
HAL Id: hal-04125520
https://hal.science/hal-04125520v2

Submitted on 20 Jun 2023 (v2), last revised 18 Oct 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Verification of Embedded Real-Time
Systems

Mohammed Foughali, Pierre-Emmanuel Hladik, Alexander Zuepke

To cite this version:
Mohammed Foughali, Pierre-Emmanuel Hladik, Alexander Zuepke. Compositional Verification of
Embedded Real-Time Systems. Journal of Systems Architecture, inPress. �hal-04125520v2�

https://hal.science/hal-04125520v2
https://hal.archives-ouvertes.fr

Compositional Verification of Embedded Real-Time
Systems

Mohammed Foughalia, Pierre-Emmanuel Hladikb, Alexander Zuepkec

aUniversité Paris Cité, CNRS, IRIF, F-75013, Paris, France
bNantes Université, CNRS, LS2N, F-44000, Nantes, France

cTechnical University of Munich, D-85748, Garching, Germany

Abstract

In an embedded real-time system (ERTS), real-time tasks (software) are
typically executed on a multicore shared-memory platform (hardware). The
number of cores is usually small, contrasted with a larger number of complex
tasks that share data to collaborate. Since most ERTSs are safety-critical, it is
crucial to rigorously verify their software against various real-time requirements
under the actual hardware constraints (concurrent access to data, number of
cores). Both the real-time systems and the formal methods communities provide
elegant techniques to realize such verification, which nevertheless face major
challenges. For instance, model checking (formal methods) suffers from the state-
space explosion problem, whereas schedulability analysis (real-time systems) is
pessimistic and restricted to simple task models and schedulability properties.
In this paper, we propose a scalable and generic approach to formally verify
ERTSs. The core contribution is enabling, through joining the forces of both
communities, compositional verification to tame the state-space size. To that end,
we formalize a realistic ERTS model where tasks are complex with an arbitrary
number of jobs and job segments, then show that compositional verification of
such model is possible, using a hybrid approach (from both communities), under
the state-of-the-art partitioned fixed-priority (P-FP) with limited preemption
scheduling algorithm. The approach consists of the following steps, given the
above ERTS model and scheduling algorithm. First, we compute fine-grained
data sharing overheads for each job segment that reads or writes some data from
the shared memory. Second, we generalize an algorithm that, aware of the data
sharing overheads, computes an affinity (task-core allocation) guaranteeing the
schedulability of hard-real-time (HRT) tasks. Third, we devise a timed automata
(TA) model of the ERTS, that takes into account the affinity, the data sharing
overheads and the scheduling algorithm, on which we demonstrate that various
properties can be verified compositionally, i.e., on a subset of cores instead of the
whole ERTS, therefore reducing the state-space size. In particular, we enable
the scalable computation of tight worst-case response times (WCRTs) and other
tight bounds separating events on different cores, thus overcoming the pessimism
of schedulability analysis techniques. We fully automate our approach and show
its benefits on three real-world complex ERTSs, namely two autonomous robots

and an automotive case study from the WATERS 2017 industrial challenge.

1. Introduction

1.1. Addressed Problem & Motivation
In an embedded real-time system (ERTS), the software, consisting of a set

of real-time tasks, executes on an embedded hardware. The latter is usually a
multicore shared-memory one, where “multicore” refers to a small number of
cores (contrasted with a higher number of tasks) due to Size, Weight, Power and
Costs (SWaP-C) considerations, and shared memory allows tasks to communi-
cate the results of their computations. ERTSs are at the heart of safety-critical
applications spanning various domains, such as automotive vehicles and mo-
bile robots, where their failure may entail considerable economic losses and
even human casualties. Unfortunately, classical scenario-based testing proved
inefficient as a means to detect faulty executions and thus prevent an ERTS
failure. For instance, Toyota vehicles with a major software bug behind the
Unintended Acceleration failure, costing 89 human lives and billions of dollars
to the automotive manufacturer, have nevertheless successfully passed millions
of hours/miles of testing prior to their deployment [48].

It is therefore crucial to formally verify ERTSs as to guarantee their safe
behavior. Such verification is typically carried out on an ERTS model vis-à-vis
important real-time properties, such as bounded response and schedulability. For
instance, in an autonomous drone, flight missions must obey stringent timing
constraints to ensure that e.g., control algorithms perform fast enough to prevent
collisions and crashes from happening. In order to obtain useful results, the
verified model must take into account the actual hardware-software setting of the
underlying ERTS, i.e., software timing parameters (tasks deadlines and execution
times) and hardware specificities (concurrent access to data, number of cores).
As an example, if the number of cores is ignored in the model, the verification
results are only valid under the unrealistic assumption that the ERTS hardware
has enough cores to run all tasks in parallel. Formal verification of ERTSs is
thus a complex activity; it involves at least two research communities, namely
the formal methods community and the real-time systems community.

On the one hand, the formal methods community provides rigorous ap-
proaches, such as (real-time) model checking [4, 23], to verify timed systems. In
model checking, a mathematical model of the system under scrutiny is verified
exhaustively against properties formalized in a logic. Powerful model checking
algorithms are implemented within state-of-the-art tools, such as UPPAAL [53],
based on timed automata (TA) [6, 43] and a fragment of the timed computational-
tree logic (TCTL) [5] for modeling the system and formalizing the properties
of interest, respectively. Unfortunately, in the case of ERTSs, model checking
suffers from scalability issues due to the state-space explosion problem [24].
Non-exhaustive approaches, such as statistical model checking (SMC) [54] and
runtime verification (RV) [9], are more scalable. In SMC, properties are no
longer verified with certainty but up to some probability. However, obtaining

2

a sufficiently high probability (if defined) in a safety-critical setting poses the
same scalability issues as SMC tends then towards exhaustive model checking
(see e.g., the conclusions of [33, Sect. 7.2.2]). In RV, monitors check the prop-
erties satisfiability, and possibly react to their violation at runtime (e.g., à la
Fault Detection, Isolation and Recovery FDIR [77, 69]), therefore avoiding the
exhaustive exploration of the state space. Nevertheless, RV still faces major
challenges in safety-critical settings, in particular the overhead of deploying
monitors that may impede timely recovery from property violation (see e.g., the
conclusions of [35]). Finally, real-time verification activities within the formal
methods community seldom take the hardware actual constraints into account,
which restricts the results’ validity to unrealistic ERTSs (Sect. 8).

On the other hand, the real-time systems community has a long tradition
with the analysis of ERTSs. In particular, schedulability analysis [20] is a
well-anchored discipline, where one assesses whether some real-time tasks are
schedulable (always finish executing before their deadlines), given a number of
cores and a scheduling algorithm. Under the schedulability analysis umbrella,
Integer Linear Programming (ILP) is extensively used to e.g., find an affinity
(task-core allocation) that guarantees the schedulability of all tasks, or their sub-
set of hard-real-time (HRT) tasks in an ERTS. Though solving an ILP problem
is NP-hard [45], the community provides algorithms that are efficient in practice
(see e.g., [80]). However, the more schedulability analyses are scalable, the more
pessimistic they get in the periodic setting, as computationally efficient schedula-
bility tests are typically sufficient but not necessary, i.e., if the schedulability test
holds for some task then it is schedulable, but the converse is not true (more in
Sect. 5, 7). Moreover, as its name indicates, schedulability analysis focuses on
schedulability properties only. In addition, tasks models used in schedulability
analysis are usually overly simplified compared to the ones found in real ERTSs,
e.g., in automotive systems and mobile robots (Sect. 3).

To summarize, interdisciplinary formal verification approaches for ERTSs,
that promote both realistic modeling and scalable verification, are needed.

1.2. Contributions & Outline
In this paper, we propose a scalable approach to formally verify real-time

properties in real-world ERTSs. In particular, our approach joins efforts from
both communities to enable compositional model checking, thus alleviating the
state-space explosion problem. Moreover, formal models, on which properties
can be verified compositionally, are automatically generated from any ERTS
following a periodic-task model specified in a high-level format. Our contribu-
tion is thus twofold: we (i) provide a fully automated and generic framework
to verify real-world ERTSs and (ii) enable scalability through compositional
verification. Taming the state-space size comes with the direct advantage of veri-
fication feasibility on real-word ERTSs w.r.t. a number of properties where model
checking allows, in addition, to compute tight upper bounds of the worst-case
response times (WCRTs) of tasks as opposed to the pessimistic ones provided by
schedulability tests.

3

The rest of this paper is organized as follows. First, we introduce formalisms
and techniques used in this paper (Sect. 2). Second, we formalize a realistic ERTS,
where tasks contain an arbitrary number of jobs and job segments, and hardware
specificities are taken into account, then expose the main challenge hindering
the compositional verification of such ERTS, namely tasks dependency w.r.t.
cores and shared data. We present our overall approach as we show that this
challenge can be efficiently tackled under a state-of-the-art scheduling algorithm,
namely partitioned fixed-priority (P-FP) with limited preemption (Sect. 3).
Consequently, we generalize techniques from the real-time systems community
that incorporate data sharing overheads in tasks independently (Sect. 4), then
devise an ILP algorithm that computes an affinity guaranteeing the schedulability
of all tasks (or at least all HRT tasks) in a real ERTS (Sect. 5). We provide then
a TA model for any ERTS under the above scheduling assumption, integrating
data sharing overheads (from Sect. 4) and combined with the affinity (computed
in Sect. 5), on which we demonstrate that important properties can be verified
compositionally (Sect. 6). We validate the scalability of our approach on three
real-world case studies featuring two autonomous robots and an automotive
system, and show further how compositionality allows a scalable computation
of tight WCRTs, therefore overcoming a posteriori the pessimism of the ILP
algorithm (Sect. 7). Finally, we compare our approach with related research
(Sect. 8) and conclude with future work (Sect. 9).

2. Preliminaries

In this section, we provide definitions of the formalisms and techniques serving
as a basis for the approach presented in this paper.

2.1. Data Sharing
Concurrent execution in an ERTS requires coordination. A task model

describes recurring operations in the ERTS, and a real-time scheduler ensures
the timely execution of tasks based on their timing requirements (Sect. 3). Tasks
access shared data, so the task model also defines synchronization concepts.
Consistent access to shared data happens when executing some job segments,
typically non-preemptible pieces of code, i.e., the scheduler never preempts
a task inside a job segment. The dependency of tasks on data can often be
modeled using producer-consumer patterns. The resulting synchronization allows
exclusive (read-write, producer) or shared (read-only, consumer) data access, or
provides consistent snapshots of logically coherent data. ERTS can use locks1,
e.g., fine-grained reader-writer locks [60], which causes blocking to other tasks,
or wait-free algorithms [44]. Wait-free algorithms can be further classified as
retry-based approaches, e.g., sequence locks in Linux [58], or use multiple buffers,
e.g., Simpson’s four-slot algorithm [74], to exploit parallelism. In either case,
data sharing overheads refer to the maximum time a job segment is delayed by

1See [18] for in-depth details on locking protocols.

4

other job segments accessing data concurrently. This corresponds for instance to
blocking in lock-based approaches and the latency due to retries in retry-based
approaches (more in Sect. 4).

2.2. Integer Linear Programming (ILP)
A linear programming (LP) problem consists in optimizing (maximizing or

minimizing) a linear objective function subject to linear constraints. A classical
formulation for of an LP is:

Maximize: cT x, subject to: Ax ≤ b,x ∈ X
where cT is the transpose of matrix c and cT x represents the objective function
to optimize with x a vector of m unknown variables over the domain X , b a
vector of known coefficients and A a known matrix of coefficients. The constraints
are expressed by the relations Ax ≤ b and x ∈ X that specify the polytope
over which the objective function is to be optimized. Given this polytope, an
LP solver finds a point where the objective function has the smallest or largest
value through the polytope vertices. LP algorithms are known to be exact. If
the unknown variables are all real, i.e., X = Rm, then the problem can be solved
using the classical Simplex method [66].

The LP problem becomes an ILP problem if the variables are all required
to be integers, i.e., X = Zm (binary variables2 are considered as integers in
the domain {0, 1}). Though ILP solving is NP-hard [45], many algorithms
(e.g., branch-and-bound and branch-and-cut) are mature and well integrated in
powerful solvers, such as CPLEX and Gurobi.

2.3. Timed Automata (TA)
Timed automata (TA) [6] extend Büchi automata with real-valued clocks.

A simpler yet equivalent version with location invariants instead of accepting
locations was introduced in [43] and is at the heart of modern model check-
ers, such as the state-of-the-art UPPAAL [53] used in this paper. We first
define synchronization-free networks of TA (TA composed in parallel without
synchronizations), mostly simplified from [13].

2.3.1. Synchronization-free Networks
Notation. Let X be a set of real-valued clocks and B(X) the set of clock con-
straints over X. Each clock constraint in B(X) is a (possibly empty) conjunction
of atomic constraints of the form x ∼ k with x ∈ X , ∼∈ {<,>,≤,≥} and k ∈ N.
Let v : X 7→ R≥0 be a valuation function. We write v ∈ c to denote that v(x)
for each x ∈ X satisfies c ∈ B(X), and v + d (d ∈ R≥0) to denote the valuation
v(x) + d for each x ∈ X . Moreover, for λ ⊆ X , [λ 7→ 0]v denotes the valuation
0 for each x ∈ λ and v(x) for each x ∈ X \λ. Finally, Vi denotes the ith element
of a vector V and V[V ′i/Vi] the vector V in which Vi was substituted by V ′i.

2These can be used to represent Boolean variables or simply the values 1 and 0 to activate
or deactivate a constraint (Sect. 5).

5

Syntax. In a synchronization-free network of TA N = (A1 ||..||An), n ∈ N, each
Ai is a tuple 〈Li , li0 ,Xi ,Ei , Ii〉 where:

• Li is a finite set of locations,

• li0 ∈ Li is the initial location,

• Xi is a finite set of clocks,

• Ei is a finite set of edges, each edge of the form (l, g, λ, l′) with l , l ′ ∈ Li ,
g ∈ B(Xi) a guard, and λ ⊆ Xi a subset of clocks to be reset,

• Ii : Li 7→ B(Xi) a function that assigns an invariant to each location.

Note that a guard/invariant can be a tautology, i.e., an empty conjunction of
clock constraints >. A location is called invariant free if its invariant is >.
Such guards/invariants and resets over the empty set are often omitted in the
remainder of this paper.

Semantics. Let X =
⋃

i∈1 ..n Xi be the set of all clocks in the network. The
semantics of a synchronization-free network of TA (A1 ||...||An) is given over a
transition system (TS) 〈Q , q0 ,→〉 where:

• Q is the set of states of the form (L, v), with L ∈ L1 × ...× Ln a vector of
locations and v : X 7→ R≥0 a clock valuation function,

• q0 is the initial state (L0 , v0), with L0 = (l10 , . . . , ln0) and v0 (x) = 0 for
each x ∈ X ,

• → is the transition relation. A transition is enabled at some state q if it can
be taken at q. Taking a transition changes the state as follows: (i) delay
transitions (L, v)→(L, v + d) for some d ∈ R>0 if v ∈ ∧i∈1 ..n Ii(Li) and
(v + d) ∈ ∧i∈1 ..n Ii(Li), (ii) discrete transitions (L, v)→(L[L′i/Li], v

′) if
exists an edge (Li , g , λ,L′i) ∈ Ei , v ∈ g , v ′ = [λ 7→ 0]v and v ′ ∈ Ii(L′i).

Note that the above definitions also apply to a synchronization-free network of
networks, i.e., a network N = (N1 || . . . ||Nn), n ∈ N where each Ni is a network
of TA, and there is no synchronization between any couple of TA belonging to
two different networks3 Ni and Nj in N . Indeed, each Ni can be viewed as a
single TA resulting from the (possibly synchronized) product of all the TA it
contains [3], then the semantics above applies to the composition similarly.

3Here, the TA involved in the same Ni can be synchronized, in which case a set of actions
(channels in UPPAAL) needs to be defined for these TA.

6

2.3.2. Timelocks
Timelocks are pathological phenomena that reflect modeling flaws in TA [78,

16]. In other words, the presence of a timelock in the underlying TS of a network
of TA is a sign of a modeling mistake. This is because a timelock corresponds to
an unrealistic scenario where global time may not evolve beyond some bounded
value as we will explain in more details and provide an example next. More
formal definitions and proofs are given in Sect. 6.

A network N has a timelock iff it contains at least one timelock state. A
timelock state (L, v) is a state from which (i) no infinite sequence of transitions
exists or (ii) each infinite sequence of transitions is bounded in time, i.e., time
converges toward some integer. In the case (ii), each infinite sequence of tran-
sitions is called a zeno run, and (L, v) a zeno-timelock state. More informally,
a network N has a timelock iff there exists a state in the underlying TS from
which time may not progress beyond some finite value. Notice that, in [78], only
zeno timelocks are called timelocks. Our more generic definition and examples
stem from [16], where the impossibility of time progress beyond some global
time t is considered a timelock, regardless of zenoness.

Example. Consider the singleton network N = A where A has one location l0
and one clock x.

Consider the case where A has no edges and I (l0) = (x < 2). Here, A
timelocks because at least one state in the underlying TS is a timelock state
(actually, all states here are timelock states). For instance, the initial state (l0 , 0)
is a zeno-timelock state, since the sum of delays corresponding to any infinite
succession4 of transitions from it is bounded by 2.

Consider now the case where A has no edges and I (l0) = (x ≤ 2). Here, A
timelocks, because there is at least a timelock state in the underlying TS: (l0 , 2),
for instance, is a (non-zeno) timelock state. Indeed, at such state, no infinite
sequence of transitions in possible (actually, no transition is possible at all). The
underlying TS is thus “frozen” at state (l0 , 2).

Zeno timelocks can stem from discrete transitions as well. Consider the case
of A where I (l0) = (x ≤ 2) and A has one edge (l0 , x ≤ 2 , ∅, l0). Here, at (l0 , 2),
all possible infinite sequences of transitions contain only discrete transitions (the
discrete transition corresponding to the only edge in A is always enabled, and
time may no longer progress because of the invariant at l0). (l0 , 2) is thus a
zeno-timelock state.

Timelocks are clearly unrealistic (time always evolves beyond some point
in reality). Timelocks (including zeno ones) have unexpected consequences on
networks semantics, and they typically result from modeling errors. Networks of
TA need to be exempt of these phenomena, as we will see further in Sect. 6.

4Due to the strict < in the invariant and delays taking their values in R>0, an infinite
succession of delay transitions is possible from this state without ever reaching the value 2.

7

2.3.3. UPPAAL TA
In this paper, we deliberately avoid the semantics of synchronization and

other extensions, such as priorities, for simplicity. Instead, we will directly
explain how these extensions work in UPPAAL, the model checker that we use
(some details on UPPAAL TA semantics are provided in [13]). Examples of
UPPAAL TA are given in Sect. 6.

Channels. UPPAAL allows synchronizations through handshake and broadcast
channels. The former (resp. the latter) are blocking and pairwise (resp. non
blocking and multiparty), that is in a handshake (resp. a broadcast) channel, the
sender synchronizes with only one receiver (resp. as many receivers as possible).
A synchronization implies taking all edges involved in it simultaneously.

Priorities. Channels may have priorities. Priorities affect the semantics of
discrete transitions. In brief, if channel c′ has a higher priority than channel c,
then at any state of the underlying TS, all discrete transitions involving c are
disabled as long as there exists an enabled transition involving c′.

Data variables and functions. UPPAAL supports integer and Boolean data
variables, whose values may be used in guards, and updated in discrete transitions
(together with clock resets). Variables can be local (to a TA) or global. A small
subset of C-like functions is also supported to ease writing complex updates.

Committed locations. Committed locations implement both an urgency and a
priority. That is, in the underlying TS, if at some state (L, v) there exists Li ∈ L
such that Li is committed, then a discrete transition starting from a committed
location must be taken immediately, i.e., (i) time may not progress, and (ii)
only transitions of the form (L, v)→(L[L′i/Li], v

′) where Li is committed are
enabled. Committed locations are therefore handy to describe sequences of
timeless actions that need to be realized immediately regardless of the other
actions possible at the same time. This is for example the case of scheduling
decisions such as activation and release (Sect. 6).

2.4. Timed Computational Tree Logic (TCTL)
TCTL is a logic that is both temporal and timed, allowing to reason on the

order of, and the amount of time separating the satisfaction of some formulae,
respectively. We focus on the fragment of TCTL that UPPAAL supports. A
state formula is a propositional formula over locations, clocks and data variables,
to be evaluated at a TS state. For instance, Ai.x < 3 holds in all states of the
TS where the valuation of clock x in TA Ai is strictly less than 3. Path formulae
enable quantifying over TS traces. Path formulae in UPPAAL use the operators
A (for all paths) and E (there exists a path) combined with the modalities �
(necessity, all states) and � (possibility, some state). For instance, the property
A � φ (where φ is a state formula) translates to “for each path, there exists a
state that satisfies φ” whereas E�φ reads “there exists a path in which all states
satisfy φ”.

8

Next are the three path formulae (out of five supported by UPPAAL) used
in this paper (φ and ψ are state formulae):

• A�φ: φ holds in all states of the TS (safety),

• E � φ: there exists a reachable state that satisfies φ (reachability),

• A�(φ ⇒ A � ψ), denoted using the shorter syntax φ ψ: whenever φ
holds, ψ eventually holds (leadsto & bounded response).

For bounded response, we are also interested in quantifying the maximum amount
of time separating the satisfaction of φ and ψ. For this, we use the formula
sup{Ai .l} : Ai .x that computes the maximum valuation of clock x at location l
in TA Ai. This will be handy in computing WCRTs and other important bounds
(practical examples are given in Sect. 6, 7).

3. Challenges & Overall Approach

Formal modeling and the feasibility of verification are intimately related:
the more the formal model is abstract, the more the verification is likely to
scale. However, abstractions should not come at the cost of unrealistic modeling.
Formal models should be the closest possible to the reality of the underlying
system, i.e., the real hardware-software setting in the case of ERTSs. In this
section, we provide a formal description of a realistic ERTS under a couple
of state-of-the-art scheduling assumptions (Sect. 3.1), and explain why such a
model can be verified in a scalable manner (Sect. 3.2). Then, we present our
overall approach accordingly (Sect. 3.3).

3.1. ERTS Model
An ERTS is classically modeled as a set of real-time tasks executing on a

set of cores following a scheduling algorithm [20]. Though models within the
real-time systems community take more and more into account the dependency
between tasks, e.g., vis-à-vis data sharing [17, 67, 68], they remain typically
simple with each task having one job associated to a Worst-Case Execution Time
(WCET), a deadline and possibly a period. In real ERTSs, a task is noticeably
more complex, it can have several jobs each consisting of a sequence of segments
(pieces of code). This is the case, e.g., in mobile robotics and automotive
systems, where job segments are called, respectively, runnables [62, 63] and
functions/codels [47, 40, 34] (actual examples are given in Sect. 7). As we have
shown in [37, 34, 38], this complexity prevents the reuse of schedulability tests
from the literature. We need therefore a realistic ERTS model which we present
next. Our model relies on partitioned fixed priority (P-FP) scheduling with
limited preemption. In brief, P-FP scheduling assigns statically each task to one
and only one core (partitioned “P”) and tasks priorities are fixed beforehand,
i.e., they do not depend on the execution dynamics (fixed priority “FP”). As
for limited preemption, it refers to the fact that preemption, i.e., putting the
execution of a job in a lower priority task temporarily on hold in order to execute

9

a job in a higher priority task on the same core, is allowed but can happen only
at some time instants relative to the execution of the job in the lower priority
task. P-FP scheduling with limited preemption is an efficient and widely used
scheduling algorithm in ERTS as we will explain further, with the appropriate
references, in Sect. 3.2.

Syntax. An ERTS is made of a set of tasks T , a set of shared data L and a
set of cores C (|T | > |C | > 0). We assume that all tasks in T are periodic (we
discuss in Sect. 7 the implications of this simplification) and the deadlines to be
the periods themselves (a classical assumption with periodic tasks).

Each task τ ∈ T is a finite-state machine (FSM) 〈Sτ , actτ , endτ , trτ 〉 where
Sτ is the set of states with actτ and endτ the special activation and termination
states, respectively, and the remaining states Sτ\{actτ , endτ} represent the
job segments set JS τ , and trτ ⊂ Sτ × Sτ is the transition relation. We write
s → s ′ if (s, s ′) ∈ trτ and s 6→ s ′ otherwise. The state actτ (resp. endτ) has
no predecessors (resp. no successors), formally ∀s ∈ Sτ : (s 6→ actτ ∧ endτ 6→ s).
We call a maximal run in τ each run in the FSM starting at actτ and ending
at endτ , denoted actτ → · · · → endτ . All runs in the FSM are finite, i.e., there
are no loops. A job is the ordered set of states appearing in a maximal run,
excluding actτ and endτ . Accordingly, Jτ is the set of jobs in τ and J =

⋃
τ∈T Jτ

(resp. JS =
⋃
τ∈TJS τ) is the set of all jobs (resp. job segments) in the ERTS. In

the remainder of this paper, the shorthand terminology “segment” refers to a job
segment, and we drop τ subscripts when they are unneeded or understood from
the context. The priority function π : T 7→ N assigns a priority to each task.
The set of HRT tasks Th ⊆ T comprises the tasks that are not allowed to miss
their deadlines, e.g., defined by the user. Each core c ∈ C is associated with a
scheduler Hc and a prioritized queue Qc to sort tasks waiting for their release
(see the behavior below).

Next, we define data/core usage and timing constraints. dw : JS 7→ P(L)
(resp. dr : JS 7→ P(L)), with P(L) the powerset of L, associates each segment
with the elements of data it writes (resp. reads). Note that dr(s) ∪ dw(s) may
be empty; our definition remains therefore generic on whether a given segment
uses shared data or not. The affinity function aff : T 7→ C associates each task
to one core, and dually, a partitioning function prt : C 7→ P(T) associates each
core c to the set of tasks allocated to it (i.e., the partition {τ |aff (τ) = c}). The
function p : T 7→ N>0 associates each task with its period, and the function
wcs : JS 7→ N>0 (resp. bcs : JS 7→ N) returns for each segment its WCET (resp.
Best Case Execution Time BCET). Naturally, the inequality bcs(s) ≤ wcs(s) is
verified for every s ∈ JS . Finally, the function ρr : L 7→ N>0 (resp. ρw : L 7→ N>0)
assigns each data a reading (resp. writing) penalty, i.e., the maximum time needed
to read (resp. write) such data without overhead (i.e., without interference from
concurrent readers/writers). Without loss of generality, we assume wcs(s), for
any segment s in JS , to include the reading (resp. writing) penalty of each data
in dr(s) (resp. dw(s)), which corresponds to the maximum time needed to read
(resp. write) such data in the absence of contention with other readers/writers.

These definitions coincide with the informal description of a complex task

10

with an arbitrary number of jobs, where each job is a finite ordered set of
segments, and fall under partitioned scheduling (the codomain of the affinity
function aff is C, and thus each task is allocated to only one core). Note that
our model does not assume a knowledge of BCETs; they can simply be set to 0,
if unknown, without loss of generality5. Note also that the assumption on the
finiteness of each run in a task FSM (absence of loops) is a natural condition
since tasks are real-time and therefore must execute each job in a finite (bounded)
amount of time. This absence of loops should not be mistaken for a restriction
as it induces no loss of generality: the FSM definition above coincides also with
real-time tasks with a loop behavior (e.g., implementing control algorithms), as
we will show further in Sect. 7.

Behavior. A task τ is activated at global time 0 (when the ERTS starts)6 then
at each period p(τ). Activating a task τ resets its current state7 to actτ . If c, the
core to which τ is allocated (aff (τ) = c) is free, then τ is released immediately,
otherwise Hc inserts its identifier in Qc (by abuse of terminology, we call the
identifier also task τ). The insertion algorithm guarantees that tasks in Qc are
always ordered according to their priorities (resp. their activation time) for tasks
with different priorities (resp. same priority). Whenever c is free, Hc pops the
task at the head of Qc and releases it. Upon release, τ executes one of its jobs,
say ι, e.g., chosen at runtime from Jτ , by traversing the path from actτ to endτ
that corresponds to ι.

Let v and v′ be two variables in the domain prt(c) that continuously store the
task at the head of Qc and the task currently executing a job on c, respectively (if
any, otherwise they take arbitrary values in their domain). By abuse of notation,
we confound in the following these variables with their values at a given time.
At each time t an insertion in Qc happens8, Hc compares π(v) with π(v ′). If the
latter is less than the former, then v′ is marked for preemption. The preemption
happens as soon as the segment of the job v′ was executing at time t, say s,
ends, that is at a time t′ comprised between t and t+ wcs(s) (+ possibly some
data sharing overhead). Hc then suspends the job v′ is executing, inserts v′ back
in Qc, pops v from Qc and releases it. Notice that the task released at t′ may
be different from the one that caused the preemption of v′ at t, as the value of v
may have changed in between due to an insertion of a higher priority task. A
preempted task, when released, resumes at the next segment of the suspended
job. The semantics of execution is further formalized in Sect. 6 using TA. Notice
that we do not specify here a model for concurrent access to data. The overhead
of sharing data is characterized in Sect. 4 as multiples of the reading/writing

5Though it is still recommended to evaluate BCETs for a better accuracy of the analysis.
6While activation at global time zero is not mandatory, it is appropriate here since we do

not consider jitters or offsets in this paper.
7If such current state is endτ , otherwise there is a deadline miss and the behavior depends

on the task’s criticality, Sect. 6.
8We recall that the insertion of a task captured by v happens only if there is another task

captured by v′ currently executing on c, otherwise the former would be released immediately.

11

penalties given by the functions ρr and ρw defined above.

3.2. Justifying the Scheduling Choices
Say that we have an ERTS modeled correctly as an UPPAAL network of TA

(Sect. 2.3) on which we want to verify a TCTL property (Sect. 2.4). Even if the
property is local (e.g., bounded response within one task), the verification must
be carried out on the whole UPPAAL model since tasks behaviors depend on
one another due to (i) data sharing and (ii) the possibility for a task to migrate
between cores. Our goal is to break this bi-dimensional dependency as to enable
compositional verification while preserving the correctness of the model. This
goal is achievable under P-FP scheduling with limited preemption.

First, partitioned (P) schedulers prevent tasks migration and thus eliminate
the second dimension of the dependency. The good news is, P scheduling is
widely used, it is even the de facto choice in ERTSs [80, 81]. However, it requires
computing an affinity beforehand that satisfies some schedulability requirements,
which typically boils down to the bin-packing NP-hard problem [45]. Second,
limited preemption makes it computationally tractable to integrate data sharing
overheads in the WCETs of segments of each job independently, thus getting
beyond the first dimension of the dependency. Fortunately, limited preemption
is a natural and efficient choice in ERTSs. First, it may be used to prevent
preemption inside a job segment (as in our model above), necessary for consist
access to shared data (Sect. 2.1). Second, it is proven that, schedulability-
analysis-wise, limited preemption is a better choice than both full preemption
and full non preemption under P-FP scheduling [21].

3.3. Overall Approach
To summarize, compositional verification of ERTS is possible under P-FP

scheduling with limited preemption. This requires however (i) a correct integra-
tion of data sharing overheads in each task independently and (ii) tackling the
(NP-hard) affinity problem beforehand. We present accordingly our approach
in Fig. 1. The input of the problem is a realistic ERTS model (Sect. 3.1) in
a simple format (more in Sect. 7). Step 0 is optional, it consists in writing
translators from given ERTS domains to our input format (we provide two such
translators for some robotic and automotive applications, Sect. 7). Step 1 feeds
the ERTS model to the ILP algorithm that we devise in Sect. 5 to compute
an affinity guaranteeing the schedulability property for all tasks, or, if no such
(total) affinity is found, a partial affinity such that at least all HRT tasks are
schedulable (Step 2). Then, given the input model, the affinity, and the formal
TA model of ERTS that we define in Sect. 6, an UPPAAL model is automatically
generated (Step 3). Both the ILP algorithm and the UPPAAL model take
into account all information from the input model and the semantics of P-FP
scheduling with limited preemption, and integrate data sharing overheads based
on the bounds we compute in Sect. 4. In Step 4, important properties are verified
compositionally on the generated UPPAAL model, including a tight computation
of tasks WCRTs that enables the possibility to counterbalance, a posteriori, the
pessimism of the ILP pass (Sect. 6, Sect. 7).

12

ERTS Model ILP solving

Affinity +
schedulability
(HRT tasks)

UPPAAL
model?

Engineering world Real-time systems
world

Intermediate format
(simple, “universal”)

Formal methods world

1- Translate

2- Compute

3- Translate

4- Verify compositionally

Functional Level

RobotDriver
GPSDriver

Task:
update 100ms
Services:
SetParams*
ConnectDevice
Measure
Stop

Task:
rosTOgenom

Services:
Perm

Task:
genomToros
40ms
Services:
Perm

IMUDriver

Task:
update 10ms
Services:
SetParams*
ConnectDevice
Measure
Stop

LaserDriver
Task:
scan 100ms
Services:
SetParams*
ConnectDevice
StartScan
Stop

Cmd

PotentialField

LaserOdometry

Navigation

TargetPOM

SafetyPilot

IMU

Pose

PFCmd

Task:
plan 100ms
Services:
SetParams
TrackTarget
Stop

Task:
pilot 40ms
Services:
SetParams*
Stop
StopIfObstacle

Task:
navigate 200 ms
Services:
GotoPosition
GotoNode
Stop

Task: io 10ms
Services:
perm, add_me

Task: filter 10ms
Services:
Perm

GPS

0- Translate

UPPAAL
queries

Figure 1: Overall Approach

4. The Data Sharing Problem

In an ERTS, we can model data sharing as producer-consumer patterns
comprising m writers and n readers for each data l ∈ L. Based on the syntax
of ERTS in Sect. 3.1, m and n can be defined formally for some data l ∈ L as
follows: m(l) = |{s|s ∈ JS ∧ l ∈ dw(s)}| (the number of segments in the ERTS
that write l) and n(l) = |{s|s ∈ JS ∧ l ∈ dr(s)}| (the number of segments in the
ERTS that read l). We distinguish two cases: single writer (where for each data
l in L, all m(l) writers belong to jobs of the same task) and multiple writers
(otherwise). Under P-FP scheduling with limited preemption, we can already
see that there are certain beneficial scenarios where there will be no blocking
at all, i.e., if both writers and readers execute on the same core. We can also
see that writers (resp. readers) will update (resp. read) data frequently, but not
permanently. In the single writer case, we can therefore assume that a write
operation interferes with specific readers at most once, i.e., while the reader
is reading, new data arrives. With multiple writers, we can observe similar
simplifications. When all writers of data l are allocated to the same core, the
write operations will be serialized by the non-preemptive scheduling for free.
Only when writers are allocated to different cores, write operations can happen
concurrently and therefore must be protected, e.g., by using a spinlock.

For this type of synchronization problem, sequence locks (seqlocks) [42, 50, 58]
are a good fit as we explain throughout this section. Seqlocks tend to favor
read-heavy workloads under the optimistic assumption that no update/write
of the shared data happens at the same time as readers read the data [52].
Otherwise, the read operation has to be retried, and for real-time use cases,
the number of retries has to be bounded. We first compute the total cost of
reading/writing a data, i.e., the maximum time needed to read/write a data in
the presence of delays induced by concurrent access to the same data by other
writers/readers. This is done through bounding the number of retries (Sect. 4.2,
4.3). Then, we deduce the data sharing overheads (Sect. 4.4). The overheads
are for an ERTS under single writer seqlocks (that is, as explained above, each

13

Algorithm 1: Sequence lock usage (see Section 4.2)
1 sequence lock state:
2 s : spin lock = uncontended C spin lock
3 c : unsigned int = 0 C sequence counter
4 d : array of bytes = . . . C shared data

5 writer:
6 lock (s)
7 c ← c + 1
8 memory barrier: order write→ write
9 d ← . . . C update shared data

10 memory barrier: order write→ write
11 c ← c + 1
12 optional artificial delay (see Section 4.3)
13 unlock (s)

14 reader:
15 repeat
16 repeat
17 c1 ← c
18 until c1 is even C spin on write
19 memory barrier: order read→ read
20 tmp ← d C read shared data
21 memory barrier: order read→ read
22 c2 ← c

23 until c1 = c2
24 return tmp

data l is written by one task at most, i.e., all segments that write l belong to
jobs in the same task). Finally, we justify the use of single writer seqlocks, as we
(i) compare the computed overheads to those of other state-of-the-art locking
protocols and (ii) further explain the fitness of the single writer assumption to
ERTS in practice. Our approach remains nonetheless generic, as the overheads
from the table given at the end of this section can be used instead for any ERTS
using a different data sharing assumption (Sect. 4.5).

4.1. Sequence Locks (Seqlocks)
Seqlocks are a state-of-the-art locking mechanism for read-heavy consistent

access to shared data in Linux [42, 50, 58]. Seqlocks were conceived to solve
starvation issues with reader-writer locks in certain use cases, such as updating
the current system time from an interrupt handler [42]. Alg. 1 shows an imple-
mentation. Seqlocks use a sequence counter for reader-writer synchronization and

14

a spinlock for synchronization of multiple writers9. The sequence counter, e.g.,
a 32-bit unsigned integer initialized to zero, implements the following protocol.
At the start of a write operation, the writer first increments the counter, then
writes or updates the data, and finally increments the counter again. With this,
an odd counter value indicates an ongoing write operation, and the upper bits
of the counter define a generation counter. The read side first reads the counter,
then reads the data, and then reads the counter again. If both counter values
are equal and the value is even, the data was read consistently. Otherwise, the
reader repeats. Also, we let the reader spin on the first counter access while the
value is odd, i.e., a write operation is currently ongoing. Further, on hardware
architectures with weak memory ordering, memory barriers are required: two
read barriers on the reader side and two write barriers on the writer side to order
the reads from writes to resp. the sequence counter and the data accesses.

4.2. Bounding Seqlocks
The two obvious problems of seqlocks w.r.t. predictability are that the reader

side can be starved by successive back-to-back writes, and that the reader side
can read stale data due to the ABA problem when the counter repeats after
231 write operations [29]. Though both are unlikely to happen in real systems,
we need to eliminate them to abide by safety-critical standards. To bound the
number of retries on the reader side, Kopetz and Reisinger suggest a minimum
inter-arrival time δw between two successive write operations [49].

In the following, we denote by ρ̂r (l) (resp. ρ̂w (l)) the maximum time of the
total cost of reading (resp. writing) data l in the presence of overheads. With
non-preemptible segments (Sect. 3.1), a write operation of some data l ∈ L takes
therefore ρ̂w (l) time for a single writer (Lines 7 to 11 in Alg. 1), which is mainly
driven by the time to access the shared data (Line 9). Further, we compose the
individual steps of a read operation as the spinning part ρs(l) (Lines 16 to 18)
and the reading part ρr(l) (Lines 19 to 22).

Under the condition that δw > ρr(l), we can construct the following worst
case with at most one retry of the outer loop (Lines 15 to 23). Assume a
read operation is successfully ongoing and reaches the second sequence counter
check (Line 22). At the same time, a write operation starts and increments the
counter (Line 7). This causes a counter mismatch on the reader side (Line 23),
with spinning for the parallel write operation to finish (Lines 16 to 18) for at
most ρw(l) time, therefore ρs(l) is upper-bounded by ρw(l). Afterwards, the
reader successfully reads the new data and the loop terminates. This takes
at most ρ̂r(l) = ρr(l) + ρw(l) + ρr(l). Under the assumption that both ρr(l)
and ρw(l) depend on the actual size of the shared data, i.e., the number of
accessed cachelines, and that both reading and writing take the same time on
modern computer architectures, we can set ρ(l) = ρw(l) = ρr(l) and consequently
simplify ρ̂r(l) = 3ρ(l), ρ̂w(l) = ρw(l) = ρ(l) and derive a minimum bound for
δw > ρ(l).

9The spinlock can be omitted in the single writer case.

15

4.3. Implication on Task Set
The minimum inter-arrival time δw between two writes solves both initial

issues of bounding the loop and the ABA problem, but requires a guarantee
that it is always superior to the minimum bound ρ(l). The worst case scenario
with a single writer for some data l is then two segments s and s′, both writers
of l (l ∈ dw(s) and l ∈ dw(s ′)), executing back to back within the same task τ .
This happens for example when s, the last segment in ι, finishes executing at
exactly the end of a period of τ , followed by immediate activation and release,
in the next period, of ι′ in which s′ is the first segment to execute (with ι and
ι′ two jobs of τ). In this case, to remain generic (i.e., independent from the
execution scenarios), the solution is to inflate the execution time of s by ρ(l),
e.g., by inserting an artificial delay at the end of job ι. With multiple writers,
the problem gets even more complex (see the overheads summary in Sect. 4.5).

4.4. Deducing Data Sharing Overheads
We can now deduce the overhead for each data l that we need to integrate

in the WCETs of segments to account for the delay that they may incur while
concurrently accessing l (such overhead is for instance called blocking bound
in [19]). We introduce thus two new functions Bw : L 7→ N and Br : L 7→ N that
we may define simply as Bw (l) = ρ̂w (l)− ρ(l) and similarly Br (l) = ρ̂r (l)− ρ(l).
That is, we simply subtract ρ(l), the maximum time needed to read/write data
l without contention (already included in segments’ WCETs, Sect. 3.1), from
ρ̂w(l) (resp. ρ̂r(l)), the total cost of writing (resp. reading) l with overheads.

4.5. Comparison to Spinlocks and Reader-Writer Locks
We compare seqlocks to other spinning synchronization mechanisms. We

assume a system where readers and writers are distributed on all |C | cores.
Table 1 shows the individual overheads of read and write operations as multiples
of ρ(l) for some data l.

Task-fair spinlocks, e.g., ticket locks or MCS locks [59], serialize all read and
write operations in FIFO order, so an operation has to wait at most for |C − 1 |
other operations to complete. We can consider this to be a worst-case baseline.

Task-fair reader-writer locks order arriving requests in FIFO order, but allow
adjacent read requests to form a concurrent group until the next write request
arrives [60], and the writer has to wait ρ(l) time for previous readers to finish.
Later readers have to wait for the same time plus the writer’s execution time.

Phase-fair reader-writer locks are another state of the art technique [19].
Here, requests are queued in either read or write request queues, and reader

Table 1: Comparison of data sharing overheads in dependency on ρ(l) (extending [49, 19]).

Lock Type Single writer Multiple writers
Write Bw(l) Read Br(l) Write Bw(l) Read Br(l)

Sequence lock ρ(l) 2ρ(l) 2(|C | − 1)ρ(l) 2ρ(l)
Task-fair locks (|C | − 1)ρ(l) (|C | − 1)ρ(l) (|C | − 1)ρ(l) (|C | − 1)ρ(l)
Task-fair reader-writer lock ρ(l) 2ρ(l) (|C | − 1)ρ(l) (|C | − 1)ρ(l)
Phase-fair reader-writer lock ρ(l) 2ρ(l) 2(|C | − 1)ρ(l) 2ρ(l)

16

and writer phases alternate. Then, on a phase switch to readers, all waiting
readers are released, so readers have to wait at most two phases of ρ(l) time.
This improves the throughput of read requests at the cost of write requests. Note
that the timing behavior of phase-fair reader-writer locks with a single writer is
the same as for task-fair reader-writer locks.

Summarized, seqlocks behave similar to state-of-the-art locking-based ap-
proaches in the worst case, but with an improved best case timing towards the
reader side. Further, the single writer assumption is reasonable in practice. This
is the case for instance of state-of-the-art frameworks designed for real-time
robotics, such as OROCOS [47] and MAUVE [40], and for all of the real-world
case studies evaluated in Sect. 7. In the remainder of this paper, we rely therefore
on overheads for single writer seqlocks, but any overhead from Table 1 may be
used for the corresponding assumptions.

5. Solving the Affinity Problem

In this section, we devise an ILP algorithm to compute the affinity aff (τ)
for each task τ ∈ T in an ERTS, such that all tasks in T are schedulable. If no
solution is found, the algorithm relaxes the constraints by removing some non-
HRT task τ from T\Th and retrying on the subset of T obtained thereof. The
process is repeated until a partial affinity is found or the subset of T contains
only HRT tasks, in which case it terminates with a failure. Note here that
removing some non-HRT tasks does not mean that they will be removed from
the application (if a partial affinity is found by the ILP algorithm, we will use
it as a basis to try and find a total affinity, relying on tight computations of
WCRTs, Sect. 7).

More formally, the algorithm works following the steps given below, where
sched : T 7→ B is a function that returns the truth value True iff its input is a
schedulable task according to some schedulability test. In sum, the algorithm
either succeeds, if a total affinity (with all tasks schedulable) or else a partial
affinity (with some tasks, including all HRT tasks, schedulable) is found, or fails,
otherwise (more in Sect. 7).

• A. Compute an affinity such that ∀τ ∈ T : sched(τ),

– A.1. If a solution is found, terminate with success and return the
affinity,

– A.2. Else, check the equality T = Th (Th is the set of HRT tasks,
defined in Sect. 3.1),

∗ A.2.1. If the equality holds (there are only HRT tasks left),
terminate with a failure,

∗ A.2.2. Else, update T with T\{τ} where τ is selected randomly
from T\Th and repeat at (A).

To specify the ILP algorithm, we need therefore to devise the schedulability
tests to characterize the function sched . Further, we need to express all timing

17

constraints as linear constraints in order to enable modeling the affinity problem
as an ILP one. We achieve both goals in the remainder of this section, but first
we introduce some notations.

Notations. We denote by hp(τ) = { τ ′ | τ ′ ∈ T, π(τ ′) > π(τ) } the set of tasks
with priorities higher than π(τ) and sp(τ) = { τ ′ | τ ′ ∈ T \ {t}, π(τ ′) = π(τ) }
the set of tasks (excluding τ) the priorities of which are equal to π(τ). Similarly,
lp(τ) = { τ ′ | τ ′ ∈ T, π(τ ′) < π(τ) } denotes the set of tasks with priorities lower
than π(τ). For a job ι ∈ J , we denote by Sι the set of segments of ι; its WCET
wj (ι) =

∑
s∈Sι wcs(s); and the WCET of its final (last) segment final(ι). We

also denote J−1ι ∈ T the task to which the job ι ∈ J belongs. Further, we abuse
the membership relation: we say that a job segment s ∈ JSτ belongs to task τ .
A task τ ∈ T is characterized by its WCET equal to the WCET of its longest job,

that is wt(τ) = max { wj (ι) | ι ∈ Jτ }, its utilization factor u(τ) =
wt(τ)

p(τ)
, and

its maximum segment WCET w s(τ) = max { wcs(s) | s ∈ JS τ } (the WCET of
its longest job segment).

5.1. Ignoring Data Sharing Overheads
5.1.1. Schedulability Test

In order to facilitate the understanding of the method, we start by modeling
the problem without data sharing overheads. We can therefore, under P-FP
with limited preemption, consider the schedulability problem on each core
independently (this assumption is obviously false when taking data sharing
overheads into account). As a first step, we will therefore consider schedulability
as a single-core problem. Davis and Burns propose in [27] a monoprocessor linear
upper bound for the WCRT of sporadic tasks scheduled with limited preemption
with arbitrary deadlines and release jitters. It is easy to adapt this test to our
model, and, by considering that the sum of task utilisation factors is less than 1,
a task τ ∈ T is schedulable if the next inequality is verified for each of its jobs
ι ∈ Jτ :

blocking(τ) + wj (ι)+
∑
τ ′∈sp(τ) wt(τ ′)

+
∑
τ ′∈hp(τ) [wt(τ ′) + u(τ ′) · (p(τ)− final(ι)− wt(τ ′))] ≤ p(τ) (1)

with blocking(τ) = max { w s(τ
′) | τ ′ ∈ lp(τ) }.

In brief, the inequality above compares an upper bound on the WCRT
of τ (left-hand operand) to the deadline of τ (i.e., period of τ , right-hand
operand). While the original bound in [27] is exact for sporadic tasks, it becomes
pessimistic for periodic tasks, and therefore for our case. Notice how, for instance,
blocking(τ), which is an upper bound on the maximum time needed to preempt
a lower priority task, is defined as equal to the maximum segment WCET
of all tasks with priorities lower than prio(τ). This stems from the fact that
schedulability tests are based on analytical formulae where one seeks linearity
for practical ILP implementations. This results in computationally efficient
schedulability tests that are nevertheless pessimistic in the periodic setting.

18

5.1.2. ILP Formulation & Implementation Considerations
Since the schedulability test is linear, the affinity problem can be easily

expressed as an ILP. To represent the affinity, we use |T | · |C | binary decision
variables α(τ, c) such α(τ, c) = 1 if τ ∈ prt(c) (α(τ, c) = 0 otherwise). The
constraints follow directly from the unicity of the task affinity (P scheduling)
and the schedulability test (Inequality (1)). To represent that a task can be
allocated to only one core, we use the constraint:

∀τ ∈ T :
∑
c∈C α(τ, c) = 1 (2)

and, to represent that the utilization factor on each core is limited to 1, we use:
∀τ ∈ T :

∑
c∈C α(τ, c) · u(τ) < 1 (3)

The only element that is not linear in Inequality (1) is the blocking term. To
avoid this, we decompose the schedulability test given in Inequality (1) into as
many constraints as tasks in lp(τ) to get the following inequality for each job ι
of τ (∀ι ∈ Jτ), for each task τ ′′ with a lower priority than τ (∀τ ′′ ∈ lp(τ)) and
for each core c of C (∀c ∈ C):

α(τ ′′, c) · w s(τ
′′) + wj (ι)+

∑
τ ′∈sp(τ) α(τ

′, c) · wt(τ ′)

+
∑
τ ′∈hp(τ) α(τ

′, c) · [wt(τ ′) + u(τ ′) · (p(τ)− final(ι)− wt(τ ′))] ≤ p(τ) (4)
That is, we obtain Inequality 4 by decomposing Inequality (1) through

considering w s(τ
′′) separately in each lower priority task, then multiplying each

term pertaining to some task ζ by α(ζ, c) to cancel such term if ζ /∈ prt(c) (i.e.,
α(ζ, c) = 0).

However, the constraints defined in (4) must be verified only if task τ is
allocated to core c. In other words, they are true if τ is not allocated to c, i.e.,
α(τ, c) = 0. A classical way to deal with this problem is to introduce a term
to guarantee that the above condition is always true. This can be achieved by
adding (α(τ, c)− 1) ·M to the left-hand operand of the constraints (from (4))
with a huge value M (known as big-M constraints). So if α(τ, c) is equal to 0, the
constraint is always verified, and if α(τ, c) is equal to 1, the effect of M is null.
Here, we do not use this technique. Indeed, modern ILP solvers have efficient
approaches to model this kind of behavior. As we use Gurobi10, we can simply
add a condition to activate a constraint; here the condition is simply α(τ, c) = 1.
More implementation details are given in Appendix A.

5.2. Taking Data Sharing Overheads Into Account
5.2.1. Schedulability Test

As explained in Sect. 4, the WCET of a segment can increase if it is not
allocated to the same core as other segments with which it shares data. To
model this, we need to be careful as to obtain the tightest possible bounds
on overheads and avoid unnecessary overpessimism. We first define a conflict
function cf : JS × L 7→ P(T) that returns for each segment s and data l the

10https://www.gurobi.com

19

https://www.gurobi.com

tasks to which other segments s′ in conflict with s vis-à-vis l belong. The “in
conflict” relation is defined similarly to the one in [38] but with regards to each
data apart, i.e., two segments s and s′ (in two different tasks) are in conflict
vis-à-vis data l iff they both use l and at least one of them writes it (simultaneous
readings are allowed). Formally, the conflict function is defined as follows (where
d(−) = dw(−) ∪ dr(−)):
∀s ∈ JS , l ∈ L : ((τ ′ ∈ cf (s, l))⇔ ∃s′ ∈ JS τ ′ , τ ′ 6= τ :

(l ∈ dw(s) ∧ l ∈ d(s′)) ∨ (l ∈ dw(s′) ∧ l ∈ d(s))) (5)
Under the single-writer assumption, we can safely replace each d(−) with

dr(−) thus alleviating the membership checks.
Once the conflict function is defined, we add a conditional time overhead

per data l. This overhead will be computed and integrated in the WCET of a
segment s in JS τ iff the affinity of some task τ ′ in cf (s, l) is not identical to the
affinity of τ . In other words, there is no need to consider the overheads related to
some data l if all segments in conflict with s vis-à-vis l are executed on the same
core as s. An overhead Bs(l) is thus associated with a segment s ∈ JS τ and the
set cf (s, l) such that wcs(s) is increased by Bs(l) iff the affinity of τ is not the
same as all tasks in cf (s, l), i.e., ∃τ ′ ∈ cf(s, l) : aff (τ ′) 6= aff (τ). We denote this
condition CON (s, l). Accordingly, we define formally the set dcon(s) ⊆ d(s), the
set of data written or read by s for which Bs(l) must be integrated in wcs(s), as
follows: dcon(s) = {l |l ∈ d(s) ∧ CON (s, l)}, which is simply the definition given
by (5) with the further constraint that at least one task in cf (s, l) has an affinity
different than that of the task s belongs to, that is:

∀s ∈ JS , l ∈ L : ((l ∈ dcon(s))⇔ ∃s′ ∈ JS τ ′ , aff (τ ′) 6= aff (τ) :

(l ∈ dw(s) ∧ l ∈ d(s′)) ∨ (l ∈ dw(s′) ∧ l ∈ d(s))) (6)
Then, the value of the total overhead is the sum of all overheads Bs(l) for

each data l in dcon(s), formally:

wcs?(s) = wcs(s) +
∑

l∈dcon(s)

Bs(l) (7)

With Bs(l) equal to Bw(l), Br(l) (Sect. 4) or their sum, depending on whether
s only writes l, only reads l, or writes and reads l, respectively. Notice here that
the overheads added to the WCET as devised by Equation 7 may still be not
exact. For instance, it is possible that some data l is in dcon(s), and therefore
its overhead is added to the WCET of s (Equation 7). But, when analysing all
behaviors of the ERTS, it turns out that s never incurs any delay when accessing
l (i.e., all other segments that use l in parallel with s always use l before or after
s uses it). Equation 7 is therefore another source of pessimism.

However, we recall, through the same Equation 7, that we add the overhead
of data l to the WCET of a segment s iff s is effectively in conflict vis-à-vis l
with another segment running on a different core, therefore Equation 7 gives us
the tightest possible analytical bounds on overheads (i.e., without analyzing all
the ERTS possible executions).

20

Accordingly, time values associated to a job ι become wj ?(ι) =
∑
s∈Sι wcs?(s),

final?(ι) = wcs?(s|Sι|), and for a task τ wt?(τ) = max { wj ?(ι) | ι ∈ Jτ },
blocking?(τ) = max { w s

?(τ ′) | τ ′ ∈ lp(τ) }, w s
?(τ) = max { wcs?(s) | s ∈ JS τ }.

Since wcs?(s) can be written as a linear expression of CON (s, l) then wj ?(ι),
final?(ι), blocking?(τ), wt?(τ ′) are also linear. Rewriting the schedulability
test (1), however, the inequality becomes quadratic due to the −wt?(τ ′) ·
(final?(ι) + wt?(τ ′)) term. By considering wt?(τ ′) ≥ wt(τ ′), we can derivate a
linear sufficient schedulability test:

blocking?(τ) + wj ?(ι)+
∑
τ ′∈sp(τ) wt?(τ ′)+

∑
τ ′∈hp(τ) wt?(τ ′) · (1 + p(τ)

p(τ ′))

−∑τ ′∈hp(τ)
wt(τ ′)
p(τ ′) · (final?(ι) + wt?(τ ′)) ≤ p(τ) (8)

The new schedulability test given by Inequality (8) comprises therefore
another source of pessimism due to replacing wt?(τ ′) by a lower bound in a
negative term. All sources of pessimism in the ILP algorithm will be summarized
and further discussed at the end of this section.

5.2.2. ILP Formulation & Implementation Considerations
To model the problem with shared data as an ILP, we start by defining the

binary variables β(s, l, c), for each segment s ∈ JS τ and each data l such that
cf (s, l) 6= ∅. Then, β(s, l , c) = 1 if and only if the task τ that contains s and all
tasks in cf (s, l) are allocated to the same core c:

β(s, l , c) = α(τ, c) ∧τ ′∈cf (s,l) α(τ
′, c) (9)

This means that if β(s, l , c) = 1 then the data l does not induce additional
overhead, i.e., Bs(l) should not be considered11.

We also introduce new continuous variables γ(s, c) to represent the WCET of
a segment s ∈ JS τ on a core c. With Gurobi, we can use conditions to activate
a constraint, and so γ(s, c) is constrained by:

γ(s, c) =

{
wcs(s) +

∑
{l|cf (s,l)6=∅}(1− β(s, l, c)) ·Bs(l), if α(τ, c) = 1

0, otherwise
(10)

For each core c, to model wj ?(ι) (the worst-case execution time of a job ι
on core c) and final?(ι) (its final segment execution time), we introduce the
continuous variables ε(ι, c) (resp. λ(ι, c)) constrained by:

ε(ι, c) =
∑
s∈Sι γ(s, c) (11)

λ(ι, c) = γ(s|Sι|, c) (12)

11Remark that logical operators can be easily translated into linear constraints, e.g., a = b∧c
is equivalent to the system 0 ≤ b + c − 2a ≤ 1 and in general y = x1 ∧ x2 ∧ ... ∧ xn
is equivalent to the constraint 0 ≤

∑n
i=1 xi − y ≤ n − 1. As we use the Gurobi solver,

there exists a general constraint that facilitates the writing of logical operators. For in-
stance, the constraint r = and_{x1, . . . , xn} states that the binary variable r equals 1
iff all of the binary variables x1, . . . , xn are equal to 1. Thus, for s ∈ JSτ and for all
l such that cf (s, l) 6= ∅, we can simply rewrite in Gurobi the constraint on β(s, l , c) as
β(s, l , c) = and_ { α(τ, c), α(τ ′, c) | τ ′ ∈ cf (s, l) }.

21

For modeling blocking?(τ) and wt?(τ), we introduce the intermediate con-
tinuous variables ν(τ, c), resp. δ(τ, c), that represent the blocking time (resp.
the worst-case execution time) of a task τ on a core c. These new variables are
constrained by:

ν(τ, c) = max_ { γ(s, c) | s ∈ JS τ ′ , τ ′ ∈ lp(τ) } (13)
δ(τ, c) = max_ { ε(ι, c) | ι ∈ Jτ } (14)

where the global constraint max_, defined in Gurobi, sets a decision variable to
the max of a list of decision variables.

With all these new intermediate variables, Inequality (8) becomes (under the
conditional activation α(τ, c) = 1):

ν(τ ′′, c) + ε(j, c)+
∑
τ ′∈sp(τ) δ(τ

′, c)+
∑
τ ′∈hp(τ) δ(τ

′, c) · (1 + p(τ)
p(τ ′))

−∑τ ′∈hp(τ) u(τ ′) · (λ(j, c) + δ(τ ′, c)) ≤ p(τ) (15)

5.3. Summary and Discussion
We obtain therefore a complete ILP formulation of the schedulability test

that takes into account fine-grained data sharing overheads. This test populates
the definition of the sched function in the overall algorithm described at the
beginning of this section. However, as explained earlier, linear schedulability
tests remain pessimistic in the periodic setting. We identify at least three sources
of pessimism in the final schedulability test given by Inequality 8:

• Upper-bounding the blocking term, stemming from Inequality 1, as ex-
plained under Sect. 5.1.1,

• Lower-bounding the negative term in the left-hand operand to linearize
the test, as explained under Sect. 5.2.1,

• Upper-bounding data-sharing overheads, stemming from Equality 7, as
explained under Sect. 5.2.1.

We will eliminate a posteriori all sources of pessimism except for the last one
(due to upper-bounded overheads) by exploring all the possible behaviors of the
ERTS through compositional model checking (Sect. 6, 7). The last source of
pessimism remains because such exploration is based on a model where data
sharing overheads are integrated in segments’ WCETs following Equality 7
(Sect. 6). However, in practice, this last source of pessimism (based on a fine-
grained model as explained in Sect. 4 and throughout this section) has a limited
effect on WCRTs (and therefore on schedulability) compared to the first two
sources of pessimism (more details in Sect. 7). We argue that this is a fair price
to pay in order to enable compositional, scalable verification (Sect. 7.4).

6. TA Model & Compositional Verification

In this section, we develop a TA model in UPPAAL of a realistic ERTS
(following the definitions given in Sect. 3) on which various real-time properties

22

can be verified compositionally. In Sect. 6.1, we detail our UPPAAL model
taking data sharing overheads (Sect. 4, 5) and an affinity (Sect. 5) into account.
Then, we show how properties can be verified on our model compositionally
(Sect. 6.2). In the remainder of this paper, we simply write wcs(s) to denote
the WCET of segment s in which data sharing overheads (Sect. 4, 5) have been
integrated. In other words, we use wcs(s) to denote wcs?(s) defined in Sect. 5.

6.1. UPPAAL Model
A network N = (||c∈CNc) models the ERTS. Each Nc = (Hc ||τ∈prt(c)TAτ) is

a network with Hc (resp. each TAτ) a TA modeling the scheduler of (resp. a task
allocated to) core c. We give a generic description of any Nc with a scheduler
and an arbitrary number of tasks allocated to c. We first describe TAτ apart, i.e.,
outside Nc. Then, we explain how they are composed, using synchronizations
via channels and data variables, with Hc to get Nc (Hc is universal so there is
no need to present it outside of Nc) as to comply with the behavior in Sect. 3.1.

6.1.1. Task TAτ (Without Synchronizations)
For each task τ = 〈Sτ , actτ , endτ , trτ 〉 (Sect. 3.1) in prt(c), we want to gen-

erate a timed automaton TAτ = 〈Lτ , lτ0 ,Xτ ,Eτ , Iτ 〉. For simplicity, we drop τ
subscripts and write l→ l′ instead of (l , g , λ, l ′) when the values of g and λ are
unimportant or discussed further in the text. We also write l→ (resp. → l) to
denote all outgoing (resp. incoming) edges of l. We first give formal definitions
interspersed with informal explanations, then provide an example to illustrate.

Definition 1 (TAτ : Locations & edges). Locations and edges of TAτ are
obtained by applying the following rules to τ :
(1) Locations: each s ∈ S is mapped to a location with the same name in L.
Location end is committed. Additional locations are start (committed), wait ,
and, for each s ∈ S\{act , end} s.t. ∃(s, s ′) ∈ tr , s ′ 6= end , a location spr . The
initial location is start .
(2) Edges: each transition (s, s ′) ∈ tr is mapped to an edge s → s ′ in E. Ad-
ditional edges are (i) start → act , wait → act , end → wait , and (ii) for each
locations’ couple (s, spr), s → spr and spr → s ′ for each s ′ 6= end successor of s.

TAτ preserves the structure of τ . Added location start (resp. wait) and its
outgoing edge to act models activation at time 0 (resp. at each period).

Edge s → spr (resp spr → s ′) models preemption (resp. resuming after pre-
emption) where s′ is a successor of s in the underlying FSM. The former is taken
after executing s (see below). Locations spr are unneeded when τ terminates
after executing s (hence the condition of having at least one successor different
from end , rule (1)). For similar reasons, end is excluded from the successors
of spr (rule (2), see a more detailed explanation on this aspect in the example
below). Note that locations spr are superfluous for tasks having the highest
priority in prt(c) (as they are never preempted).

23

Definition 2 (TAτ : Clocks & timing constraints). Clocks, guards and invari-
ants in TAτ (Definition 1) are defined as follows:
(1) Clocks: X = {x , y}.
(2) Guards and resets: For edges (s, g , λ, act), g = > (g = (x = p(τ)) if s = wait)
and λ = {x}. For edges (s, g , λ, spr), g = (y ≥ bcs(l)) and λ = ∅ and for edges
(spr , g , λ, s

′), g = > and λ = {y}. For the edge (end , g , λ,wait), g = (x ≤ p(τ))
and λ = ∅. For the remaining edges (s, g , λ, s ′), g = (y ≥ bcs(l)) and λ = {y}.
(3) Invariants: I (wait) = (x ≤ p(τ)). Locations act and {spr |s ∈ L} are invari-
ant free. Each location mapping a segment from s ∈ S\{end , act} (Definition 1)
is associated with the invariant y ≤ wcs(s).

Clock y models the execution of a segment s through residing in location s for
an amount of time between bcs(s) and wcs(s). Locations spr are invariant free as
they model preemption for an a priori unknown amount of time. Constraints over
x ensure that τ is activated at exactly each period. Location end is committed
to allow reactivation as soon as possible.

Notice here that a timelock is possible at end if TAτ misses its deadline:
time may not elapse (end is committed) and the edge end → wait may not be
taken (its guard is not satisfied by the valuation of x). This is normal as the
model in Sect. 3.1 does not specify the behavior in such case. Below we give a
new definition to handle deadline misses and eliminate these timelocks.

Definition 3 (TAτ : Deadline misses). TAτ is obtained by applying Def-
inition 1 and Definition 2. Then, two new locations overshoot (invariant
I (overshoot) = (x ≤ na · p(τ)), with na the next activation integer variable) and
error (invariant free), are added with the following edges. (end , g , λ, error),
where g = (x > tc · p(τ)) and λ = ∅ (tc is the tolerance constant strictly
positive integer); tc − 1 edges (end , g , λ, overshoot), where in each nth edge,
n ∈ 1 . . . tc − 1 , g = (x > n · p(τ) ∧ x ≤ (n + 1) · p(τ)), λ = ∅ and the non-
clock update na ← n + 1 is associated; and (overshoot , g , λ, act), where
g = (x = na · p(τ)) and λ = {x}.

In brief, to handle deadline misses, we assign a tolerance constant tc, a
strict upper bound on the number of consecutive deadlines a task can miss,
and add two locations and tc + 1 edges to reflect the fact that only deadline
misses respecting this tolerance are accepted (in which case location overshoot is
reached), otherwise an error is raised (through reaching location error). Reach-
ing overshoot , through taking one of the tc − 1 edges end → overshoot , will
determine the earliest possible activation12 of TAτ by updating the value of

12This kind of modelling is needed when subsequent behavior depends on the actual value
of a clock, which cannot be read due to its symbolic nature. The method used here is called
the interval-test method and is more practical in our case than the binary-search one due to
the fact that the value of tc is typically small. Details on both methods are given in [37].

24

variable na; TAτ will be activated accordingly at exactly na · p(τ).
Therefore, for each τ ∈ prt(c), TAτ is built by applying Definition 3 (which

uses in turn Definitions 1, 2). Below we give an example illustrating this. In our
examples hereafter, we upperbound tc by the value of 2 to simplify the figures.

Example. Fig. 2 (bottom) shows TAτ obtained through applying Definition 3 to
the FSM of a task τ (top). Notice how segment s4 does not need a preemption
location s4pr since the task can only terminate after executing s4 (Definition 1,
rule (1)). Notice also how location s3_pr is not a predecessor of end even
though end is a successor of s3 in the underlying FSM, which stems from the
fact that end is excluded from preemption locations successors (Definition 1, rule
(2), additional edges). This is because if TAτ is marked for preemption at s3 ,
then either TAτ will be put on hold and resumed later at s4 , or simply transit
to end and terminate since end is a possible successor (and such transition is
already accounted for by the edge s3 → end , Definition 1, rule (2)).

Location error , if reachable, allows to drop the verification if there is a
deadline miss beyond the tolerance tc. Location overshoot permits to activate
the task again starting at the next period if the deadline is missed but the
tolerance is respected, i.e., the deadline is missed by an amount of time comprised
between 0 excluded and tc · p(τ)− p(τ) (p(τ) is denoted by the constant integer
P in the figure). For HRT tasks, tc is equal to 1 (no tolerance for deadline
misses) and thus location overshoot can simply be removed.

Note on tasks dependency. It is important to recall here that TAτ , the TA of
task τ as given by Definition 3, already includes the effect of tasks dependencies
due to data sharing. Indeed, as mentioned earlier, wcs(s) refers throughout this
section and beyond to the WCET of segment s in which the overheads due to
data sharing, as computed in Sect. 5, has been already integrated, therefore
breaking data dependency (faithfully representing it without explicitly modeling
it). Although these overheads may be not exact, tightening them in a fine-grained
manner, as shown in Sect. 5, leads to a limited effect on WCRTs (we will precisely
quantify this effect in Sect. 7 on real-world case studies). As mentioned in Sect. 3,
breaking data and core dependency is a cornerstone of our approach to enable
compositional verification.

6.1.2. Gluing the TA
Definition 3 provides the means to generate TAτ for any task τ ∈ prt(c).

These tasks, however, need to communicate with the scheduler Hc in order to
obtain the network Nc modeling some core c. In the following, we first define
data variables/constants/functions, channels and priorities used to realize such
communication, then present the network Nc and explain through an example
how its behavior complies with the one described in Sect. 3.1.

Data variables/constants. For each TAτ , we define three local constants: id (a
distinct integer in 0 . . . |prt(c)| − 1), pi , the priority of τ , and P , its period; and
two local variables left and right for Hc. Qc, c’s queue, is modeled as an array

25

act

s1

s2

s3

s4

end

(a) τ FSM

C

start

act

s1

y <= wcs_s1

s1_pr

s2
y <= wcs_s2

s2_pr

s3
y <= wcs_s3

s3_pr

s4
y <= wcs_s4

C

end

error

overshoot
x <= tc * P

wait
x <= P

x > P&& x <= tc ∗ P

x == tc ∗ P
x = 0

x <= P

x == P

x = 0

y >= bcs_s1

x = 0

y = 0 y = 0

y >= bcs_s1

y = 0

y = 0

y >= bcs_s2

y >= bcs_s2
y = 0

y = 0 y = 0

y >= bcs_s2

y = 0

y >= bcs_s3

y >= bcs_s3

y >= bcs_s3

y = 0

y = 0
y >= bcs_s4

x > tc ∗ P

(b) TAτ (Definition 3)

Figure 2: FSM and resulting TA model (in UPPAAL notation) for a task τ . P is a constant
equal to p(τ). Note that x = 0 on edge start → act is superfluous since start is both committed
and initial (this edge is taken at x = 0 anyways, see the synchronized model in Fig. 3). Note
also that tc is upperbounded by 2, i.e., this representation is valid for tc = 1 (in which case
location overshoot is superfluous) or tc = 2 , and therefore variable na is not needed and there
is only one edge from end to overshoot .

26

shared between Hc and each TAτ , where each cell contains an id and a priority.
For simplicity, we say, when TAτ inserts its id and pi in Qc, that TAτ is inserted
in Qc. Finally, Hc uses an array of Booleans Bc , indexed over ids, to track the
only TAτ currently executing, if any.

Functions. A number of user-defined functions are used in updates over edges/-
transitions. In particular, function add allows inserting a task in Qc, function
sort sorts tasks in Qc (when an insertion happens) according to their priorities
(if different) or to their activation time (if equal), function resort resorts the
already sorted Qc when a preemption takes place, and function shift shifts each
element of Qc, starting at Qc [1], one position to the left (i.e., a pop operation
on the queue). These functions are explained briefly later in this section and in
more details in the public artefacts of this paper (link provided in Sect. 7.3).

Handshake channels. We define insc, relc [prt(c)] (an array of channels), prec
and terc to, respectively, insert, release, preempt and terminate a task.

Broadcast channels. We define cmpc (resp. exec and toendc) for internal compu-
tations of Hc (resp. each TAτ). Both cmpc and exec have no receivers.

Priorities. For correctness, two priorities are necessary. First, if a lower-priority
task is marked for preemption, it must be preempted as soon as it finishes
executing the current segment instead of continuing that is exec < prec . Second,
if some tasks are activated at the same time, they must all be inserted in Qc
at their activation date before performing any further computations, that is
cmpc < insc .

Network behavior. Fig. 3 shows TAτ from Fig. 2 composed with Hc. In general,
tasks TAτ are updated as follows:

• Edges → act are synchronized (sender) on insc and augmented with the
update add ,

• Edges act → and spr → are synchronized (receiver) on relc [id],

• Edges → spr are synchronized (receiver) on prec ,

• Edges end → are synchronized (receiver) on terc ,

• Edges → end are labelled with toendc (sender),

• Remaining edges are labeled with exec (sender).

We sketch in the following the behavior of a network Nc, with an arbitrary
number of TAτ (we still rely on Fig. 3 as a support), and explain how it obeys
the behavior described in Sect. 3.1. In particular: (i) only one task executes at a
time, (ii) a lower-priority task is preempted properly, and (iii) tasks in Qc are
correctly ordered.

27

Let t be some point in time s.t. Hc is at wait . As soon as some TAτ is acti-
vated, say at time t′, Hc and TAτ synchronize on insc and transit simultaneously
to insert and act , respectively, as TAτ is inserted in Qc (function add). The “as
soon as” urgency is enforced either by the invariant at wait and the guard on
wait → act , or the fact that location start is committed, depending on whether
TAτ is at wait or start , respectively. Channel insc is triggered again until all
TAτ activated at t′ (self-loop at committed location insert in Hc) are inserted in
Qc (insc has the a higher priority than cmpc). At decide (committed), tasks at
positions pos. . . |prt(c)| − 1 in Qc are ordered through the function sort (edge
insert → decide), which sorts tasks activated at t′ (in the portion left . . . right of
Qc), then allows only tasks with higher priorities to cut ahead tasks with strictly
lower priorities that were already in Qc, thus complying with the ordering rules
in Sect. 3.1.

If Qc was empty before t′ (i.e., left = 0) then pos = 0 and the task at Qc [0]
is released (path decide → release → wait). Otherwise, pos equals 1 as the task
at Qc [0] remains in place. From decide, either preemption is needed (guard on
decide → preempt) or not (guards on decide → wait and decide → release). If
no preemption is needed (the task at Qc [0], say TAτ , has the highest priority
in Qc), either decide → release (if TAτ is not released yet) or decide → wait
(otherwise) is taken. In the former case TAτ is released, synchronizing on relc [id],
as Hc transits back to wait and TAτ to some location where it starts traversing
a path corresponding to some job, by emulating the execution of each segment s

wait

C

update

C

release2
C

decide
C

release

C

insert

preempt

C insert2

ter_c!
B_c[Q_c[0].id]=false,

shift(Q_c)

cmp_c!
B_c[Q_c[0].id] &&

Q_c[0].pr >= Q_c[1].pr

cmp_c!
B_c[Q_c[0].id] &&
Q_c[0].pr < Q_c[1].pr

ter_c!
B_c[Q_c[0].id]=false,
shift(Q_c)

cmp_c!
empty(Q_c)

rel_c[Q_c[0].id]!
!empty(Q_c)
B_c[Q_c[0].id]=true

ins_c?

cmp_c!
right=last_index(Q_c),
sort(Q_c,left,right)

ins_c?
left=last_index(Q_c)

cmp_c!
!B_c[Q_c[0].id]

rel_c[Q_c[0].id]!
B_c[Q_c[0].id] = true

pre_c!
B_c[Q_c[0].id]=false,

Resort(Q_c)

rel_c[Q_c[0].id]!
B_c[Q_c[0].id] = true

ins_c?

cmp_c!
right=last_index(Q_c),

sort(Q_c,left,right) ins_c?
left=last_index(Q_c),

(a) Hc

28

C

start

act

s1

y <= wcs_s1

s1_pr

s2
y <= wcs_s2

s2_pr

s3
y <= wcs_s3

s3_pr

s4
y <= wcs_s4

C

end

error

overshoot
x <= tc * P

wait
x <= P

ter_c?
x > P&& x <= tc ∗ P

ins_c!
x == tc ∗ P

x = 0, add(id,pr,Q_c)

ter_c?
x <= P

ins_c!
x == P
x = 0, add(id,pr,Q_c)

pre_c?
y >= bcs_s1

ins_c!
x = 0, add(id,pr,Q_c)

rel_c[id]?
y = 0

rel_c[id]?
y = 0

exe_c!
y >= bcs_s1
y = 0

rel_c[id]?
y = 0

pre_c?
y >= bcs_s2

exe_c!
y >= bcs_s2

y = 0

rel_c[id]?
y = 0

rel_c[id]?
y = 0

exe_c!
y >= bcs_s2
y = 0

toend_c!
y >= bcs_s3

pre_c?
y >= bcs_s3

exe_c!
y >= bcs_s3
y = 0

rel_c[id]?
y = 0

toend_c!
y >= bcs_s4

ter_c?
x > tc ∗ P

(b) TAτ

Figure 3: TAτ (Fig 2) and Hc with synchronizations. Notice the committed locations in Hc
to enforce sequences of timeless actions corresponding to scheduling decisions. For instance,
location insert is committed to force inserting all tasks activated at the same time one after
another without interference from other actions, thus removing unnecessary interleaving.

in such path through residing in location s between bcs(s) and wcs(s).
If preemption is needed, Hc transits to preempt . While waiting for the

preempted task, say TAτ ′ , to finish executing its current segment, say s, activated
tasks after t′ are inserted and sorted in Qc in the same fashion. Since prec > exec ,

29

the next edge TAτ ′ takes is either s → spr or s → end (non-deterministically13 if
they both exist, e.g., if preemption happens at s3). In the first case, synchronizing
on prec, TAτ ′ is preempted as Hc removes TAτ ′ from the head of Qc and
reinserts it according to its priority (function resort) and transits simultaneously
to release2 . When TAτ ′ is released again, it resumes by transiting to one of
the successors of s. In the second case, TAτ ′ terminates as Hc removes it from
Qc, function shift). In either case, Hc transits back to wait (from release2)
immediately as it releases the task at Qc [0]. Finally, edge wait → update in
Hc corresponds to some task TAτ terminating while Hc is idling. After such
termination, Hc transits back immediately to wait taking one of the two edges
update → wait : either there is nothing to do (Qc is empty after removing TAτ)
or the task at Qc [0] is released (otherwise).

Therefore, in compliance with Sect. 3.1, preemption is correctly handled, and
only one task executes at a time, as (i) only the task at Qc [0] is released and
(ii) no task is released unless the last released task is preempted or terminated.

6.2. Compositional Verification
So far, we have devised a TA model for any ERTS following the assumptions

in Sect. 3. The ERTS model is thus N = (||c∈CNc), a synchronization-free
network (Sect. 2.3). Indeed, all synchronizations in N are local to each Nc, i.e.,
there is no synchronization (using channels or shared variables) between any
two TA belonging to Nc and Nc′ in the network N such that c 6= c′. N can
be thus treated as a synchronization-free network of TA by considering each
Nc as a single TA resulting from the synchronized product of Hc and TAτ for
each τ ∈ prt(c). We show next that TCTL properties (Sect. 2.3) can be verified
compositionally on N , i.e., without considering all Nc networks, thus reducing
the underlying state-space size.

Notations. Let N be a TA network N = (||i∈1 ..nAi) (Sect. 2.3) and R(N) the
set of its possibly infinite runs of the form (L0 , v0)→ Similarly, R(Ai) is
the set of runs of TA Ai evolving outside the network, i.e., in the singleton
network Ai. We denote by Ri(N) the set of projections of each run in R(N) on
R(Ai), i.e., each (L0 , v0)→ . . . in R(N) where (i) each discrete transition not
involving Ai (i.e., (L, v)→ (L[L′j/Lj], v) with j 6= i) is removed and (ii) (L, v)
are replaced with (Li , v(Xi)), their projections on locations and clocks of Ai.

Definition 4 (Independent TA). In a network N = (||i∈1 ..nAi), each Ai is
called independent iff R(Ai) = Ri(N).

Definition 4 states the condition under which the behavior of a TA (be it a
single TA or a network) is not affected by that of its neighbors in the composition,
i.e., its runs remain the same whether evolving inside or outside the network.

13Remark the use of the distinct channel toendc , with no priority ordering with either exec
or prec , on s3 → end to allow a correct modeling of such non-determinism.

30

Proposition 1. In a synchronization-free network N = (||i∈1 ..nAi), if each Ai
is timelock-free, then each Ai is independent.

We explain next the reasoning behind Proposition 1. From the semantics
in Sect. 2.3, if a network N = (||i∈1 ..nAi) is synchronization free, a discrete
transition corresponds to one edge, thus each Ai evolves independently at the
discrete level. The only dimension that can be problematic is thus at the
time progress level, namely if conditions over the evolution of time result in
a semantical pathology, i.e., global time may not evolve beyond some instant
t, resulting in preventing some Ai from realizing some of their behaviors past
t when inside N , which invalidates the independence condition (Definition 4).
These ill-formed cases correspond to timelocks (Sect. 2.3). More formally, if
some Aj in N has a timelock and some Ai in N is timelock free, then Ai is
not independent in N . Indeed, if some Aj timelocks at some global time t,
i.e., time may not evolve beyond t (because, for instance, no delay or discrete
transition can be taken, otherwise Ij (Lj) or Ij (L′j) would be violated, Sect. 2.3),
then the corresponding run in Ri(N) for any timelock-free Ai is truncated of
all transitions in R(Ai) after time t, and therefore Ri(N) 6= R(Ai). A more
informal, intuitive account on timelocks being the only time-wise pathological
behavior preventing independence is given in [16].

In brief, even though our network N = (||c∈CNc) is synchronization free, we
need to make sure that each Nc comprises no timelock to guarantee indepen-
dence14.

Proposition 2. The network Nc = (Hc ||τ∈prt(c)TAτ) is timelock free.

Proof. The proof is given in Appendix B.

Proposition 3. In N = (||c∈C (Nc)), each Nc is independent.

Proof. N is synchronization free, and by Propositions 2, each Nc is timelock
free. Therefore, by Proposition 1, each Nc is independent.

By Proposition 3, if a property holds in N ′ outside of N (where N ′ is the
composition of some Nc appearing in N), then it will hold in N , and conversely.
We can therefore verify properties local to N ′ (properties involving networks in
N ′ only) on N ′ alone, thus reducing the state space.

6.2.1. Properties of Interest
Properties local to a core. The first property to verify in some Nc is
A� not (

∨
τ∈prt(c) TAτ .error) (error locations are never reached) as a quick

check; if it is false, then the verification is dropped as at least one task violates
its deadline (beyond the tolerance tc for non HRT tasks).

Second, if the ILP algorithm does not schedule some tasks (Sect. 5, 7), we
are interested in verifying their schedulability. This is done using the query

14And actually, we need to make sure our models are exempt of timelocks anyways because
timelocks reflect modeling flaws regardless of independence.

31

A� not (TAτ .overshoot). However, this is not enough, as TAτ can starve in an
spr location after preemption. We need therefore to verify also the properties
TAτ .start TAτ .wait (TAτ does not starve during the first execution), and
TAτ .wait TAτ .end and TAτ .end TAτ .wait (TAτ does not starve during
subsequent executions)15. Since (compositional) model checking is exhaustive
and exact, this step may reveal that some tasks deemed unschedulable by the
ILP pass are in fact schedulable, thus overcoming a posteriori the pessimism of
the schedulability tests implemented within the ILP algorithm (Sect. 5, 7).

Third, we also want to go further and quantify the WCRT of each task τ
using the query sup{TAτ .end} : TAτ .x (Sect. 2.4). This allows us to compute
tight WCRTs, thus squeezing the pessimistic bounds computed by the ILP pass.

All these properties are local to the core c to which the task of interest is
allocated to, i.e., we can verify the schedulability and compute the WCRT of
some task τ on Nc only, s.t. τ ∈ prt(c).

Properties local to a set of cores. Another important bound to quantify is the
time separating the occurrence of two events w and r (e.g., writing and reading
a data). This can be done locally on N rw = (||c∈C rw Nc), where C rw ⊆ C is the
subset of cores that produce w or r. Typically, to compute such a bound, we use
the sup query on a location of an observer that we compose with Nrw (Sect. 7).

Scalability. In all cases, our approach allows a correct verification on only a
portion of the whole network representing the ERTS, therefore reducing the state
space to explore. This reduction is maximal for properties local to one core c,
where the verification is carried out only on the subnetwork Nc. For properties
local to a set of cores, the worst case is when C rw = C , where verification is no
longer compositional (all of the network must be taken into account); this case
is unlikely to happen in practice (Sect. 7). This scalability comes at the cost of
an acceptable pessimism due to upperbounding data sharing overheads, as we
will thoroughly show in Sect. 7.

7. Evaluation

We first introduce technical details on our fully automated toolchain (Sect. 7.1).
Then, we evaluate our approach on three real-world complex case studies
(Sect. 7.2). Afterwards, we discuss the experimental results and, accordingly,
the benefits and limitations of our approach (Sect. 7.4). Our experiments are
publicly available and fully reproducible in an automated manner (Sect. 7.3).
All details on scalability (memory consumption and verification time) in this
section are reported by UPPAAL on a mid-range computer featuring an Intel
Core i7 processor and 8GB of RAM.

15Actually, as a positive side effect, the last three properties (absence of starvation) also
prove the absence of timelocks in the ERTS under scrutiny which provides another handy
sanity check (more explanation in the artefact accompanying this paper, link under Sect. 7.3)

32

7.1. Technicalities
Toolchain. The entry of our chain is a .rt file, with a simple grammar where
FSMs are expressed through states and their successors (see below). To further
automatize the process, we wrote two more translators corresponding to the
optional Step 0 in Fig. 1. The first (resp. second) translator generates from
any robotic application written in GenoM3 [57, 36], say file.gen (resp. from the
XML description of the automotive case study, say file.xml) the corresponding
file.rt file. Following Steps 1 and 2 in Fig. 1, the ILP solver processes file.rt and
generates a total affinity, a partial affinity or a failure message, via the algorithm
explained in Sect. 5 (these steps are skipped in the automotive industrial challenge
experiments as the affinity is already provided with the case study). Affinities
are generated in file.sol. Finally, file.rt and file.sol are fed to another translator
that generates an UPPAAL model for each core c in file_c.xta (Step 3 in Fig. 1).
Steps 1-3 take into account data sharing overheads as computed in a fine-grained
fashion (Sect. 4, 5).

Handling loop behaviors. A typical pattern in periodic control tasks is to re-
sume at some control loop state at each subsequent period (e.g., periodic visual
servoing). Fig. 4 (top) shows a simplified version of task control specification
in GenoM3 from the drone case study (Sect. 7.2.1) implementing a similar
behavior (ether is a GenoM3 keyword for task termination). Such specifica-
tion underlies an extended FSM, where the keyword pause preceding e.g., the
transition (initiate,main) is interpreted as a special type of termination; it
denotes that task control terminates after executing initiate, and resumes at
the next period by executing segment main. This model is amenable to the
generic FSM model given in Sect. 3.1 (as mentioned within the same section),
by simply removing each pause transition (s ′, s) and adding (i) a transition
from s′ to end , to denote that the task terminates when taking the removed
pause transition and (ii) a transition from act to s , to denote that the task may
start executing at s (Fig. 4, bottom-left). The UPPAAL model of task control
implements therefore the generic FSM following Definition 3. Note, however,
that the generic FSM contains more behaviors than that of the extended FSM
underlain by the GenoM3 specification in Fig. 4 (top), e.g., control can start
executing at main since the beginning, i.e., even before any pause transition
to main takes place. To eliminate this, we simply use local Booleans p_s to
track taking pause transitions (s ′, s), thus allowing to resume at s only after
a pause transition to s has been taken in the last execution. This is shown in
Fig. 4, bottom-right (simplified version without synchronizations, WCET/BCET
constraints and preemption) where p_main is initialized to false. Notice the
two edges out of urg , one corresponding to the special pause termination (with
the update p_main = true) and the other to non-pause termination.

The .rt format. The .rt format follows a simple grammar providing real-time
information of some ERTS while abstracting away any information that is not
relevant to our real-time analysis. The keyword task_i permits enumerating the
tasks in the ERTS, through providing the name of one distinct task after each

33

task control {
period P;
state<begin> transition_to initiate;
state<initiate> transition_to pause::main;
state<main> transition_to pause::main, urg;
state<urg> transition_to pause::main, ether;

};

(a) Specification of task control (simplified)

act begin initiate

endmain

urg

(b) FSM of task control

C

start act

begin initiate

main

C

end

urg

overshoot

wait

error

x > P && x <= tc * P

x == tc * P
x = 0

x <= P

x == P
x = 0

x = 0

!p_main
p_main=true

p_main
p_main=false p_main=true

p_main=true

x > tc * P

(c) UPPAAL TA of task control

Figure 4: Handling loop behaviors. The GenoM3 description is simplified such that only states
and transitions appear. In the FSM, the transition urg → end resulting from the removal of
the pause transition urg → main is omitted (since the FSM transitions are not interpreted and
there was already such transition in the FSM). In the UPPAAL model, all synchronizations,
preemption locations, invariants, and constraints over clock y are removed for readability.

indexed keyword over i ∈ 1 ..|T |. Similarly, s_i_j is to enumerate segments
in the task whose keyword is task_i , and sName_succ_k to enumerate the
successors of segment sName, captured through its unique keyword s_i_j .
Therefore, there is no need to enumerate jobs as the FSM for each task is
accordingly specified. In a similar manner, we use keywords to:

• specify p(τ), π(τ), and to denote whether τ is an HRT task (i.e., whether
τ ∈ Th for each task τ),

• specify the number of cores,

• specify wcs(s), bcs(s), dr(s) and dw(s) for each segment s ∈ JS ,

• specify ρ(l) for each data l ∈ L.

34

The keywords act , end and loop (for loop behaviors using pause-like transitions
as shown above) are reserved.

7.2. Experiments
We evaluate the scalability and benefits of our approach on two real au-

tonomous robots (Sect. 7.2.1) and a real automotive case study from an industrial
challenge (Sect. 7.2.2). In both cases, we verify important properties including
the computation of WCRTs and other bounds between events occurring on
different cores. For each task τ , we distinguish between two types of WCRT:

• pessimistic WCRT, denoted pesW (τ), as reported by the ILP pass (i.e.,
using Inequality 8),

• tight16 WCRTs, denoted tW (τ), as computed by UPPAAL using composi-
tional model checking on the model devised in Sect. 6.

According to the summary given in Sect. 5.3, pesW (τ) corresponds to the
schedulability test suffering from at least three sources of pessimism whereas
tW (τ) comprises only one possible source of pessimism due to including analytical
data sharing overheads, albeit in a fine-grained fashion, in segments’ WCETs.

We want however to go further and quantify the effect of fine-grained data
sharing overheads on WCRTs and schedulability (we recall that these overheads
are the tightest that can be obtained analytically, Sect. 5). For this, we also
compute the optimistic WCRT of τ , denoted optW (τ), corresponding to the
most optimistic scenario of data sharing, i.e., when there are no overheads at all.
For this, we rely on compositional model checking, using UPPAAL, on a model
where segments’ WCETs are the original ones (Sect. 3.1).

Accordingly, the exact WCRT of task τ is comprised between its optimistic
WCRT and its tight WCRT, that is in the interval [optW (τ), tW (τ)]. We will see
that, thanks to the careful fine-grained computation of data sharing overheads,
tW (τ) is typically very close to optW (τ), with no effect on schedulability in our
case studies, whereas the purely analytical pesW (τ) leads to a lower schedulability
ratio, notably in the drone case study under Sect. 7.2.1.

7.2.1. Autonomous Robots
The robotic case studies, originally described in [32, 33], consist in a drone

and a terrestrial robot, each embedding a four-core hardware. The drone (resp.
terrestrial robot) is illustrated in Fig. 5 top-left (resp. right), where each box
is a component with one or two tasks. Overall, there are nine tasks and 57
segments in the drone and ten tasks and 61 segments in the terrestrial robot.
Both applications do not scale with a global model checking approach [33, 34].

Segments’ BCETs are set to zero and their original WCETs are experimentally
evaluated by taking the maximum execution time of each segment following a

16Note the slight difference in terminology with the standard one in real-time systems’
research. Here, tight does not mean exact; but rather something between exact and pessimistic
as explained throughout this section.

35

optitrack
rotorcraft

nhfcpom

Tasks:
publish 2ms
Services:
Init
Read
…

Tasks:
control 1ms
wrench 1ms
Services:
Init
Servo
…

Tasks:
main 1ms
comm 1ms
Services:
Connect
Monitor
…

IMU

Mocap

Pose

Cmd

Tasks:
io 1ms
filter 1ms
Services:
Add
Measure
…

maneuver

Velocity

Goal

HW
(drone sensors/

actuators)

HW
(Optitrack

motion capture
sensor)

Tasks:
exec 2ms
plan 2ms
Services:
GoTo
TakeO!
…

3IncludedFrenchDCTechnologies
Inadditiontotheopen-sourcematerial,somemethodsandtechnologieswillbeillustratedonthe
showcase.Fornow,thefollowingtechnologiesfromtheFranceDesignCenterareconsideredtobe
included:

•HAZOP-UML:themethodologywillbeillustratedononeortwooperationspecification;

•SMOF:monitorswillbesynthetizedfortwosafetyrules;

•MAUVE:animplementationofthesoftwarearchitectureusingtheMAUVEmiddlewarewill
beprovided,alongwithreal-timeanalysisresults;

•Genom:thedesignofthesoftwarearchitectureusingGenomwillbeprovided,alongwith
someanalysisresults;

•AltaRica:thedescriptionofthesafetyassessmentonapartofthefunctionnalarchitecture
willbedescribed.

4RoboticplatformfromONERA
TheplatformusedfortestingthesoftwarearchitectureisaRobotnikSummit-XLownedand
equippedbyONERA(figure1).TherobotisequipedwithaIMU(InertialMeasurementUnit),
aGPSsensor,Hokuyolasersensorsandavideocamera.

Figure1:Summit-XLequipedbyONERA

Theplaformdimensionsareshowninfigure2.

5MaterialHosting
AprojectonGitLabwillbecreatedundertheurlhttps://gitlab.com/osmosisinordertohost
documentationoftheshowcaseaswellasspecificgitprojectsforsources.

2

RobotDriverGPSDriver
Tasks:
update 10ms
Services:
ConnectDevice
Stop
…

Tasks:
RRWG 10ms
Services:
Perm
…

IMUDriver
Tasks:
update 10ms
Services:
ConnectDevice
Measure
…

LaserDriver
Tasks:
scan 20ms
Services:
ConnectDevice
StartScan
…

Cmd

PotentialField

LaserSpeed

Navigation

Target

POM SafetyPilot

IMU

Pose PFCmd

Nav
graph

Tasks:
plan 50ms
Services:
SetParams
TrackTarget
…

Tasks:
pilot 20ms
Services:
Stop
MergeAndAvoid
…

Tasks:
navigate 75ms
Services:
GotoPosition
Stop
…

Tasks:
io 10ms
filter 10ms
Services:
perm
…

GPS

RWLSensor

Tasks:
sense 100ms
Services:
CheckLight
…

LightLvl

Figure 5: Case studies and observer

series of random runs [33]. We refer the reader to [33] for in-depth details of
both robots. We give in the following examples of properties we verified for each
application.

Drone. Table 2 gives a summary of tasks in the drone with their priorities and
periods, and whether they are HRT tasks or not (we refer the reader to [34] for
more details on HRT/non-HRT decomposition of tasks in an older version of
this case study). Since the smallest non-zero timing constraint is 10µs, time
values are given with a resolution of 10−5 s , e.g., 100 time units is equal to 1ms .

We start the experiments by Step 1, which fails to schedule all tasks, drops
the non-HRT task plan and fails again, then drops another non-HRT task exec
and generates a partial affinity satisfying the schedulability of the remaining
(seven) tasks. We use this partial affinity as the grounds to try and achieve a
total one. We notice that cores 2 and 4 have each only one task, respectively
control and comm (both HRT), so we allocate the dropped tasks plan and exec
to cores 2 (together with control) and 4 (together with comm) respectively. The

36

Table 2: Drone case study: task information, affinity, and resulting task WCRTs.

Task Period Priority HRT Affinity optW tW pessW
main 100 2 Yes 3 65 69 69
comm 100 2 Yes 4 60 66 81
io 100 2 Yes 1 35 43 63
filter 100 2 Yes 1 35 43 63
wo 100 2 Yes 3 65 69 69
control 100 2 Yes 2 64 74 102
publish 200 1 No 1 90 98 165
plan 200 0 No 2 177 187 209
exec 200 0 No 4 170 182 208

total affinity that we obtain accordingly is given in Table 2. We then generate
an UPPAAL model and investigate this further. We verify, one file_c.xta at
a time, the properties explained in Sect. 6. We ensure that no error location
is reachable, then, that no task ever starves using the leadsto properties as
explained in Sect. 6, then, for all tasks allocated to cores different than cores
2 and 4, that overshoot is not reachable. Afterwards, we focus on cores 2
and 4 (drone_2.xta and drone_4.xta). We query, on drone_2.xta, whether
location overshoot is reachable in any of both tasks assigned to core 2 using the
formula E � (TAτ .overshoot) with TAτ ∈ {control , plan}. Surprisingly, it is not,
which means that both tasks are schedulable. The same thing happens with
drone_4.xta; both tasks assigned to core 4 are schedulable. Therefore, all tasks
are schedulable provided the partial affinity given by the ILP algorithm that we
completed manually (Table 2). This is an intriguing result since the ILP step
has not found a total solution. As explained in Sect. 5, 6, this should be due
to the pessimism in linear schedulability tests for periodic workloads, a known
issue in real-time scheduling.

To investigate this further, we fix the affinity to the one given in Table 2,
since our compositional model checking results show that it is a valid solution.
Then, we compute using UPPAAL the WCRTs for all tasks and recompute the
WCRTs using Inequality 8, i.e., we compute, respectively, tW (τ) and pesW (τ)
for each task τ in Table 2. This will give us insights on the reason behind the
ILP pass failing to find a solution. The results are given in Table 2.

As we can see under the column pesW , the schedulability ratio using In-

equality 8 is
6

9
with tasks control, plan and exec deemed unschedulable because

their (pessimistic) WCRTs are larger than their periods (marked in bold). This
actually explains why the ILP algorithm refrained from e.g., assigning both
control and plan to the same core: in doing so, according to the ILP’s compu-
tations, none of them would be schedulable17. On the other hand, thanks to
the scalable and tight computations via compositional model checking (column

17This is more thoroughly investigated in the artefact, see the provided links under Sect. 7.3.

37

tW), the schedulability ratio is equal to 1. To further tune the WCRTs, we
compute, using UPPAAL, the optimistic WCRT of each task (where data sharing
overheads are assumed null, column optW). Accordingly, we can situate each
task’s exact WCRT within the interval [optW , tW]. Notice how these intervals
are typically tight due to the fine-grained computation of data sharing overheads.
In Sect. 7.2.2, we will see how these intervals become even tighter when WCETs
and data penalties estimation is more elaborate.

Finally, we report on the scalability of our approach on this case study. Both
the ILP pass and the UPPAAL verification of properties (including WCRTs
computation) were extremely fast, making the whole process last barely a few
seconds per property. For model checking alone, and thanks to our compositional
approach, the verification time was upper-bounded by 0 .01s and the memory
consumption by merely 15MB .

Terrestrial Robot. For the terrestrial robot, Step 1 succeeds, and the schedula-
bility is confirmed with UPPAAL. We now try to quantify the maximum time
separating perceiving the environment (reading the laser sensor, task scan) and
using that latest perception to compute a new speed (task plan). Since Step 1
allocated these tasks to two different cores c and c′, we need to take both UP-
PAAL networks Nc and Nc′ into consideration, and this is of course interesting
scalability-wise. We identify segments s and s′ in charge of, respectively, reading
the laser (task scan) and computing the speed (task plan) and replace the labels
of their outgoing edges with r! and w!, respectively (r and w are broadcast
channels). Then, we compose Nc and Nc′ with the observer shown in Fig. 5
(bottom left). Finally, we query the maximum value of clock x while the observer
is at location recv . Note that this observer is not suitable for “minimum time”
properties (r events at recv are ignored) and that here also we verify beforehand
wait recv and vice versa. We quantify the tight upper bound as equal to 29
ms. This is an important information to take into account in order to compute
e.g., the robot’s reactivity to appearing obstacles.

Scalability-wise, the ILP pass was again extremely fast lasting barely a second.
The model checking phase lasted roughly one minute with less than 100MB of
RAM consumption.

7.2.2. WATERS Industrial Challenge
To test further the resilience of our approach notably w.r.t. scalability, we

apply it to the APP4MC specification of the automotive case study from the
WATERS 2017 industrial challenge [41] featuring a four-core hardware. Since our
approach is suitable for periodic tasks only, we apply it to core 2 that has seven
tasks with 710 segments (giving over 37,000 segments executed in a hyperperiod).
The tasks with their periods, priorities and number of segments are given in
Table 3. Note that due to the length of tasks names in the original description,
we have simplified them for readability.

This example is of a great interest to us especially because it presents two
major threats to model checking scalability. First, the number of segments (called
runnables in the automotive jargon) is huge. Second, the WCETs and data

38

Table 3: WATERS challenge: task information (core 2), and resulting task WCRTs.

Task Period
(×106) Priority # Segments optW tW

T_2 2 13 28 357,269 357,362
T_5 5 12 23 823,170 823,635
T_20 20 9 307 6,974,083 6,980,293
T_50 50 8 46 8,718,349 8,725,762
T_100 100 7 247 14,499,273 14,514,138
T_200 200 6 15 14,568,511 14,584,180
T_1000 1,000 5 44 14,637,078 14,653,884

penalties estimation is quite elaborate, which results in a nanosecond resolution
(one time unit is equal to 10−9 s). With timing constraint varying from 0 to 1
billion (1s), scalability is threatened as the construction of zone graphs is quite
sensitive to such large variations.

The full description is downloadable in an XML format from the challenge
official forum18. The first thing we have done is changing the frequency from
200MHz to 400MHz ; this is because tasks are inherently non schedulable (resp.
schedulable) with the former (resp. the latter), as shown in [73]. As explained at
the beginning of this section, we fully automatized Step 0 for this case study as
well: a waters_c.xta is automatically generated from the XML description for
each core c, given the affinity provided within the same description. Then, we
focus on waters_2 .xta comprising only periodic tasks (Table 3). Given that (i)
the affinity is given and (ii) the model is quite interesting to evaluate scalability
even further, our experiments for this case study will focus on compositional
model checking at Step 3: its cost (verification time and memory consumption)
and its preciseness (tightness of exact WCRTs intervals). In particular, the
pessimistic WCRTs will not be considered since (i) they are out of focus for this
case study (see above) and (ii) tasks schedule quite comfortably at 400MHz .

The tight and optimistic WCRT of each task on core 2 is computed using
UPPAAL and provided in Table 3. Notice how the intervals containing the
exact WCRTs are quite narrow, thanks to the fine-grained computation of data
sharing overheads. Indeed, the largest difference between an optimistic and a
tight WCRT is barely 17,000, i.e., 17µs for task T_1000, whose deadline is 1s.
We can also precisely quantify the “part” of data sharing overheads of a task’s

tight WCRT by computing the ratio
tW − optW

tW
. The largest such ratio is

equal to 3 × 10−4 , obtained for task T_20. This means that the “effect” of data
sharing overheads on a task’s WCRT in this example is no higher than 0.03
percent.

Now, scalability-wise, the verification time and memory consumption had a

18https://www.ecrts.org/forum/viewtopic865d.html?f=32&t=85&sid=
d74079af129d5480a5ac4fd1778eecc1

39

https://www.ecrts.org/forum/viewtopic865d.html?f=32&t=85&sid=d74079af129d5480a5ac4fd1778eecc1
https://www.ecrts.org/forum/viewtopic865d.html?f=32&t=85&sid=d74079af129d5480a5ac4fd1778eecc1

peak of, respectively, 102s and 3GB . This means that we manage to compute a
WCRT in less than two minutes on average, and the total memory consumption
after all computations is less than half of the available RAM of the mid-range
computer used for the experiments. These results are quite promising, given
that the real-time model of this challenge is remarkably complex and features
known threats to verification scalability.

7.3. Artefacts
The experiments described in this section are publicly available and fully

reproducible. The source code is available at the public gitlab repository https:
//gitlab.math.univ-paris-diderot.fr/foughali/fhz_aeic-jsa. The README file
contains details on how to reproduce the experiments and/or use the toolchain
on the user’s own examples. The user has the choice between downloading the
sources and using the toolchain on their own machine (in which case they should
install the dependencies themselves), or download a ready virtual machine.
Also, we provide a WATCHME video, lasting roughly twenty minutes, that
demonstrates the experiments and provides a walk-through to reproduce them in
a fully automatic manner. Links to both the video (that can be directly played
without prior download) and the VM, hosted permanently on our institutional
cloud, are provided within the README.

7.4. Discussion
We manage to verify important properties compositionally. For the robotics

case study, both the ILP pass and the UPPAAL verification of properties local
to one core (WCRT and schedulability) were extremely fast, making the whole
process last barely a few seconds per property. For the other property where we
had to consider two cores, the verification lasted roughly one minute. The results
on WCRT are a typical example of model checking giving tight bounds contrary
to schedulability tests. Dually, the ILP pass is crucial as it managed to solve the
affinity problem for the terrestrial robot, and provided grounds to achieve such
solution for the drone. This interplay between the ILP pass and model checking,
a key trait of our interdisciplinary approach, proved to be of great advantage
through combining the strengths of these techniques. This advantage is made
possible through enabling compositionality of verification: we could not have
obtained any such interesting results on a global model (with all cores at the
same time), which we have already tried in previous work [33, 34].

For the automotive industrial challenge, our UPPAAL model proved resilient
to large clock values, with timing constraints varying from 0 to 1 billion time
units. The authors of [73] verified the same case study (also on core 2) but their
approach does not support precedence constraints between runnables (i.e., the
successor relation that we have in our FSM, Sect. 3.1). Our understanding is that
the authors kept the priority levels between tasks intact, then put each runnable
in a new task and enforced strict ascending priorities between runnables with
strictly ascending identifiers [73, Sect. V.A]; in this case, their model becomes
equivalent to ours in the absence of release jitters. Further, their approach does

40

https://gitlab.math.univ-paris-diderot.fr/foughali/fhz_aeic-jsa
https://gitlab.math.univ-paris-diderot.fr/foughali/fhz_aeic-jsa

not support data sharing. Therefore, we can provide an indicative, preliminary
comparison, only for the optimistic WCRT computations, under the above
equivalence assumption and in the absence of release jitters. We notice that our
UPPAAL model, albeit evaluated on a mid-range computer that is much less
powerful than the one used in [73], is seven times faster than the Scheduling
Abstract Graph (SAG) approach [73, Fig. 4(h), Runnable-level, No jitters], and
provides exact results contrary to the SAG-POR extension (optimistic WCRTs
are exact under the assumption of total absence of overheads). These comparisons
put aside, our approach is quite different than SAG-related approaches as we will
explain in Sect. 8. Further, the experiments on this automotive case study showed
the benefit of our fine-grained overheads computation, leading to narrow intervals
of exact WCRTs with data sharing taken into account. In the presence of data
sharing, the choice of computing overheads analytically in a tight way proved to
be an excellent tradeoff between scalability and exact WCRTs computation.

However, our model is, so far, suitable for periodic tasks only. For the robotic
case studies, there are two aperiodic tasks in charge of reading sensors, which
we transformed into periodic based on the frequencies of such sensors; and for
the industrial challenge we only verified core 2 due to the presence of sporadic
tasks elsewhere. Also, our model, so far, does not consider release jitters. While
sporadic tasks and release jitters are hard to handle with model checking because
of the possibility to “activate a task at any time” within a possibly large interval,
some combination with real-time techniques is worth investigating. Finally, for
the time being, we have no systematic approach to “complete” the affinity when
the ILP pass provides a partial one. In our experiments, this is done manually,
in a rather ad-hoc manner. It is worth investigating a more methodical way to
do this based on the results of model checking. This could be quite challenging,
though, given that the model checking phase itself depends on the affinity.

8. Related Work

Model checking. The literature is rich in model checking real-time systems,
e.g., in automotive systems and robotics, but most works either abstract away
important hardware-software settings [46, 61] and/or are carried out on small
examples [25, 51]. For instance, in [25, 61], hardware is not considered, which
restricts the validity of results to the unrealistic assumption that there are enough
cores to run all tasks in parallel. When the models are realistic, scalability issues
resurface quickly. Indeed, among the many works that use model checking
for multicore systems, such issues are reported [8, 55, 22] or preemption is
disabled [51, 79, 82].

Schedulability analysis. There exists a solid body of research on schedulability
analysis in ERTS under different assumptions of scheduling [10, 15] and data
sharing [17, 68]. Many works also integrate cache interference in the derived
bounds [2, 28]. More recent works even provide mechanized proofs for the accu-
racy of WCRTs’ upper bounds in schedulability tests [11, 56]. These techniques
are mature and efficient, but they remain restricted w.r.t. tasks models and other

41

properties than schedulability. For instance, as argued in [40] and as we have
shown in [37, 34], schedulability tests on simplified models are hard to generalize
to real-world ERTS, at least in the robotic context with periodic workloads.
Further, scalable schedulability tests (e.g., linear, purely analytical ones) suffer
from pessimism as exemplified in Sect. 7.

Hybrid methods. One trend in this category is the use of model checking
for schedulability analysis, leading to the development of frameworks such
as TIMES [8] and POLA [71]. Unfortunately, such frameworks also rely on
simple task models and face scalability concerns with large applications. A more
promising trend is to combine model checking and schedulability analysis. An
interesting approach based on timed automata tasks (TATs) is proposed recently
in [76], but focuses on single-core scheduling only. The authors of [39] present a
realistic ERTS model with sequences of non-preemptible job segments. They pro-
pose a scalable method, to reduce the state space size, that relies on computing
an arrival curve to abstract memory interferences [70] prior to model checking,
a costly procedure after which an overapproximation is required to embed the
curve in an UPPAAL model. In contrast, our approach provide tight intervals for
exact WCRTs, and, once at the model checking stage, requires no computations
external to UPPAAL. Another related work under this category is the digraph
model introduced in [75], a powerful formalism presenting a trade-off between
expressivity and scalability. However, digraphs are destined to uniprocessor
problems. The Scheduling Abstract Graph (SAG) [64] and its extensions [65, 73]
is another line of related work. It leverages techniques known in model checking
(state-space construction, partial order reduction) to devise algorithms specific
to the schedulability property, making SAG and its extensions a state-of-the-art
family of techniques suitable for exhaustive schedulability analysis, especially
in the presence of jitters and offsets. However, contrary to our approach, the
exact version of SAG (i.e., providing exact WCRTs without data sharing, corre-
sponding to our optimistic WCRTs in Sect. 7) is restricted to non-preemptive
jobs on uniprocessor platforms [64], which is also the case for the more recent,
non-exact POR extension [73]. The multiprocessor version is reserved for global
scheduling, and is either non exact with independent tasks (in the limited pre-
emtive setting [65]), or fully non-preemptive with FIFO-spinlock-based data
sharing [68]. Besides, our approach is quite different from both digraph and
SAG-related approaches. First, our method provides a solution to a wider prob-
lem where the affinity is not known beforehand and the ERTS is generic with an
arbitrary number of preemptible jobs (each comprising an arbitrary number of
non-preemptible segments) and fine-grained data sharing constraints. Second,
one of our aims is to be able also to verify other properties besides schedulability,
such as bounded response between events occurring on different cores. For this,
we strive to keep the generic expressiveness of TA and their model checking tools
instead of tailoring constructions specific to schedulability.

Compositional verification. Compositional verification is well-grounded for un-
timed systems [7, 14]. However, for ERTS, compositional reasoning on a for-

42

malism (e.g., TA) in a generic sense is a hard research problem, leading to
frameworks supporting small fragments of the underlying formalisms. For in-
stance, ECDAR [26] is restricted to deterministic I/O automata, and only a
subset of the RT-BIP language [1] (with e.g., no priorities, no broadcast channels
and no data variables) is supported by the RTD-Finder tool [12]. As we have
shown in [32], such restrictions may render compositional verification even less
scalable than classical model checking in real ERTS. While our approach is
not generic w.r.t. any TA model, our framework is pragmatic enough to verify
important properties in ERTS under state-of-the-art scheduling assumptions.

Our previous work. In [37], we proposed model checking for schedulability and
other properties, but it does not scale for the drone application (Sect. 7). More
recently, we proposed a hybrid approach that combines SMC and schedulability
analysis [34, 38]. However, the schedulability analysis step was overpessimistic
and not automated, and the use of SMC is problematic in safety-critical settings
(Sect. 1). Moreover, works in [37, 34, 38] were specific to the robotic case.

9. Conclusion

In this paper, we proposed a scalable approach to verify ERTS compositionally.
The approach can be used on any ERTS under P-FP scheduling with limited
preemption, two state-of-the-art scheduling assumptions. Through bridging the
gap between the real-time systems and the formal methods communities, we
provide a fully automated framework for compositional verification, and therefore
contribute to the fight against state-space explosion. The results, on two real
robots that we failed to verify exhaustively for a number of years, as well as on
an automotive system from an industrial challenge, are promising.

Although we have very good results on real applications with complex tasks,
the extent to which our approach is scalable is still under scrutiny. We aim
to confront our framework with larger numbers of tasks, e.g., using synthetic
benchmarks. Also, our approach is restricted to periodic tasks and does not
support release jitters, so we plan to investigate its extension to sporadic task
models and/or jitters. Moreover, we are still sometimes forced to consider more
than one core at a time during verification. Abstractions, as to be able to replace
cores/tasks with smaller models, are another line of future efforts in which works
like [39] can be helpful. Our model also allows to define a tolerance constraint
for non-HRT tasks allowing them to miss their deadlines, which makes it more
flexible than purely schedulability-driven verification approaches. In the future,
it will be interesting to extend this to the (m, k)-firm constraint model [72] where
in any sequence of k jobs m deadlines can be missed. Besides, our approach
relies on tight analytical computation of data sharing overheads that do not
influence schedulability in our case studies. One possible future work is to try
to tighten them further through ILP encoding, relying on additional behavioral
information on the taskset in the style of [81]. Finally, while our approach treats
job segments as black boxes executed between their best-case and worst-case

43

execution times, verifying the code itself is important. Approaches such as the
ones in [31, 30] can be thus complementary to ours.

Acknowledgement

Many thanks to Björn Brandenburg for his valuable comments and judicious
remarks that helped us improve this paper.

Funding

MF was supported by the ANR project MAVeriQ (ANR-20-CE25-0012) and
the joint ANR-JST project CyPhAI. AZ was supported by the Chair for Cyber-
Physical Systems in Production Engineering at TUM and the Alexander von
Humboldt Foundation.

References

[1] Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-
time applications. In: Proc. of the ACM International Conference on Embed-
ded Software. pp. 229–238 (2010). https://doi.org/10.1145/1879021.1879052

[2] Altmeyer, S., Davis, R.I., Indrusiak, L., Maiza, C., Nelis, V., Reineke, J.: A
generic and compositional framework for multicore response time analysis.
In: Proc. of the International Conference on Real Time and Networks
Systems. pp. 129–138 (2015). https://doi.org/10.1145/2834848.2834862

[3] Alur, R.: Timed automata. In: Proc. of the International Conference on
Computer Aided Verification. pp. 8–22 (1999). https://doi.org/10.1007/3-
540-48683-6_3

[4] Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems.
In: Proc. of the IEEE Symposium on Logic in Computer Science. pp.
414–425 (1990). https://doi.org/10.1109/LICS.1990.113766

[5] Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense
real-time. Information and computation 104(1), 2–34 (1993).
https://doi.org/10.1006/inco.1993.1024

[6] Alur, R., Dill, D.: The theory of timed automata. In: Proc. of
the REX Workshop Real-Time: Theory in Practice. pp. 45–73 (1991).
https://doi.org/10.1007/BFb0031987

[7] Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional ver-
ification by learning assumptions. In: Proc. of the International
Conference on Computer Aided Verification. pp. 548–562 (2005).
https://doi.org/10.1007/11513988_52

44

[8] Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: A
tool for schedulability analysis and code generation of real-time systems. In:
Proc. of the International Conference on Formal Modeling and Analysis of
Timed Systems. pp. 60–72 (2003). https://doi.org/10.1007/978-3-540-40903-
8_6

[9] Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to
runtime verification. Lectures on Runtime Verification: Introductory and
Advanced Topics pp. 1–33 (2018)

[10] Baruah, S.: Techniques for multiprocessor global schedulability analysis.
In: Proc. of the IEEE International Real-Time Systems Symposium. pp.
119–128 (2007). https://doi.org/10.1109/RTSS.2007.35

[11] Bedarkar, K., Vardishvili, M., Bozhko, S., Maida, M., Branden-
burg, B.B.: From intuition to coq: A case study in verified
response-time analysis 1 of FIFO scheduling. In: Proc. of the IEEE
International Real-Time Systems Symposium. pp. 197–210 (2022).
https://doi.org/10.1109/RTSS55097.2022.00026

[12] Ben-Rayana, S., Bozga, M., Bensalem, S., Combaz, J.: RTD-Finder: A
tool for compositional verification of real-time component-based systems.
In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 394–406 (2016). https://doi.org/10.1007/978-
3-662-49674-9_23

[13] Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and
tools. In: Lectures on Concurrency and Petri Nets. pp. 87–124 (2003).
https://doi.org/10.1007/978-3-540-27755-2_3

[14] Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional ver-
ification for component-based systems and application. In: Proc. of the
International Symposium on Automated Technology for Verification and
Analysis. pp. 64–79 (2008). https://doi.org/10.1007/978-3-540-88387-6_7

[15] Bertogna, M., Baruah, S.: Limited preemption EDF scheduling of sporadic
task systems. IEEE Transactions on Industrial Informatics 6(4), 579–591
(2010). https://doi.org/10.1109/TII.2010.2049654

[16] Bowman, H.: Time and action lock freedom properties for timed au-
tomata. In: Proc. of the International Conference on Formal Tech-
niques for Networked and Distributed Systems. pp. 119–134 (2001).
https://doi.org/https://doi.org/10.1007/0-306-47003-9_8

[17] Brandenburg, B.B.: Scheduling and locking in multiprocessor real-time
operating systems. Ph.D. thesis, The University of North Carolina at Chapel
Hill (2011). https://doi.org/10.17615/x1zq-v169

[18] Brandenburg, B.B.: Multiprocessor real-time locking protocols. In: Hand-
book of Real-Time Computing, pp. 347–446. Springer (2022)

45

[19] Brandenburg, B.B., Anderson, J.H.: Spin-based reader-writer synchroniza-
tion for multiprocessor real-time systems. Real Time Systems 46(1), 25–87
(2010). https://doi.org/10.1007/s11241-010-9097-2

[20] Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling
algorithms and applications, Real-Time Systems Series, vol. 24. Springer
(2011). https://doi.org/10.1007/978-1-4614-0676-1

[21] Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for
real-time systems. a survey. IEEE transactions on Industrial Informatics
9(1), 3–15 (2012). https://doi.org/10.1109/TII.2012.2188805

[22] Cicirelli, F., Furfaro, A., Nigro, L., Pupo, F.: Development of a schedulability
analysis framework based on pTPN and UPPAAL with stopwatches. In:
Proc. of the IEEE/ACM International Symposium on Distributed Simulation
and Real Time Applications. pp. 57–64 (2012). https://doi.org/10.1109/DS-
RT.2012.16

[23] Clarke, E.M.: Model checking. In: Proc. of the International Conference on
Foundations of Software Technology and Theoretical Computer Science. pp.
54–56 (1997). https://doi.org/https://doi.org/10.1007/BFb0058022

[24] Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking
and the state explosion problem. In: Proc. of the International Sum-
mer School Tools for Practical Software Verification. pp. 1–30 (2011).
https://doi.org/10.1007/978-3-642-35746-6_1

[25] Cortés, L.A., Eles, P., Peng, Z.: Modeling and formal verification of em-
bedded systems based on a Petri net representation. Journal of Systems
Architecture 49(12-15), 571–598 (2003). https://doi.org/10.1016/S1383-
7621(03)00096-1

[26] David, A., Larsen, K., Legay, A., Møller, M.H., Nyman, U., Ravn, A.P., Skou,
A., Wąsowski, A., et al.: Compositional verification of real-time systems
using ECDAR. International Journal on Software Tools for Technology
Transfer 14(6), 703–720 (2012). https://doi.org/10.1007/s10009-012-0237-y

[27] Davis, R.I., Burns, A.: Response time upper bounds for fixed priority
real-time systems. In: Proc. of the Real-Time Systems Symposium (2008).
https://doi.org/10.1109/RTSS.2008.18

[28] Davis, R.I., Altmeyer, S., Indrusiak, L.S., Maiza, C., Nelis, V., Reineke, J.:
An extensible framework for multicore response time analysis. Real-Time
Systems 54(3), 607–661 (2018). https://doi.org/10.1007/s11241-017-9285-4

[29] Dechev, D., Pirkelbauer, P., Stroustrup, B.: Understanding and ef-
fectively preventing the ABA problem in descriptor-based lock-free
designs. In: Proc. of the 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
pp. 185–192 (2010). https://doi.org/10.1109/ISORC.2010.10

46

[30] Devi, S., Nalini, C., Kumar, N.: An efficient software verifi-
cation using multi-layered software verification tool. International
Journal of Engineering & Technology 7(2.21), 454–457 (2018).
https://doi.org/https://doi.org/10.14419/ijet.v7i2.21.12465

[31] Erbsen, A., Gruetter, S., Choi, J., Wood, C., Chlipala, A.: Integra-
tion verification across software and hardware for a simple embedded
system. In: Proc. of the ACM SIGPLAN International Conference on
Programming Language Design and Implementation. pp. 604–619 (2021).
https://doi.org/10.1145/3453483.3454065

[32] Foughali, M.: Toward a correct-and-scalable verification of concurrent
robotic systems: insights on formalisms and tools. In: Proc. of the Inter-
national Conference on Application of Concurrency to System Design. pp.
29–38 (2017). https://doi.org/10.1109/ACSD.2017.10

[33] Foughali, M.: Formal verification of the functionnal layer of robotic and
autonomous systems. Ph.D. thesis, INSA de Toulouse (2018)

[34] Foughali, M.: A two-step hybrid approach for verifying real-time robotic
systems. In: Proc. of the IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications. pp. 1–10 (2020).
https://doi.org/10.1109/RTCSA50079.2020.9203687

[35] Foughali, M., Bensalem, S., Combaz, J., Ingrand, F.: Runtime verification
of timed properties in autonomous robots. In: 18th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design
(MEMOCODE). pp. 1–12. IEEE (2020)

[36] Foughali, M., Dal Zilio, S., Ingrand, F.: On the semantics of the genom3
framework. Tech. rep. (2019)

[37] Foughali, M., Hladik, P.E.: Bridging the gap between formal verification and
schedulability analysis: The case of robotics. Journal of Systems Architecture
111, 101817 (2020). https://doi.org/10.1016/j.sysarc.2020.101817

[38] Foughali, M., Zuepke, A.: Formal verification of real-time autonomous
robots: An interdisciplinary approach. Frontiers in Robotics and AI p. 1
(2022). https://doi.org/10.3389/frobt.2022.791757

[39] Giannopoulou, G., Lampka, K., Stoimenov, N., Thiele, L.: Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems. In: Proc. of the ACM
international conference on Embedded software. pp. 63–72 (2012).
https://doi.org/10.1145/2380356.2380372

[40] Gobillot, N., Lesire, C., Doose, D.: A design and analysis method-
ology for component-based real-time architectures of autonomous sys-
tems. Journal of Intelligent & Robotic Systems 96(1), 123–138 (2019).
https://doi.org/10.1007/s10846-018-0967-5

47

[41] Hamann, A., Dasari, D., Kramer, S., Pressler, M., Wurst, F., Ziegenbein, D.:
Waters industrial challenge 2017. In: International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS)
(2017)

[42] Hemminger, S.: fast reader/writer lock for gettimeofday 2.5.30 (8 2002),
https://lwn.net/Articles/7388/

[43] Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model
checking for real-time systems. Information and computation 111(2), 193–
244 (1994). https://doi.org/10.1006/inco.1994.1045

[44] Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst.
13(1), 124–149 (1991). https://doi.org/10.1145/114005.102808

[45] Karp, R.M.: Reducibility among combinatorial problems. In: Proc. of a
symposium on the Complexity of Computer Computations. pp. 85–103.
Springer (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

[46] Kim, J.H., Larsen, K.G., Nielsen, B., Mikučionis, M., Olsen, P.: Formal anal-
ysis and testing of real-time automotive systems using UPPAAL tools. In:
Proc. of the International Workshop on Formal Methods for Industrial Criti-
cal Systems. pp. 47–61 (2015). https://doi.org/10.1007/978-3-319-19458-5_4

[47] Klotzbücher, M., Soetens, P., Bruyninckx, H.: OROCOS RTT-Lua: an exe-
cution environment for building real-time robotic domain specific languages.
In: Proc. of the International Workshop on Dynamic languages for RObotic
and Sensors. vol. 8 (2010)

[48] Koopman, P.: A case study of toyota unintended acceleration and software
safety. Presentation. Sept (2014), https://users.ece.cmu.edu/~koopman/
pubs/koopman14_toyota_ua_slides.pdf

[49] Kopetz, H., Reisinger, J.: The non-blocking write protocol
NBW: A solution to a real-time synchronisation problem. In:
Proc. of the Real-Time Systems Symposium. pp. 131–137 (1993).
https://doi.org/10.1109/REAL.1993.393507

[50] Lameter, C.: Effective synchronization on Linux/NUMA systems. In:
Proc. of the Gelato Federation Meeting (2005), http://www.lameter.com/
gelato2005.pdf

[51] Lampka, K., Perathoner, S., Thiele, L.: Analytic real-time analysis and
timed automata: a hybrid method for analyzing embedded real-time systems.
In: Proc. of the ACM international conference on Embedded software. pp.
107–116 (2009). https://doi.org/10.1145/1629335.1629351

[52] Lamport, L.: Concurrent reading and writing. Commun. ACM 20(11),
806–811 (1977). https://doi.org/10.1145/359863.359878

48

https://lwn.net/Articles/7388/
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
http://www.lameter.com/gelato2005.pdf
http://www.lameter.com/gelato2005.pdf

[53] Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International
journal on software tools for technology transfer 1(1), 134–152 (1997).
https://doi.org/10.1007/s100090050010

[54] Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An
overview. In: Proc. of the International conference on Runtime Verification.
pp. 122–135 (2010). https://doi.org/10.1007/978-3-642-16612-9_11

[55] Lime, D., Roux, O.: Formal verification of real-time systems with
preemptive scheduling. Real-Time Systems 41(2), 118–151 (2009).
https://doi.org/10.1007/s11241-008-9059-0

[56] Maida, M., Bozhko, S., Brandenburg, B.B.: Foundational response-time
analysis as explainable evidence of timeliness. In: Maggio, M. (ed.) Proc.
of the 34th Euromicro Conference on Real-Time Systems. vol. 231, pp.
19:1–19:25 (2022). https://doi.org/10.4230/LIPIcs.ECRTS.2022.19

[57] Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F.: Genom3:
Building middleware-independent robotic components. In: Proc. of the
IEEE International Conference on Robotics and Automation. pp. 4627–4632
(2010). https://doi.org/10.1109/ROBOT.2010.5509539

[58] McKenney, P.E.: Is parallel programming hard, and, if so, what can you do
about it? CoRR abs/1701.00854 (2017), http://arxiv.org/abs/1701.00854

[59] Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchroniza-
tion on shared-memory multiprocessors. ACM Transactions on Computer
Systems 9(1), 21–65 (1991). https://doi.org/10.1145/103727.103729

[60] Mellor-Crummey, J.M., Scott, M.L.: Scalable reader-writer synchronization
for shared-memory multiprocessors. In: Proc. of the ACM Symposium
on Principles & Practice of Parallel Programming (PPOPP). pp. 106–113
(1991). https://doi.org/10.1145/109625.109637

[61] Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J.: Automatic
property checking of robotic applications. In: Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. pp. 3869–3876
(2017). https://doi.org/10.1109/IROS.2017.8206238

[62] Monot, A., Navet, N., Bavoux, B., Simonot-Lion, F.: Multicore scheduling
in automotive ECUs. In: Proc. of the Embedded Real Time Software and
Systems (2010), https://hal.inria.fr/inria-00543179

[63] Monot, A., Navet, N., Bavoux, B., Simonot-Lion, F.: Multisource software
on multicore automotive ECUs - combining runnable sequencing with task
scheduling. IEEE Transactions on Industrial Electronics 59(10), 3934–3942
(2012). https://doi.org/10.1109/TIE.2012.2185913

49

http://arxiv.org/abs/1701.00854
https://hal.inria.fr/inria-00543179

[64] Nasri, M., Brandenburg, B.B.: An exact and sustainable analysis of non-
preemptive scheduling. In: 2017 IEEE Real-Time Systems Symposium
(RTSS). pp. 12–23 (2017)

[65] Nasri, M., Nelissen, G., Brandenburg, B.B.: Response-time analysis of
limited-preemptive parallel dag tasks under global scheduling. In: 31st
Conference on Real-Time Systems. pp. 21–1 (2019)

[66] Nelder, J.A., Mead, R.: A simplex method for function
minimization. The computer journal 7(4), 308–313 (1965).
https://doi.org/10.1093/comjnl/7.4.308

[67] Nemitz, C.E., Amert, T., Goyal, M., Anderson, J.H.: Concurrency groups:
a new way to look at real-time multiprocessor lock nesting. In: Proc. of the
International Conference on Real-Time Networks and Systems. pp. 187–197
(2019). https://doi.org/10.1145/3356401.3356404

[68] Nogd, S., Nelissen, G., Nasri, M., Brandenburg, B.B.: Response-time
analysis for non-preemptive global scheduling with FIFO spin locks. In:
Proc. of the IEEE Real-Time Systems Symposium. pp. 115–127 (2020).
https://doi.org/10.1109/RTSS49844.2020.00021

[69] Ocón, J., Dragomir, I., Coles, A., Green, A., Kunze, L., Marc, R., Perez, C.,
Germa, T., Bissonnette, V., Scalise, G., et al.: Ade: Autonomous decision
making in very long traverses (2020)

[70] Pellizzoni, R., Schranzhofer, A., Chen, J.J., Caccamo, M., Thiele, L.: Worst
case delay analysis for memory interference in multicore systems. In: Proc.
of the Design, Automation & Test in Europe Conference & Exhibition. pp.
741–746 (2010). https://doi.org/10.1109/DATE.2010.5456952

[71] Peres, F., Hladik, P.E., Vernadat, F.: Specification and ver-
ification of real-time systems using POLA. International Jour-
nal of Critical Computer-Based Systems 2(3-4), 332–351 (2011).
https://doi.org/10.1504/IJCCBS.2011.042332

[72] Ramanathan, P.: Overload management in real-time control applications
using (m, k)-firm guarantee. IEEE Transactions on parallel and distributed
systems 10(6), 549–559 (1999). https://doi.org/10.1109/71.774906

[73] Ranjha, S., Nelissen, G., Nasri, M.: Partial-order reduction for
schedule-abstraction-based response-time analyses of non-preemptive
tasks. In: Proc. of the IEEE 28th Real-Time and Embed-
ded Technology and Applications Symposium. pp. 121–132 (2022).
https://doi.org/10.1109/RTAS54340.2022.00018

[74] Simpson, H.: Four-slot fully asynchronous communication mechanism. IEEE
Proceedings E (Computers and Digital Techniques) 137(1), 17–30 (1990).
https://doi.org/10.1049/ip-e.1990.0002

50

[75] Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-
time task model. In: Proc of the 17th IEEE Real-Time and Em-
bedded Technology and Applications Symposium. pp. 71–80 (2011).
https://doi.org/10.1109/RTAS.2011.15

[76] Sun, J., Guan, N., Shi, R., Tan, G., Yi, W.: Schedulability analysis for
timed automata with tasks. ACM Transactions on Embedded Computing
Systems 20(5s), 1–26 (2021). https://doi.org/10.1145/3477020

[77] Tipaldi, M., Bruenjes, B.: Survey on fault detection, isolation, and recovery
strategies in the space domain. Journal of Aerospace Information Systems
12(2), 235–256 (2015)

[78] Tripakis, S.: Verifying progress in timed systems. In: Proc. of the Inter-
national Workshop on Aspects of Real-Time Systems and Concurrent and
Distributed Software. pp. 299–314 (1999). https://doi.org/10.1007/3-540-
48778-6_18

[79] Waszniowski, L., Hanzálek, Z.: Formal verification of multitasking appli-
cations based on timed automata model. Real-Time Systems 38(1), 39–65
(2008). https://doi.org/10.1007/s11241-007-9036-z

[80] Wieder, A., Brandenburg, B.B.: Efficient partitioning of sporadic real-
time tasks with shared resources and spin locks. In: Proc. of the IEEE
International Symposium on Industrial Embedded Systems. pp. 49–58 (2013).
https://doi.org/10.1109/SIES.2013.6601470

[81] Wieder, A., Brandenburg, B.B.: On spin locks in AUTOSAR: Block-
ing analysis of FIFO, unordered, and priority-ordered spin locks. In:
2013 IEEE 34th Real-Time Systems Symposium. pp. 45–56 (2013).
https://doi.org/10.1109/RTSS.2013.13

[82] Yalcinkaya, B., Nasri, M., Brandenburg, B.B.: An exact schedulability test
for non-preemptive self-suspending real-time tasks. In: Proc. of the Design,
Automation Test in Europe Conference Exhibition. pp. 1228–1233 (2019).
https://doi.org/10.23919/DATE.2019.8715111

51

Appendix A. Implementation Considerations for the ILP Problem

In Section 5, we have not mentioned the chosen optimization function and
have only approached the affinity problem as a constraint satisfaction problem
(CSP), i.e., finding a solution that satisfies all the constraints without optimizing
any criteria. For our implementation, we introduce an optimization criterion
that seeks to balance the load on the cores as best as possible:

minimize maxc∈1..|C |

{∑
t∈1..|T | α[t, c]

wt[t]
p[t]

}
and with shared data:

minimize maxc∈1..|C |

{∑
t∈1..|T |

δ[t,c]
p[t]

}
Appendix B. Proof of Proposition 2 (Sketch)

To prove that Nc is timelock free, we need to prove that the underlying TS
has no timelock states. Let n be the number of tasks TA in Nc. A state of
the underlying TS is therefore of the form S = ((ls , l1 , . . . , ln), v) where ls is the
current location of the scheduler Oc, l1 . . . ln the current locations of each task
TAτ and v a vector of clock valuations. The intuition of this very high-level
sketch19 is to show that S is not a timelock state no matter the values of ls,
l1 . . . ln. We use the notation −n to denote any values of l1 . . . ln.

If ls = wait , then any S = ((ls ,−n),−) is timelock free. Indeed, since wait
is invariant free, either a delay transition is taken from S, or a termination or
an activation of some task happens. In any case, a finite number of discrete
transitions takes place before reaching a state S′ where ls is equal to wait or a
state S′′ where ls = preempt . This is because the (i) number of tasks is finite
and (ii) periods are strictly positive integers (Sect. 3.1), so sequences of zero-time
terminations/activations are finite, meaning that committed locations on the
paths leading from wait to wait or preempt in the scheduler are eventually left.

From S′, a delay transition will inevitably happen. This is because no time
elapsed since last activating all tasks that had to be activated (all paths that lead
back to wait pass through committed locations at which time may not elapse)
and therefore no other task will be activated or terminated immediately. Here,
delay transitions take place as tasks execute20, and such execution is guaranteed
to be (non-zeno) timelock free because the intervals [bcs(s),wcs(s)] are non
empty by definition for any segment s (Sect. 3.1).

From S′′ (with ls = preempt), either a delay transition happens (invariant-
free location) or a finite succession of discrete transitions takes place (again
because the number of tasks is finite) and a new TS state with ls = wait and

19More guarantees on absence of timelocks are explained in the public artefact (link in
Sect. 7.3).

20If BCETs are set to zero, the possible zero-time sequence corresponding to tasks execution
one after another until there is no more task to execute (finite number of activated tasks) or
activate immediately (periods are strictly positive integers, Sect. 3.1), leads to a new state
with ls = wait from which delay transitions are inevitable.

52

inevitable delay transitions is reached (at this new state, delay transitions are
inevitable exactly for the same reasons they are inevitable in S′ above).

Summarized, from any state S with ls = wait or ls = preempt , either delay
transitions take place or another state S with ls = wait or ls = preempt where a
delay transition takes place is reached, and inductively from S a delay transition
will eventually happen. Therefore, time diverges from S through cumulating
these delay transitions in an infinite manner, and thus S is not a timelock state.

For the remaining configurations, if ls in S is equal anything but wait or
preempt , then a new TS state S with ls = preempt or ls = wait is eventually
reached. Indeed, for instance, if ls = decide, then a TS state with either ls = wait ,
ls = preempt or ls = release is eventually reached (the disjunction of outgoing
edges decide → is a tautology), and if ls = release in the new TS state, then a
TS state with ls = wait is eventually reached (the synchronization over the edge
decide → wait is guaranteed to happen in zero time). As shown above, time will
diverge from S and therefore there is an infinite path from S such that time
diverges (because S is reachable from S). It follows that S is not a timelock
state.

In conclusion, any state of the underlying TS of Nc is timelock free, and
therefore Nc is timelock free.

53

	Introduction
	Addressed Problem & Motivation
	Contributions & Outline

	Preliminaries
	Data Sharing
	Integer Linear Programming (ILP)
	Timed Automata (TA)
	Synchronization-free Networks
	Timelocks
	UPPAAL TA

	Timed Computational Tree Logic (TCTL)

	Challenges & Overall Approach
	ERTS Model
	Justifying the Scheduling Choices
	Overall Approach

	The Data Sharing Problem
	Sequence Locks (Seqlocks)
	Bounding Seqlocks
	Implication on Task Set
	Deducing Data Sharing Overheads
	Comparison to Spinlocks and Reader-Writer Locks

	Solving the Affinity Problem
	Ignoring Data Sharing Overheads
	Schedulability Test
	ILP Formulation & Implementation Considerations

	Taking Data Sharing Overheads Into Account
	Schedulability Test
	ILP Formulation & Implementation Considerations

	Summary and Discussion

	TA Model & Compositional Verification
	UPPAAL Model
	Task TA (Without Synchronizations)
	Gluing the TA

	Compositional Verification
	Properties of Interest

	Evaluation
	Technicalities
	Experiments
	Autonomous Robots
	WATERS Industrial Challenge

	Artefacts
	Discussion

	Related Work
	Conclusion
	Implementation Considerations for the ILP Problem
	Proof of Proposition 2 (Sketch)

