONN classification on images of handwritten digits using a simplified MNIST set. We find that

using unsupervised learning, HNN reaches 65.2%, and ONN 59.1% precision. Moreover, we show that AAM-EP can

increase HNN and ONN precision up to 67.04% for HNN and 62.6% for ONN. While intrinsically HNN and ONN are not

meant for classification tasks, to the best of our knowledge, these are the best-reported precisions of HNN and ONN

performing classification of images of handwritten digits.

Keywords Image classification � Oscillatory Hopfield neural networks � Unsupervised Storkey learning � Equilibrium
propagation

1 Introduction

Image classification is a primary computer vision task

deployed in many industrial systems, such as healthcare or

manufacturing systems. It is usually solved with conven-

tional artificial intelligence (AI) algorithms [1], such as

convolutional neural networks (CNNs) trained with gradi-

ent back-propagation learning algorithms. However, with

the emergence of edge cameras that require real-time

secured image processing, like surveillance systems,

autonomous cars, or agricultural monitoring systems [2–4],

there is a need to process information and bring AI at the

edge. CNN models are not compatible with edge con-

straints in terms of memory, bandwidth, and energy con-

sumption. In comparison, neuromorphic computing

systems, with their low power computing and in-memory

processing, propose solutions suitable for AI at the edge

[5].

Neuromorphic computing, such as spiking neural net-

works (SNNs) and oscillatory neural networks (ONNS), are

brain-inspired paradigms that emulate biological neural

network functions for fast learning capability via plasticity

and low-power computation for edge devices. SNNs [6–8]

are neuromorphic algorithms taking inspiration from spike

signals transmitting time-based information in the brain.
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Using spikes reduces the mean voltage amplitude and so

the energy consumption of the system. More recently,

ONNs appear as an alternative computing paradigm for

energy-efficient computation [9]. In hardware, ONNs are

implemented as analog-based neural networks using

oscillators to emulate oscillatory neurons coupled with

analog components, e.g., resistors or capacitors to emulate

synaptic coupling [10–17]. Unlike SNNs, ONNs encode

information in the phase relationship among oscillators and

compute based on the phase dynamics of coupled oscilla-

tors. Phase-based computing allows for low voltage

amplitude computing, which ultimately reduces the energy

consumption [9].

Using a single-layer recurrent architecture, ONNs are

shown to solve auto-associative memory (AAM) tasks

[15, 17, 18], like Hopfield neural networks (HNNs)

[19, 20]. AAM networks can learn patterns and retrieve

them from a corrupted input. AAM tasks are mainly solved

using unsupervised learning algorithms [21], such as

Hebbian [22], Storkey [23], and Pseudo-Inverse [21]. In

comparison, image classifications are mainly treated with

supervised learning algorithms. State-of-the-art processing

for image classifications is typically based on multi-layer

neural networks trained with back-propagation algorithms

[1, 24, 25].

Multiple benchmarks and datasets exist to evaluate

models on image classification. The main ones include

MNIST [26], ImageNet [27], and CIFAR-10. MNIST

contains grayscale 28 9 28 labeled images of handwritten

digits, while ImageNet and CIFAR-10 classify objects

using more complex colored images. They are all used to a

large extent for assessing AI-model performances. Even

though image processing and AAM are two different tasks,

authors in [28] adapted HNN to solve a simplified MNIST

classification task using the unsupervised Storkey rule.

They obtain 61.5% precision using the Storkey learning

algorithm, while typically CNNs achieve around 99% on

the standard MNIST classification task [1]. More recently,

authors in [29] adapted the contrastive Hebbian rule (CHR)

[30] to perform supervised learning with energy-based

recurrent neural network (RNN) models, using the so-

called equilibrium propagation (EP) learning algorithm.

While previous works to solve image classification with

AAM networks have been mainly focused on HNNs, in this

work, we investigate for the first time how to perform

MNIST classification tasks with ONNs. To do so, we first

start extending the classification method developed by [28]

on HNN to ONNs. Then, we study the classification of

simplified black and white 10 9 10 MNIST images with

HNN and ONN trained with both unsupervised and

supervised learning algorithms. We start by comparing the

precision results obtained with Hebbian, Storkey, and

pseudo-inverse unsupervised learning algorithms. Then,

similar to state-of-the-art methods that apply supervised

learning algorithms for classification, we adapt the EP

learning algorithm to single-layer AAM networks (AAM-

EP). We test and study two approaches using AAM-EP to

train HNN and ONN for the simplified MNIST classifica-

tion task. Our first approach consists of utilizing AAM-EP

with random weights at the start. Next, we explore the use

of AAM-EP on AAM networks pre-trained with unsuper-

vised learning to fine-tune weight values and assess whe-

ther AAM-EP can increase the accuracy of pre-trained

AAM networks. We evaluate the precision on simplified

MNIST test sets with HNN simulated with MATLAB, and

digital ONN design implemented on FPGA [31].

Note, we consider only a simplified 10 9 10 MNIST

dataset for image classification with HNN and ONN due to

networks and implementation constraints. First, HNN is

limited to bipolar values {- 1,1}, and thus, it can consider

only black and white images. Also, up to our knowledge,

there is no efficient training algorithm for ONN to settle in

continuous phase. Usual ONN training algorithms are HNN

unsupervised training algorithms constraining training

patterns to binary values, and so constraining ONN output

to binary phases {0�, 180�}. EP learning algorithms also

considered in this work, should in principle be suitable for

continuous ONN outputs. However, we believe it requires

further investigations, and it is out of the scope of the

paper. Also, our current ONN implementation limits ONN

size to a hundred neurons. Thus, with our current ONN

implementation, the MNIST dataset is the most suitable for

image classification with HNN and ONN. Considering

additional image datasets necessitates other ONN imple-

mentations and adaptations.

Our contributions can be summarized as: (1) we perform

a first study to explore MNIST classification task with

ONNs. We adapt the method introduced by [28] for HNNs

to solve handwritten digits classification task with ONN.

(2) We study precision performance of HNN and ONN

using unsupervised learning algorithms. And (3) We apply

and adjust the supervised learning Equilibrium Propagation

(EP) algorithm for single-layer energy-based AAM,

proposing the AAM-EP, on both HNN and ONN to solve

the classification of a simplified black and white 10 9 10

MNIST set.

The rest of this article is organized as follows. In

Sect. 2, we detail HNN and ONN computing paradigms

and describe the AAM computing principle with unsuper-

vised learning algorithms. In Sect. 3, we present methods

used to solve the simplified MNIST classification task

using AAM networks. In Sect. 4, we explain the various

training methods we apply to solve the MNIST classifica-

tion task using HNN and ONN, including unsupervised and

supervised learning. Next, in Sect. 5, we highlight and

compare precision obtained with the various training

18506 Neural Computing and Applications (2023) 35:18505–18518

123



methods using both HNN and ONN. Finally, we discuss the

obtained results and future work in Sect. 6.

2 Auto-associative memory (AAM) neural
networks

AAM models can learn patterns and retrieve them from a

corrupted input. The most common model used for the

AAM task is the HNN, introduced by Hopfield in 1982

[19]. More recently, other analog-based paradigms that

show AAM properties have emerged, such as ONN. This

part describes the two HNN and ONN models before giv-

ing more details on the AAM task, the existing learning

algorithms, and how ONN and HNN can solve AAMs.

2.1 Hopfield neural networks (HNNs)

HNNs are single-layer fully connected RNNs, where each

neuron is connected to other neurons by bidirectional

synaptic weights, see Fig. 1. Synaptic weight values are

determined during the training step. During inference,

neurons are initialized with input information, they evolve

in time following a propagation and an activation function

until each neuron reaches stabilization. The final

stable state corresponds to the output information. Neurons

evolution can be seen as the minimization of an energy

function; also, HNNs are labeled as energy-based models.

The propagation function of each neuron i follows:

hi ¼
X

j

Wij � rj ð1Þ

where Wij is the synaptic weight between neuron i and

neuron j, and rj is the activation value of neuron j.

The new activation of neuron i is then calculated with:

ri ¼
�1 if hi\0

ri if hi ¼ 0

þ1 if hi [ 0

8
<

: ð2Þ

2.2 Oscillatory neural networks (ONNs)

ONNs are brain-inspired networks of coupled-oscillators,

where each neuron is an oscillator coupled with synapses.

ONN implementations are diverse, using not only CMOS-

based analog devices [32], but also emerging low-power

devices [33, 34], or digital programmable logic [31, 35] to

emulate ONN neurons and synapses. In this work, we

perform simulations with a fully digital ONN design [31]

made of phase-controlled digital oscillators, and 5-bit

signed register synapses.

There also exist multiple architectures, and computing

methods using ONN. In this work, we only consider fully

connected recurrent architecture with phase computation,

see Fig. 1, as it can compute AAM tasks [18]. We encode

data in phase relationships between oscillators. For exam-

ple, for bipolar values, considering a reference oscillator

with phase 0� ([? 1]), another oscillator with 180� phase

shift from the reference oscillator would represent the

opposite bipolar value ([- 1]). Similarly, an oscillator with

0� phase shift represents the same bipolar reference value

([? 1]). Phase computation allows to reduce signal

amplitude and consequently the energy consumption of the

system [9].

ONN computes based on the dynamics of the coupled

oscillators. Couplings between oscillators are set during the

learning step and depending on the task. Next, inference

starts with oscillators’ phase initialization depending on the

input information. Then, ONN phases evolve in time due to

the natural dynamic of the oscillators and stabilize to a final

phase value. The final phase value is then measured to

obtain the ONN output information. This computing

paradigm can be associated with the minimization of an

energy function (as in HNNs); thus, ONN is also an

energy-based computing model. Such property makes

ONN suitable to solve AAM tasks.

2.3 Auto-associative memory (AAM) task
and learning

AAM tasks involve memorization of patterns and retrieval

of the memorized patterns from the corrupted input infor-

mation. AAM processes in two main steps. The first is the

learning step to memorize patterns in the network, and the

second is the inference step to retrieve one of the memo-

rized patterns from a corrupted input, see Fig. 1. Consid-

ering HNN or ONN, we associate each image pixel to a

neuron, and the color of the pixels to the neuron value,Fig. 1 Auto-associative memory computation with HNN and ONN
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either the binary value for HNN, or the phase value for

ONN. AAM tasks are usually solved using unsupervised

learning algorithms. Unsupervised learning algorithms

differentiate from supervised learning algorithms as they

only use data to compute, without any external interaction

to evaluate it. ONN-oriented rules were introduced

recently, especially for ONNs [36]. However, other unsu-

pervised learning rules designed for HNN are also com-

patible with ONN. In order to make a meaningful

comparison between HNN and ONN precision, we only

consider learning algorithms compatible with both models.

Unsupervised learning algorithms are categorized into

biologically plausible algorithms following three main

criteria. First, the locality which induces that the weights

update only depends on the activation from neurons in both

sides of the synapse. Second, the incrementality that indi-

cates if a network can learn patterns one by one or if it

needs to learn all patterns together. Third the weight

symmetry that states that as in human brain, weights are

not symmetric. Yet, for both HNN and ONN, the synapse

between neuron i and j and the synapse between neuron j

QUOTE and i are the same, so weights are symmetric.

Even though this makes HNN and ONN non-biologically

plausible paradigms, weight symmetry is necessary for

HNN and ONN learning. The first learning algorithm we

use is the Hebbian learning rule [22]. Hebbian is local and

incremental and has symmetric weights. The principle is

based on the biological rule saying ‘‘neurons that fire

together wire together.’’ Synaptic connection Wij between

neuroni and j with the same value is calculated for k pat-

terns fk as:

Wij ¼
X

k

1

N
nki n

k
j ð3Þ

Hebbian has good AAM properties, and however, its

capacity is limited [21], meaning it can not memorize and

retrieve patterns correctly for a numerous number of pat-

terns. Additional learning rules with higher storage

capacity also exist, such as the Storkey learning rule [23]

and the pseudo-inverse learning rule [21]. Storkey is also

local, incremental, with symmetric weights and is similar

to Hebbian as:

Wij ¼
X

k

1

N
nki n

k
j �

1

N
nihij �

1

N
hijnj

� �
ð4Þ

with hij:

hij ¼
X

j

Wijnj ð5Þ

In the contrary, the pseudo-inverse learning rule is nei-

ther local, nor incremental, but has symmetric weights.

Thus, it is not biologically plausible. The pseudo-inverse

learning rule is as:

W ¼ N � n � pinvðnÞ ð6Þ

The biological plausibility is useful for online learning

applications. Though, in this paper, we process weights

offline using MATLAB software, before using them in the

HNN MATLAB model or in the digital ONN. In the digital

ONN design, we normalize weights in 5-bits signed format.

We compare the three above-mentioned learning algo-

rithms with HNN and ONN on the simplified MNIST set.

3 MNIST classification with AAM networks

It is important to state that AAM and image classification

are two distinctive tasks. Thus, one needs to adapt AAMs

to perform classification. In [28], authors propose a solu-

tion to apply HNN to classify images of MNIST hand-

written digits when trained with Storkey learning rule. In

this work, inspired by [28], we replicate their method to

evaluate and compare precision of HNN and ONN on a

simplified MNIST set for different unsupervised learning

configurations. In this section, we first present the MNIST

set and the simplified version we use in this work before

describing methods to classify the simplified MNIST set

using HNN and ONN.

3.1 MNIST database

The MNIST set was created to assess neural networks

performances on image classification task. It contains

28 9 28 Gy scale labeled images of handwritten digits,

from 0 to 9. It is organized in two sets, a training set with

60,000 images, and a test set with 10,000 images. State-of-

the-art solves the MNIST classification problem with CNN

models. They can achieve more than 99% of accuracy

when trained by supervised back-propagation algorithms

[1].

3.2 MNIST dataset preparation

In this work, we employ a simplified MNIST set containing

the same number of training and test images, where each

image is pre-processed to be transformed in a 10 9 10

black and white image in order to be compatible with our

digital ONN design, see Fig. 2. We focus on a 10 9 10

format because the digital ONN design is limited in size

and resources. The transformation of each image follows

three steps. First, each 28 9 28 image is cropped to

20 9 20 removing the black background to reduce simi-

larities among images. Then, the 20 9 20 image is resized

to a 10 9 10 by taking average values of 2 9 2 neighbor
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pixels. Finally, we binarize each image into black and

white using a threshold. MNIST grayscale pixels take

values in the range of [0,255], thus, for example, if we use

a threshold of 128, a pixel value under 128 will become

black, otherwise white. We study different binarization

thresholds and their influence on the simplified MNIST

classification task in Sect. 3.4.

3.3 Image classification with AAM

There are some clear distinctions between AAM and

classification tasks. On one hand, classification problems

associate input information to output classes; hence, input

and output can have different dimensions. On the other

hand, AAM tasks associate a corrupted input to a clean

memorized output, where both have same dimensions. To

solve MNIST classification problem using AAM, authors

in [28] propose to train an HNN network with one pattern

per label, so one image per digit. Thus, HNN and ONN

inference will stabilize to one of the training patterns

corresponding to a digit label class, equivalent to the

MNIST classification task, see Fig. 3.

3.4 Training patterns for MNIST classification

In this work, we use HNN and ONN configured for pattern

recognition task, while MNIST is a classification task.

Thus, we need to adapt the MNIST classification dataset to

be solved as a pattern recognition task. MNIST classifica-

tion with AAM starts by the training step to configure the

weights, and so the choice of the training patterns. The

training pattern choice is a key for high precision. Each

training pattern must be the best representation of its digit,

such that each image of that digit from MNIST set will

stabilize to that training pattern. Authors in [28] propose to

perform a mean on each grayscale image with same label

from the MNIST training set of 60,000 images, and we re-

use the same method. We define 10 training patterns cor-

responding to the 10 digits which will be learnt as

stable points for both HNN and ONN networks. The 10

training patterns are created from the 60,000 training

images. We group the training images by digits and com-

pute a mean image for each digit such that we obtain ten

28 9 28 Gy scale images representing digits between 0

and 9. After, we apply the pre-processing on each training

pattern to obtain ten 10 9 10 black and white images, with

one image per digit being the training pattern associated

with the corresponding digit, see Fig. 4.

Pre-processing binarizes each training pattern to be

converted into black and white. Binarization threshold

determines the number of black or white pixels in each

image. In AAM tasks, having uncorrelated training patterns

is also a key for high precision. The more patterns are

correlated, the hardest it is to dissociate them. The corre-

lation of patterns is evaluated by the Hamming Distance

(HD) metric d, which calculates the number of different

Fig. 2 Simplified MNIST classification image pre-processing method

Fig. 3 Difference between

AAM and image classification

tasks, and the adaptation of

AAM network for image

classification task
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neuron activation between two patterns. Grayscale in

MNIST images is encoded between 0 and 1. Thus, as in

[28], we study the ideal threshold to have the largest HD

between training patterns. Figure 5a shows the average HD

davg, and the minimum HD dmin in-between the 10 training

patterns depending on the binarization threshold h. It

highlights that HD is maximal for h ¼ 0:3, meaning

training patterns are less correlated. Figure 5b depicts the

HD between the 10 patterns generated after pre-processing

with h ¼ 0:3h ¼ 0:3, and Fig. 5c prints the resulted 10

training patterns.

4 AAM training for MNIST classification

Once we have training patterns, we need to define synaptic

weights using some learning algorithms. Usual image

classification tasks are trained based on supervised learning

algorithms. However, AAM tasks use unsupervised learn-

ing algorithms. In Sect. 4.1, we describe how we use var-

ious unsupervised learning algorithms to train HNN and

ONN for classification. Then, Sect. 4.2 proposes to adapt

the supervised EP algorithm to train HNN and ONN, with

the AAM-EP. With supervised AAM-EP, we study first

training networks from random weights initialization, and

then starting from a pre-trained network using weights

generated by unsupervised learning algorithms, see Fig. 6.

4.1 Unsupervised learning

Authors in [28] use the Storkey unsupervised algorithm

after stating Hebbian does not have enough memory

capacity. Here, we study three training algorithm Hebbian,

Storkey, and Pseudo-inverse on HNN. Note, incremental

learning algorithms can be sensitive to iterative learning.

We call iterative learning the possibility to learn same

patterns multiple times. Thus, we study the impact of

iterative learning on the Hebbian and Storkey learning

algorithms, as Pseudo-inverse is not incremental.

From HNN MATLAB simulations, we extract the

weights giving best HNN precision and integrate them

inside the digital ONN design to compare ONN precision

with HNN precision on the simplified MNIST classification

task. Chosen weights are normalized into a 5-bits signed

representation to be compatible with digital ONN design.

Fig. 4 Process to define training

patterns from MNIST training

set

Fig. 5 a Average and mean hamming distance (HD) between training patterns for various binarization threshold b, b HD between training

patterns binarized with b = 0.3, and c training patterns with b = 0.3
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We simulate the digital ONN design using the Vivado

design tool with xc7z020-1clg400c FPGA target.

We evaluate precision from inference results on the

MNIST test set of 10,000 images. Inference starts by ini-

tializing neurons with one of the test set images. Then, the

network evolves until stabilization. The stable state is then

compared to the 10 training patterns to define the output

class. Exact match between ONN output and corresponding

training pattern is considered a correct classification.

MNIST results are evaluated through four metrics for HNN

and ONN. First, we evaluate the precision representing the

percentage of tested images which stabilize to the correct

training pattern. Then, we compute the true negative

metric, that counts the number of images which stabilize to

one of the training patterns but not the expected one. We

also add the percentage of spurious outputs incorporating

images that stabilize to none of the training patterns, but to

another non-memorized image. Finally, for the ONN, an

additional metric is necessary to highlight the percentage of

images that never stabilize to an output. We call them in-

consistent images. In Sect. 5.1, we report results obtained

on the 10,000 images from the simplified MNIST test set

with HNN and ONN trained with unsupervised learning.

4.2 Supervised equilibrium propagation

EP is a supervised learning algorithm proposed in [29] for

energy-based RNN models. In [29], authors demonstrate

EP efficiency to solve MNIST classification task using

multi-layer energy-based continuous RNNs. HNNs and

ONNs are also energy-based RNNs, yet made with a sin-

gle-layer architecture of non-continuous neurons. Thus, in

this paper, we propose to adapt the EP algorithm to energy-

based single-layer AAM networks. First, Sect. 4.2.1

describes the EP algorithm from [29]. Then, Sect. 4.2.2

explains how we adapted EP to AAM single-layer net-

works creating an AAM-EP learning.

4.2.1 Equilibrium propagation (EP)

EP algorithm was introduced by [29] to perform supervised

learning on energy-based RNN models. It is inspired by the

Contrastive Hebbian Rule (CHR) algorithm [30] proposed

to solve supervised problems with multi-layer continuous

Hopfield networks, a specific type of energy-based RNN.

The common algorithm to solve supervised problems with

multi-layer RNN models is the Back-Propagation Through

Time (BPTT) [37]. Even though it is efficient and gives

really high precision, it requires a large amount of com-

putational resources. Thus, authors in [29] proposed a new

solution which requires less computation to solve super-

vised problems with energy-based RNN models. EP com-

putes the gradient of an objective function, similar to the

Hopfield energy function, that propagates in the layers.

This gradient back-propagation is transparent in the weight

update algorithm, and the final weight update equation is

intuitive and simple to apply. Note, authors in [38] showed

that EP and BPTT have similar gradient updates in an

RNN, so achieving similar precision. The EP algorithm

defines two learning phases to update the weights. The first

phase, called the free phase, clamps the input information

to the input layer and waits until neurons of the following

layers stabilize. Then, EP performs a second phase, called

the weakly clamped phase, where input neurons and output

neurons are clamped with the input information associated

with the expected output information. In [29], they show

that the signal back-propagated during the weakly clamped

phase corresponds to the derivative error of their objective

function, and they define the following weight update

algorithm:

1. Clamp input information at the input neurons and let

the network evolve until all neurons from hidden and

output layers stabilize.

2. Save the stable state r0i of each neuron i.

3. Weakly clamp with b the expected output information

at the output neurons and let the network evolve until

all neurons from hidden layers stabilize.

4. Save the new stable state rbi of each neuron i.

5. Update weight wij between neuron i and neuron j as:

Wij ¼ Wij þ DWij ð7Þ

with

DWij ¼
1

b
ðrbi r

b
j � r0i r

0
j Þ ð8Þ

Using b ¼ 1, in [29], authors show that RNNs with 1, 2,

or 3 hidden layers can solve the MNIST classification

problem and reach more than 95% of precision. Eventually,

EP is a low-computation, energy-based learning algorithm

Fig. 6 Study of various options to perform MNIST classification with

HNN and ONN
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expected to fit with analog computing paradigms. Thus, it

makes it attractive for ONN application. However, EP

cannot be applied directly to HNN or ONN as they are

single-layer energy-based models.

4.2.2 EP for single-layer energy-based AAM

In this paper, we consider single-layer energy-based AAM

models with HNN and ONN and we adapt EP to HNN and

ONN. Note, recently, authors in [39] also proposed to use

EP for pattern recognition with ONN. However, we apply

it with different methods. In [39], authors apply supple-

mentary neurons to clamp training patterns during clamp-

ing phase, while in this work, we do not require additional

neurons. Also, in [39], authors perform phase dynamics

simulations of memristor-based ONNs to validate their

method, while here we perform simulations of a digital

ONN design. This Section explains how we adapt EP to fit

AAM, introducing AAM-EP and we present methods and

parameters used in this work when training HNN and ONN

with AAM-EP.

EP is a supervised algorithm, meaning it needs labeled

data and interaction to define synaptic weights. As we only

have a single-layer network, the MNIST set needs to be

modified to associate each input image to the correct output

image with same dimension. We consider the previous

training patterns defined for unsupervised learning as the

corresponding digit labels. Note, each input/output pair of

images are converted by pre-processing to 10 9 10 black

and white images. So, first we define the expected outputs

and replace each label from MNIST training and test sets

with the corresponding training pattern. Then, AAM-EP

uses these new input/output pairs from MNIST training set

to clamp input and output during the two training phases.

After, during inference and precision evaluation, we com-

pare the output given by the network with the expected

training pattern using the MNIST test set.

EP learning is a two-phase algorithm, with a first free

phase with input neurons clamped, and a second weakly

clamped phase with additional weakly clamped output with

factor. The clamping principle works well for a multi-layer

network with at least one hidden layer [29]. However, in

HNN or ONN cases, input and output neurons are the same,

and there is no hidden layers. Thus, we adapt the EP

algorithm for AAM as the AAM-EP following:

1. Clamp the input image in the network; Consider r0i as
activation of neuron i from the input image.

2. Clamp the expected output image with b ¼ 1 in the

network; Consider rbi as activation of neuron i from the

expected output image.

3. Use the two activation states to update weight between

neuron i and j as Wij ¼ Wij þ aDWij with:

DWij ¼ rbi r
b
j � r0i r

0
j ð9Þ

Note, we remove the factor 1=b because we use b ¼ 1.

Also note, we add a learning rate factor a in order to

regulate the weight update for each training iteration (each

image). During tests, we consider various range of learning

rates between 0.0001 and 1. Initialization of the weights is

also important to achieve high precision. In this work, we

first initialize weights randomly, with small values between

[- 1; 1]. Especially, we study if AAM-EP can train a

single-layer energy-based RNN like HNN or ONN from

scratch. After, we initialize AAM networks using weights

computed previously with unsupervised learning. With this

option, we study if AAM-EP can improve precision of an

already trained network. At first, we apply AAM-EP for

numerous epochs and observe the HNN precision at each

epoch for various learning rates. Each epoch applies a

random minibatch of 1000 pre-processed images from the

MNIST training set to update the weights. Precision can

slightly change from one trial to another as minibatch

images are randomly chosen from the full simplified

10 9 10 MNIST training set. The precision for each epoch

is computed on the full simplified 10 9 10 MNIST test set.

In a second step, we select the best configuration and

collect corresponding weights to evaluate the AAM-EP

learning algorithm with the digital ONN design. Collected

weights are normalized into a 5-bits signed representation

compatible with the digital ONN design. We simulate the

digital ONN design using the Vivado design tool with

xc7z020-1clg400c FPGA target. We compare precision,

true negative, spurious, and inconsistent results obtained

with HNN and ONN for the same weight values.

5 Results

This section presents results obtained with both HNN and

ONN trained with unsupervised and supervised learning

algorithms to solve the simplified 10 9 10 MNIST clas-

sification task.

5.1 Unsupervised learning

Figure 7a highlights the precision obtained using HNN for

multiple training configurations. Configurations include the

learning rules, Hebbian, Storkey, or Pseudo-inverse for up

to 10 iterations. As expected, Pseudo-inverse is not sensi-

tive to iterative learning as precision does not change

depending on the iterations, and Storkey is sensitive.

However, we expected Hebbian to be sensitive to iterative

learning, but for each iteration precision stays 0%. Fig-

ure 7a also shows that the best precision is obtained when
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training the network with the 10 training patterns using the

iterative Storkey learning rule during 5 iterations. How-

ever, training HNN with Pseudo-inverse can reach a pre-

cision close to the best with 64.4% after a single iteration.

We configure the digital ONN design using the synaptic

weight values obtained with best configuration, 5 Storkey

iterations, to compare ONN precision with HNN precision

on the simplified MNIST classification task.

Figure 7b shows results of HNN and ONN trained with

5 Storkey iterations. HNN and ONN have similar trends.

First, HNN precision and true negative percentages are

higher than ONN. The difference is certainly in part due to

the normalization of weights into 5-bits signed integers in

the digital ONN design. Also, the number of spurious

patterns detected with ONN is slightly higher than with

HNN, and inconsistent patterns often happen with ONN

while never with HNN. Thus, we strongly believe that

HNN decides more easily of a stable output, even if it is a

true negative, while ONN can hesitate between different

outputs and keep bouncing between patterns. Figure 7b

also reports the best precision, to the best of our knowl-

edge, obtained with HNN and ONN trained with unsu-

pervised learning algorithms to solve a simplified MNIST

classification task. We report on 65.2% precision with

HNN, and 59.1% precision with ONN. However, reported

precision is lower than state-of-the-art precision of neural

network models solving MNIST classification problems

with supervised learning, reaching around 99%. Hence,

next section presents results obtained using AAM-EP

supervised algorithm to train HNN and ONN on our sim-

plified MNIST set to investigate if supervised learning can

increase HNN and ONN precision.

5.2 Supervised EP

In this Section, we present results obtained with both HNN

and ONN trained with the supervised AAM-EP algorithm

to solve the MNIST classification problem.

To begin with, Fig. 8a displays HNN precision evolu-

tion for multiple learning rates during 50 epochs, with

weights initialized with small random positive values. It

shows that for all the tested learning rates, during several

epochs, the precision stays 0%. Moreover, Fig. 8b com-

pares results between HNN and ONN, obtained using

weights achieved with learning rate a = 0.0005 after 10

epochs. Note, we tried various learning rates and epochs

and obtained same results. It highlights that for HNN, each

image stabilizes to a spurious pattern, while for ONN,

neuron states continuously evolve without reaching stabi-

lization. To sum up, using AAM-EP learning from scratch

with HNN or ONN, does not result in high precision on the

simplified MNIST classification task.

Subsequently, we reproduce the precision tests with

weights initialized using unsupervised learning. More

precisely, we initialize weights with best-unsupervised

learning precision obtained for each unsupervised learning

algorithm. That are weights generated with Hebbian after

one iteration, with Storkey after 5 iterations, and with

Pseudo-inverse after one iteration. Figure 9a shows preci-

sion of the HNN trained with AAM-EP during 50 epochs

for various learning rates when weights are initialized with

Hebbian. It highlights that for weights initialized with

Hebbian, the AAM-EP does not modify the network to

allow classification of the simplified MNIST task.

Figure 9b, c shows precision of the HNN trained with

AAM-EP during 50 epochs for various learning rates when

weights are initialized with 5 iterations of Storkey and

Pseudo-inverse, respectively. It illustrates a particular

behavior in which precision increases during the first

couple of epochs and decreases afterward. The larger the

Fig. 7 a HNN precision for multiple unsupervised training configu-

rations. Training configuration includes the choice of the learning

rule, and the number of iterations performed on the training patterns

(each iteration learns the 10 training patterns). b Results of ONN and

HNN trained with 5 iterations of the unsupervised Storkey learning

rule
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learning rate is, the faster the increase and decrease phe-

nomenon is observed. Considering Pseudo-inverse initial-

ization, the maximum precision is obtained with learning

rate a = 0.0005, after 9 epochs, for which HNN reaches

66.3% precision. Considering Storkey initialization, the

maximum precision is obtained with learning rate a =

0.0005, after 5 epochs, and HNN reaches 67.04% preci-

sion. For both Pseudo-inverse and Storkey initialization,

AAM-EP increases the HNN precision of around to 2%.

We assume this phenomenon is due to the weight’s initial

values. If the unsupervised learning already set weights to

an acceptable network configuration, then the AAM-EP

algorithm can slightly help to increase precision up to a

certain point after which it modifies the previous configu-

ration and reduces drastically the HNN precision. How-

ever, if the weights initialization does not bring the

network to an acceptable configuration, such as with

Hebbian or random weights initialization, the AAM-EP

cannot modify enough the network to reach a good

configuration.

We configure the digital ONN with best HNN configu-

ration, that is weights obtained after 5 epochs of AAM-EP

with learning rate a = 0.0005 after initializing weights with

Storkey learning rule. Figure 10 plots the precision

obtained with both HNN and ONN. Note that obtained

precision from Figs. 9b and 10 are different. As we use

mini-batch of 1000 randomly chosen images at each epoch,

from one run to another, computed weights and obtained

precision can be slightly different. Figure 10 shows that for

both HNN and ONN, precision increases with the use of

Fig. 8 a Results of simplified MNIST classification precisions

obtained with HNN, for various learning rates, during numerous

epochs, starting with weights initialized randomly. b Results of ONN

and HNN trained with AAM-EP algorithm with random weight

initialization after 10 epochs

Fig. 9 Simplified MNIST classification precisions obtained with HNN, for various learning rates, during numerous epochs, starting with weights

initialized with a 1 iteration of Hebbian, b 5 iterations of Storkey, and c 1 iteration of Pseudo-inverse

Fig. 10 Results of ONN and HNN trained with AAM-EP algorithm

with a = 0.0005 after 5 epochs with weights initialized after 5

iterations of Storkey
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the AAM-EP supervised algorithm. Additionally, the

number of true negative stays approximately stable for

HNN and decreases for ONN, and the number of spurious

patterns decreases. Thus, we deduce the AAM-EP algo-

rithm helps to differentiate and reinforce training patterns

such that input patterns are better associated with training

patterns. For example, spurious patterns often appear to be

close to training patterns with some wrong pixels. We

believe AAM-EP helps to modify local weights associated

with wrong pixels such that HNN and ONN stabilize to

correct training patterns.

HNN and ONN precisions increase of about 2%, and

3.5%, respectively. Table 1 assembles best HNN and ONN

precisions of the three learning configurations, unsuper-

vised learning only, supervised learning only, both unsu-

pervised and supervised learning.

5.3 Comparison of both unsupervised
and supervised methods

In this work, we highlighted that the supervised AAM-EP

learning algorithm can help increasing precision of HNN

and ONN networks pre-trained with unsupervised learning

algorithms for the MNIST classification task. However,

using supervised learning can be more demanding in terms

of computational efforts.

In this work, training was performed in MATLAB.

However, we can derive from results obtained in

MATLAB the computational efforts for the different

learning algorithms, as well as an estimation of the learning

latency if learning was implemented on the digital ONN.

We evaluate the computational efforts using the metric of

the number of multiply and accumulate operations

(NMACOP) required for each learning method. Table 2

shows a comparison of the computational efforts for the

various learning methods for a general case, as well as for

the MNIST classification application. It shows that the

supervised learning algorithm increases drastically the

NMACOP per training compared to the unsupervised

learning algorithms. Also, considering a system frequency

of Fsys ¼ 31:25 MHz, and parallelism in the NMACOP,

Hebbian learning can compute in 1 clock cycle, Storkey, in

15 clock cycles, and Pseudo-inverse in 3 clock cycles,

while AAM-EP requires approximately 50 ms to train

HNN or ONN for MNIST classification task. Thus,

supervised AAM-EP takes longer to compute that other

unsupervised learning algorithms. However, depending on

the application, using AAM-EP to increase precision while

also increasing the computational efforts and latency can

be interesting.

6 Discussion

This work analyzes classification of handwritten digits

from MNIST set using two AAM networks, HNN and

ONN, trained with either unsupervised learning, supervised

learning, or both learning strategies. In this section, we first

discuss the results obtained with our AAM-EP learning

algorithm in comparison with reported results in literature.

Then, we highlight advantages and limitations of using

AAM networks to solve MNIST classification task. Finally,

we expose future explorations.

6.1 Comparison with other models

Results presented in Sect. 5 showed we can train HNN and

ONN networks with supervised AAM-EP algorithm.

Additionally, the AAM-EP algorithm increases HNN and

ONN precision on the simplified MNIST classification task

from precision obtained if learning with unsupervised

algorithms. We report an HNN maximum precision of

67%, and an ONN maximum precision of 62.5%. In

comparison, [28] reported 61.5% HNN precision, while

performing classification of a simplified MNIST set with

14 9 14 black and white images, with additional pattern

optimization. So, on one hand our AAM-EP solution has,

to the best of our knowledge, the highest reported precision

of single-layer AAM networks performing classification of

handwritten digits from MNIST set. And on the other hand,

state-of-the-art multi-layer RNNs trained with EP can solve

the complete MNIST classification problem with more than

90% precision, see Table 3. Thus, our proposed AAM-EP

learning algorithm improves already known precision of

AAM on handwritten digits classification task, but does not

overtake multi-layer RNN model precision on the same

task.

Table 1 Best precision results obtained with both HNN MATLAB emulator and ONN digital design for the three training configurations

(unsupervised, supervised, unsupervised and supervised)

Unsupervised Storkey rule 5 iterations Supervised EP All a & epochs EP with Storkey a = 0.0005, epochs = 5

HNN 65.2% 0% 67.04%

ONN 59.1% 0% 62.61%
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However, multi-layer models are often heavy, requiring

a lot of resources latency to be trained. Thus, we compare

our solution with state-of-the-art models in terms of

resources and latency by comparing the number of

parameters to tune the network, as well as the number of

epochs necessary to obtain the best precision. Table 3

highlights the precision, number of parameters, number of

epochs, and architectures of various models trained with

EP for MNIST classification. HNN and ONN are single-

layer models requiring low number of parameters com-

pared with multi-layer models. In terms of training latency,

ONN and HNN reach their maximum precision after less

than 10 epochs, while most of the multi-layer networks

necessitate more epochs to converge to their maximum

precision, between 10 and 140 depending on the model.

Thus, ONN can be of interest for applications with

restricted amount of resources, but flexibility in the

precision.

6.2 Future work

Handwritten digits classification is a benchmark applica-

tion for neural network models. Here, we explored solu-

tions and learning algorithms to solve handwritten digits

classification with single-layer energy-based AAM models.

We explore HNN and ONN, as they aim to be suitable for

image processing at the edge. However, in this work, we

have seen that using supervised and/or unsupervised

learning does not perform better than other multi-layer

models. A possible improvement is to explore multi-layer

associative memory architecture [43] like Heterogeneous

Associative Memory (HAM), in order to have a more

coherent architecture with classification task [44].

Initializing input layer with input images classified into

different categories highlighted by the output layer. HAM

networks using perceptron neurons such as the Linear

Associative Memory [45], or the Bidirectional Associative

Memory [46, 47] could replace the single-layer HNN. And

in [44] and [48], authors demonstrated that ONN can work

as HAM for edge detection application, so it could also be

applied for handwritten digits classification task. The EP

algorithm was first introduced as a supervised learning

algorithm for energy-based multi-layer RNNs, and thus, we

expect it to be compatible with multi-layer HNN and ONN.

Also, there are numerous learning algorithms that are

compatible with multi-layer networks, which could help

increasing HNN and ONN precision [49].

Finally, an extension of this work is to explore the

integration of AAM-EP on ONN hardware. In [29], authors

precise that the algorithm is compatible with hardware

implementation. One could also integrate learning on chip

and perform the two learning phases of AAM-EP directly

inside the digital ONN design, or even inside an analog

ONN design.

7 Conclusion

This work proposes a study of solving classification of

handwritten digits images from MNIST dataset using sin-

gle-layer energy-based AAM networks. In particular, we

analyze the behavior of an HNN tested on MATLAB

software and a digital ONN design simulated on Vivado

software. To classify with single-layer AAM network, we

define training patterns for each label. So, after initializa-

tion, the network evolves to one of the training patterns

Table 2 Computational efforts

required for training depending

on the learning algorithm for a

network of N neurons, for k
training patterns, after it
iterations or e epochs

Learning rule NMACOP NMACOP MNIST Latency MNIST (Fsys ¼ 31:25MHz )

Hebbian kN2
� �

it 100 k 32 ns

Storkey kN2 þ 2kN
� �

it 510 k 480 ns

Pseudo-inverse ð kN2
� �

þ 2ðN2kÞÞit 300 k 96 ns

AAM-EP #imge #cyclesN
2 þ 2N2

� �
5000 k 50 ms

#cycles represents the number of cycles necessary for the ONN inference, we consider 3 cycles in average

Table 3 Comparison of various network models trained with EP on the MNIST classification task

Network HNN ONN RNN [29] (784-H-10)

H = 500

BNN [40]–Conv. Output

(O)

Analog RNN [41] (784-H-10) SNN [42] (784-H-10)

Arch 100-FC 1H 2H 3H O = 10 O = 700 H = 100 H = 500

Param 10 k 397 k 647 k 897 k 33.76 k [ 2 M 79.4 k 397 k

Epochs \ 10 15–20 40 140 30 10–20 10 5–10

Precision 67% 97% 98% 97% 11% 97–98% 96.5% 97%
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corresponding to one label. We evaluate network precision

to classify 10 9 10 black and white images of handwritten

digits from a simplified MNIST set. We compare and

assess precision performances for different learning con-

figurations. First, we compute precision for different

unsupervised learning algorithms. We obtain a maximum

HNN precision of 65.2%, and a maximum ONN precision

of 59.1% when training with 5 iterations of the Storkey

algorithm. Then, we evaluate precision using supervised

EP algorithm adapted to AAM, the AAM-EP. We highlight

that tuning weights of a pre-trained network with AAM-

EP, the precision is augmented. For example, using a pre-

training configuration with 5 Storkey iterations, precision

augments by 2% and 3.5% for HNN and ONN, reaching

67%, and 62.6%, respectively. Thus, our AAM-EP algo-

rithm increases single-layer AAM model precision on the

simplified MNIST classification task. Despite the lower

obtained precision in comparison with state-of-the-art

MNIST classification with multi-layer networks trained

with EP, this study explains how to solve supervised

problems using AAM networks. More than that, it intro-

duces the use of AAM-EP supervised learning algorithm to

help single-layer AAM network to classify images.
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