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The transient response of an induction coil above an infinite
conducting plate is calculated in time domain by combining
a semi-analytical modal expansion approach with the Euler
integration scheme. The derived state equation at a given time-
step is formally equivalent to the Helmholtz equation with an
imaginary frequency linked to the sampling rate, which provides
a significant computational advantage with respect to spectral
methods based on Fourier/Laplace domain discretisation. In
addition, time-stepping schemes prove to be more robust than
the spectral approaches, where the optimal choice of the sample
frequencies is an issue of major concern. The developed solution
is applied for the calculation of the magnetic field in a driver-
pickup coil inspection configuration involving pulsed currents,
and the coil response is obtained using the time-domain version
of the reciprocity theorem. The theoretical results are compared
against reference numerical solutions demonstrating an excellent
agreement.

I. INTRODUCTION

Pulsed eddy-current testing (PECT) has attracted the interest
of numerous researchers and non-destructive testing practi-
tioners the last years for a number of reasons. The main
motivation of this increased interest is the attempt of extending
the sensitivity zone of traditional harmonic ECT techniques
deeper in the material. Pulsed currents, having in principle
broadband spectra, can respond to this requirement, without
compromising the resolution for subsurface defects thanks to
the higher frequency spectral components. From the point of
view of laboratory implementation, PECT can be carried out
with relatively simple equipment. This convenience is also
enhanced by the latest developments of fast data acquisition
cards nowadays.

From the theoretical point of view, this raised interest in
the PECT method has motivated the development of fast and
reliable theoretical models for the prediction of the measure-
ment signals. Semi-analytical solutions are always attractive,
when the problem under consideration is amenable to analytic
formulation, due to very interesting computational times with
respect to numerical solutions. There is a huge amount of
published works on the semi-analytical modelling of harmonic
ECT in canonical multilayer structures, stemming from the
seminal articles of Dodd and Deeds [1], [2]. Taking advantage
of this corpus of published works, transient solutions can be
constructed by addressing the eddy-current problem under a
monochromatic excitation using the above mentioned estab-
lished harmonic solutions and resorting to an inverse Fourier

or Laplace transform to obtain the corresponding time signals.
The main difference of the two approaches is the domain of
the sampling frequencies, which in the case of the Laplace
transform spans the half of the complex plane, whereas the
Fourier frequencies lie on the imaginary axis.

The Fourier transform is perhaps the most straight forward
approach for the calculation of the transient response due to
the simplicity and robustness of the inverse transform operator,
which in addition can take advantage of the well established
Fast Fourier Transform (FFT) algorithms [3]–[5]. Even if FFT
can significantly accelerate the calculation of the time signals,
the increased number of frequencies required for the accurate
representation of the usual transient signals met in PECT
applications can inhibit the inherent excellent computational
performances of the semi-analytical solutions. To overcome
this problem, intelligent sampling of the frequency axis in
combination with interpolation has been proposed in recent
works [6]–[8]. An insurmountable difficulty inherit with the
Fourier approach is the so-called Gibbs effect apparent at the
vicinity of signal discontinuities, which is the case of step or
pulse excitations, frequently used in PECT configurations.

Laplace transform on the other side remains the most effi-
cient and elegant tool for the solution of initial value problems.
The main challenge, however, of this approach comes from
the lack of a generic and robust algorithm for the sampling
of the complex plane and the thereupon linked inversion
approach. As a result, the solution to the problem remains
to a great extend ad hoc, with a number of works devising
closed-form (whenever possible) inversion formulas [9], [10]
or pole extraction using Padé approximation or decomposition
using the generalised pencil of function (GPoF) approach [11],
[12]. For the short-time transient signal calculation, which has
the form of exponential damping, a number of specialised
numerical algorithms such as the Stehfest method has also
been proposed with excellent results [13].

A more direct approach, usually applied to mesh-based
approaches, such as the finite element method (FEM) or the
finite integration technique (FIT), relied in discretisation of
the temporal derivatives and iterative solution using a time-
stepping scheme [14]–[16]. Stability issues impose the use
of implicit time integration schemes for diffusion problems
as the one examined here. Nevertheless, recent works have
shown that quasi-explicit schemes can also be applied with
the consequent benefits in computational performances [16].
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This latter approach has been barely considered, to the best of
he authors’ knowledge, in combination with modal schemes,
and the reason lies with the right-hand term in the diffusion
equation linked with the previous timestep(s). Such inhomoge-
neous terms may be resolved with the extension of the modal
projection basis, as it was shown in the case of non-linear
eddy-current problem [12], [17].

In this work, the ideas developed in [12], [17] are applied
for the solution of the implicit time-stepping schemes obtained
from the temporal discretisation of the eddy-current equation
of state in the spectral domain for the solution of the PECT
inspection of a conducting plate. The interest in combining
the spectral (semi-analytical) approach with time-stepping
relies in the robustness of the approach regardless the form
of the excitation signal. It is shown that the state equation
obtained upon time-discretisation bears the same form with
the harmonic case with an effective frequency (linked with
the discretisation rate), which is the same for all time-steps
(provided that a uniform discretisation has been applied). This
detail is important for the efficiency of the overall scheme
since combined with the sparsity of the system matrix obtained
upon the projection to the spectral basis (the problem modes) is
translated to a problem factorisation. A time-domain version of
the reciprocity theorem is then proposed in order to calculate
the induced electromotive force (EMF) at the pick-up coil
without the need of passing from the Fourier domain.

The paper is organised as follows. The considered problem
is presented in section II. The mathematical formulation of
the approach is developed in the next section (section III), fol-
lowed by the calculation of receiving coil EMF in section IV.
An analysis of the numerical performance of the method is
presented in section V. Finally, the numerical results obtained
by the proposed approach are compared against reference
solutions in section VI.

II. PROBLEM DESCRIPTION

The problem which we shall consider is depicted in Fig. 1.
An infinite conducting plate of thickness d is inspected by a
couple of cylindrical coaxial coils, whose axes are perpen-
dicular to the surface of the plate. The plate conductivity
and magnetic permeability is equal to σ and µ = µrµ0,
respectively, with µ0 standing for the permeability of the
free space and µr is the relative permeability. The coils are
connected in driver-pickup mode, that is, current is supplied
to the first one (driver coil), and the induced voltage at the
second (pickup coil) is measured.

The excitation current has arbitrary temporal profile I =
I(t), whose energy is principally distributed in the low-
frequency band between 0 and 100 kHz. Under this assump-
tion, the quasi-static approximation for the Maxwell equations
is valid, and we can proceed to the analysis in a similar way
that we do for the typical harmonic eddy-current problem. In
addition, the coil current is assumed to be weak enough in
order that non-linear effects be negligible.

For the needs of the analysis, the three layers of the
geometry (plate and air columns above and underneath it) will
be referred to using the indices 1, 2 and 3, as shown in Fig. 1.

z

z = −dσ, µ

1

2

3
ρ = ρL

z1pz2p

z1d z2dr1p
r2p

r1d
r2d

z = 0

Fig. 1: Infinite conducting plate inspected via a pair of coaxial
cylindrical coils connected in driver(d) - pickup (p) mode. The
geometry consists a three-layer medium.

The objective of the analysis is to calculate the induced
voltage in the coil V (t).

It is convenient to artificially truncate the computational
domain at a sufficiently remote from the coil distance, which
will be denoted as ρrL and apply a perfectly electric conductor
(PEC) condition there. Since we are dealing with a diffusion
problem, the field intensity is rapidly decreasing as we are
moving far from the source, and hence it can be considered as
negligible after a certain distance. This is the basic assump-
tion adopted in the so called truncated region eigenfunction
(TREE) approach, used in this work and which proves to result
in a convenient simplification of the problem (with respect to
the classical Dood and Deeds approach [1], [2]).

III. SOLUTION IN THE TIME DOMAIN USING TIME
DESCRETISATION

A. Vector potential formulation in time domain

The mathematical analysis of the transient problem follows
the A − Φ formulation for the quasi-static limit, which is
the established approach for the treatment of axisymmetric
problems. The magnetic vector potential A, and the electric
scalar potential Φ are defined via the relations

B = ∇×A (1)

and
E = −dA

dt
−∇Φ (2)

with E, B being the electric field and the magnetic flux
density, respectively. Notice that for problems with axisymetric
summetruy we can adopt a potential ansatz of the type A =
Aeφ, where eφ is the unit vector along the φ direction, i.e.
the magnetic vector potential lies in the azimuthal direction.

Upon substitution to the Maxwell equations one obtains the
diffusion equation for the potentials

∇× µ−1∇×A + σ
dA

dt
= −σΦ + J (3)

where J is the excitation current density, and σ, µ stand for
the electrical conductivity and the magnetic permeability of
the medium. The material will be considered as isotropic and
linear throughout this work, i.e. the magnetic flux density B
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and the magnetic field H are related via a linear constitutive
relation

B = µH. (4)

Assuming in addition a piecewise homogeneous material
and using the Coulomb’s gauge for the magnetic vector
potential A, the magnetic permeability can be drawn outside
the curl operator reducing (3) to the scalar equation(

∇2 − 1

ρ2
− µσ d

dt

)
A = −µJ, (5)

where we have taken into account the azimuthal orientation of
the magnetic potential and the excitation current (J = Jeφ).

We are interested in the source-free case J = 0, since all
the layers except the internal and/or the external region of the
tube wall do not contain excitation currents. The coil field in
these latter two regions will be treated indirectly as we will
see later.

Equation (5) is a parabolic equation, and hence its numerical
integration should be carried out using an unconditionally
stable scheme. Let us consider a homogeneous descretisation
of the time axis ti = i∆t, with i = 0, 1, . . . and ∆t the
discretisation step. Using an implicit Euler scheme for the
time derivative, (5) reduces to the following update equation,
where the solution at i is given by means of the solution at
the previous time-step i− 1(

∇2 − 1

ρ2
− µσ

∆t

)
Ai = −µσ

∆t
Ai−1. (6)

The notation can be simplified by introducing the equivalent
angular frequency ωs = −

√
−1/∆t, with

√
−1 being the

imaginary unit, and (6) becomes(
∇2 − 1

ρ2
− k2

)
An = −fn. (7)

with k2 =
√
−1ωsµσ and fn = k2An−1. Equation (7)

is formally equivalent with the inhomogeneous Helmholtz
equation for frequency equal to the discretisation (sampling)
frequency of the time integration scheme. Our problem thus
reduces to the solution of the Helmholtz equation with a source
term at each time-step, which is a very convenient observation
since one can resort to tools developed for the harmonic regime
in a planar medium [12], [17]–[19].

B. General solution of the inhomogeneous Helmholtz equa-
tion

For the solution of (7), we shall adopt the same strategy used
in [12], [17]. The solution of the inhomogeneous equation is
decomposed in the sum of a partial solution, which eliminates
the right-hand-side term, and the solution of the homogeneous
equation, which takes care of the current excitation and assures
the fulfilment of the continuity relations across the geometry
interfaces.

In the two air regions, above and underneath the plate both
k and fi in the diffusion equation (6) vanish, which means that

the problem there reduces to the magnetostatic formulation1.
The solution for the magnetic potential in these two regions
reads

A
(1)
i (ρ, z) =

∞∑
m=1

J1(κmρ)
[
C

(1)
i;me

κmz +D
(s)
i;me

−κmz
]

(8)

and

A
(3)
i (ρ, z) =

∞∑
m=1

C
(3)
i;mJ1(κmρ) e−κmz (9)

respectively. Note that D(s)
im stand for the development coef-

ficients for the coil field in the unbounded medium, and they
are hence known. Their explicit expressions will be given at
a later point. The κm eigenvalues are determined by the zero
tangential potential condition imposed by the PEC boundary at
ρL, and they are obtained by the roots of the Bessel functions

J1(κmρL) = 0, m = 1, 2, . . . ,∞. (10)

Inside the plate, we must address the inhomogeneous
Helmholtz equation. The general solution can be expressed as
the superposition of the homogeneous solution and a special
solution, which satisfies the right-hand-side [17], [20]

A
(2)
i (ρ, z) = A

(h)
i (ρ, z) +A

(s)
i (ρ, z) (11)

The homogeneous solution reads

A
(h)
i (ρ, z) =

∞∑
m=1

J1(κmρ)
[
C

(2)
i;me

vmz +D
(2)
i;me

−vmz
]

(12)

with v2m = κ2m + k2.
The modal basis used for the homogeneous solution belongs

to the kernel of the Helmholtz operator (ker
[
∇2 − k2

]
) and

hence must be complemented in the z direction for the
development of the special solution, which must satisfy a non-
zero right-hand side [15], [17]. A suitable eigenbasis for this
development is the Fourier basis. Since the solution does not
satisfy any symmetry property along z the full Fourier basis
must be used with period slightly larger than d (given that
a Fourier series describes a periodic function). Such choice,
however, would suffer from the Gibbs effect at the plate
boundaries. To overcome this difficulty, the special solution
can be split into two terms: one satisfying zero boundary
conditions at the plate interfaces, and a second term accounting
for the in general non-zero field value at those interfaces. This
representation is schematically shown in Fig. 2. We can thus
write

A
(s)
i (ρ, z) =

∞∑
m=1

J1(κmρ)

∞∑
n=1

[ci;mn sin(qnz) + gi;m(z)]

(13)

with eigenvalues qn being obtained by the zero field condition
at the plate interfaces, namely

qn =
nπ

d
, n = 1, 2, . . . ,∞. (14)

1Strictly speaking, the field is not stationary but its value follows the
excitation variations instantaneously, that is without delay due to diffusion.
In this sense the problem formulation is isomorphic with the magnetostatic
equations and hence it will be considered as such.
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We are free to chose the form of the gi;m(z) with the
condition that it contains a sufficient number of degrees of
freedom in order to account for the field values at z = 0 and
z = −d. These conditions are easily met by any polynomial
of degree greater than 0. Another possible choice is

gi;m(z) =

2∑
n=1

di;mn cos(qnz) (15)

with qn given by (14) and the coefficients di;mn are determined
by matching the boundary values for gi;m(z). In this work, this
latter choice has been adopted since it leads to slightly simpler
equations.

Fig. 2: Representation of an arbitrary function as a sum of a
sine series and a residual term.

C. Application of the update equation: special solution
calculation

Substituting (11) into (6), the first two terms vanish by
construction (being solutions of the homogeneous equation)
yielding

∞∑
m=1

J1(κmρ)

[ ∞∑
n=1

(
v2m + q2n

)
ci;mn sin(qnz)

+

2∑
n=1

(
v2m + q2n

)
di;mn cos(qnz)

]
= fi(ρ, z) . (16)

The di;mn coefficients are easily obtained by observing
(16) at the two plate interfaces (thus the first term vanishes)
and weighting the two sides of the equation by the radial
eigenfunctions J1(κmρ)

di;mn =
〈J1(κmρ) , fi(ρ, 0)∓ fi(ρ,−d)〉

2 (v2m + q2n)
, n = 1, 2 (17)

with the minus sign being chosen for n = 1 and the plus for
n = 2. The inner product is defined as

〈J1(κmρ) , R(ρ)〉 :=
2

ρ2LJ
2
0(κmρ2L)

ρL∫
0

ρJ1(κmρ)R(ρ) dρ.

(18)

Recalling the definition of fi, which stands for the previous
timestep solution, i.e. fi = k2A

(2)
i−1 and substituting the

corresponding modal development, (17) reduces to

di;mn =
k2

v2m + q2n

[
di−1;mn +

1

2

(
1∓ e−vmd

)
C

(2)
i−1;m

+
1

2

(
1∓ evmd

)
D

(2)
i−1;m

]
, n = 1, 2.

(19)

Note that Ci−1;m, D
(2)
i−1;m and di−1;mn are known since they

have been calculated in the previous step.
Having evaluated ai;m and bi;m, we can move this term

to the right-hand-side of (16) and weight both terms with
the Laplacian operator eigenfunctions J1(κmρ) sin(qnz) thus
obtaining

ci,mn =
1

v2m + q2n
〈J1(κmρ) sin(qnz) , fi(ρ, z)〉, n = 1, . . . ,∞

(20)

with the inner product along ρ being given by (18) and the
inner product along z defined as

〈sin(qnz) , Z(z)〉 :=
2

d

0∫
−d

sin(qnz)Z(z) dz. (21)

Recalling again the fi definition as the solution at the
previous timestep, (22) becomes

ci,mn =
k2

v2m + q2n

[
ci−1;mn + C

(2)
i−1;mMmn +D

(2)
i−1;mNmn

]
,

n = 1, . . . ,∞ (22)

with the integrals

{
Mmn

Nmn

}
=

2

d

0∫
−d

sin(qnz) e
±vmzdz

= −2

d

qn
v2m + q2n

[
1− e∓vmd(−1)n

]
. (23)

D. Application of the continuity relations: homogeneous
solution calculation

The development coefficients of the homogeneous solution
C

(1)
i;m, C

(2)
i;m, D

(2)
i;m and D

(3)
i;m will be determined by the ap-

plication of the continuity relations at the interfaces of the
geometry. We have two conditions in our procession which the
solution must satisfy: the continuity of the magnetic potential
and its normal derivative. Hence at the z = 0 interface we
have

A(1)
∣∣∣
ρ1

= A(2)
∣∣∣
ρ1

(24)

∂A(1)

∂z

∣∣∣∣
ρ1

=
1

µr

∂A(2)

∂z

∣∣∣∣
ρ1

(25)

and similarly for z = −d.
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Substituting the expressions (8)-(11) and weighting with the
radial eigenfuction using (18), we obtain for z0

C
(1)
i;m +D

(s)
i;m = C

(2)
i;m +D

(2)
i;m +

2∑
n=1

di;m1 (26)

µrκm

[
C

(1)
i;m −D

(s)
i;m

]
= vm

[
C

(2)
i;m −D

(2)
i;m

]
+

∞∑
n=1

qnci;mn.

(27)

In the same fashion the continuity relations at z = −d yield

C
(3)
i;m = C

(2)
i;m +D

(2)
i;m +

2∑
n=1

(−1)ndi;mn. (28)

µrκmC
(3)
i;m = vm

[
C

(2)
i;m −D

(2)
i;m

]
+

∞∑
n=1

(−1)nqnci;mn. (29)

E. Source field

In the previous development, the field of the source coil in
the air, represented in the modal solution via the coefficients
D

(s)
i;m has been considered as known. In order to calculate these

coefficients, one has to recall that the coil field will satisfy the
magnetostatic equations, since σ = 0 in air, and hence (5)
reduces to (

∇2 − 1

ρ2

)
A0(ρ, z, t) = −µJ(ρ, z, t) . (30)

It becomes clear from (30) that the solution A0 follows
instantaneously the current density value, which in its turn
can be split in a spatial and a temporal part.

J(ρ, z, t) = ι(ρ, z) I(t) (31)

with

ι(ρ, z) =

{ Nd

(r2d−r1d)(z2d−z1d) , in coil.

0 elsewhere
(32)

Nd stands for the number of turns in the driving coil, and
r1d, r2d, z1d, z2d its radial and axial dimensions, shown in
Fig. 1.

Following [18], D(s)
i;m are given from the relation

D
(s)
i;m = −4µ0ι(ρ, z) sinh

(
κml

2

)
χ(κmr1d, κmr2d)

κ5n [ρLJ1(κnρL)]
2

× Jm(κnρd) e
−κmzdIi (33)

where rd = (r2d + r1d)/2 and zd = (z2d + z1d)/2 the
coordinates of the coil centre and l = z2d − z1d its length.
Ii stands for the discretised current signal, i.e. Ii = I(ti).

IV. CALCULATION OF THE PICK-UP COIL VOLTAGE

For the driver-pick-up coil configuration that we examine
here, an important quantity is the electromotive force (EMF)
induced at the pick-up coil, for the reason that it constitutes the
main experimental variable for this type of control. Its calcu-
lation is thus one of the major objectives of the mathematical
modelling.

In harmonic regime, the respective quantity (or the equiva-
lent variable of the coil mutual impedance) is calculated in

an elegant way using the Auld’s reciprocity theorem [21],
[22]. For transient measurements, this theorem can be readily
extended using convolution integrals. The TD case has been
treated principally in the antennas community for the calcula-
tion of receiver response to arbitrary signals [23]–[29]. To the
best of the authors’ knowledge, this problem has been scarcely
explored for low-frequency problems and therefore it will be
considered herein in some detail.

The general form for the 2D problem with rotational sym-
metry reads

∆V (t) ∗ I(t) =
1

µ0

∮
∂V

(
Aec ∗ ∇

dAs
dt
− dAs

dt
∗ ∇Aec

)
· dS

(34)

It is obtained following the standard procedure found in almost
all the classical textbooks. A detailed derivation is provided
in the appendix for the sake of the text self-completeness.

Interestingly, the convolution integral of (34) right-hand-
side can be dropped by observing that the source field, being
solution of the magnetostatic problem, instantly follows the
time variations of the input current. Note that this is an approx-
imation which holds only in the context of the low-frequency
quasi-static formulation, which the eddy-current problem sat-
isfies. By virtue of this property, the time derivatives of the
source field will provide Dirac functions in case that the
current excitation is a Heaviside function H(t). Equation (34)
becomes

∆s(t) =
1

µ0

∮
∂V

[Aec(t)∇A∗s −A∗s∇Aec(t)] · dS (35)

where A∗s is the source field for a unit constant current and
∆s is the EMF integral

s(t) =

t∫
0

∆V (τ) dτ. (36)

The EMF expression for an arbitrary current profile I(t) can
be easily obtained from the step response ∆s(t) by applying
the Duhamel’s integral [11]

∆VI(t) =
d

dt

t∫
0

∆VH(τ) I(t− τ) dτ (37)

with the ∆VI and ∆VH denoting the signals for the arbitrary
and step excitation, respectively. Noting that ∆VH is the time
derivative of s(t) and carrying out integration by parts (37)
becomes

∆VI(t) = − d

dt

t∫
0

s(τ) İ(t− τ) dτ. (38)

For a discrete signal, the time integral reduces to a simple
trapezoidal rule. Furthermore, the derivative can be approxi-
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mated by a finite difference scheme yielding to the following
relation

∆VIi = −
i∑

k=0

sk İi−k +

i−1∑
k=0

sk İi−k−1

=

i−1∑
k=0

sk

(
İi−k−1 − İi−k

)
− siİ0. (39)

A case of special interest consists the excitation with a
rectangular pulse since this is the most usual excitation signal
used in PECT applications. In this case the EMF calculation
can be readily derived noting that

∆VI(t) =
d

dt
[s(t)− s(t− T )] (40)

where T stands for the pulse duration. Assuming that T =
K∆t, the discrete form of (40) admits the particularly simple
expression

∆VIi = (si − si−1 − si−K + si−K−1) /∆t. (41)

We need now to calculate the surface integral in terms of
the development coefficients C(1)

i;m and D
(s)
i;m. The analysis is

strictly identical with the harmonic case, and the result reads
for the ith timestep

si = −2πρ2L
µ0

∞∑
m=0

κmJ1(κmρL)C
(1)
i;mD

(s)
m . (42)

where the timestep index i has been intentionally suppressed
since the source field is constant for t > 0.

The absolute signal at the pickup coil can be easily obtained
by recalling that for two coils in air

V0(t) = −M dI

dt
(43)

where M is the mutual impedance between driver and pickup
coil. The total signal will be the superposition of ∆V and the
signal in air, i.e. V (t) = ∆V (t)−Mİ(t).

V. NUMERICAL PERFORMANCE

A number of tuning parameters needs to be fixed in order
to proceed to numerical computations. Rules of thump for
the estimation of the domain truncation limit ρL and the
maximum number of radial modes Nm taken into account
for the solution have been proposed in a series of previous
works (e.g. [18], [30], [31]). The choice of ρL is principally
dictated by geometrical criteria such as the coil external radii.
For the series truncation, general rules are more hard to find
yet numerical experimentation proves that a number between
100 and 150 modes would be sufficient for the most of the
cases.

As far as the number of axial modes ql is concerned, there is
again no general rule than can be followed. However, the small
thickness of the specimens considered in PECT applications
indicate that truncating the Fourier series to no more than 15-
20 terms, would hardly affect the accuracy of the solution.
The arguments resemble the discussion given in [12], [31]
concerning the series truncation for the TM potential (Wb

second order vector potential) in planar specimens with a

borehole. Final judge for a safe estimation of these parameters
should be the numerical experimentation.

An important speed-up of the time-stepping approach with
respect to spectral decomposition using Fourier or Laplace
transform, consists in the fact that the sampling frequency
appearing in the Helmholtz equation (7) is the same for all
iterations, meaning that the system can be factorised using
LU decomposition once thus significantly accelerating the
overall solution. It is noted that the equation system (27),(29)
is diagonal along the φ direction, a fact that facilitates the
factorisation. A similar decomposition has been exploited also
in a hybrid FIT-modal scheme leading to important speed-
up factors [32]. As a figure of merit, all the numerical
computations carried out in the context of this work were of
the order of a few seconds for a complete excitation cycle
of 100 timesteps, using a modern PC (Intel(R) Core(TM) i7-
8850H CPU @ 2.60 GHz).

VI. RESULTS

The proposed approach has been applied for the calculation
of the PECT response in the inspection scenario described by
Fig. 1. The plate conductivity and relative magnetic perme-
ability are σ = 5 MS/m and µr = 150, respectively, which
correspond more or less the parameters of a typical construc-
tion steel. The plate thickness is 1 mm. The inner and outer
radius of the driver coil is r1d = 1 mm and r2d = 2.65 mm,
respectively, its length is z2d−z1d = 2 mm and its number of
turns is Nd336. The corresponding dimensions for the pickup
coil are r1p = 2 mm and r2d = 5 mm and z2p− z1p = 2 mm,
and it is wound with Np=700 turns.

The first computation concerns the magnetic field calcula-
tion at a representative point in underneath the plate (ρo =
0 mm, zo = −3d/2). Two waveforms for the input current
have been considered: a rectangular pulse and a pulse with
exponential relaxation. The latter case is representative of a
realistic current signal provided by a square voltage generator.
The pulse duration is taken of 1 ms duration with a 40% duty
cycle (dc) for both waveforms, and the pulse amplitude reaches
1 A. The time constant for the exponential pulse is 0.05 ms.
The signal waveform is depicted in Fig. 3

The field transients for both inputs are shown in Fig. 4.
As reference solution are taken numerical simulations using
the FIT method. The FIT solution is also calculated in TD
using a timestepping scheme and the difference with the herein
presented approach consists in the discretisation of the spatial
part using a computational grid [14], [15].

The induced EMF signals computed with the semi-
analytical approach for the two signals of Fig. 3 are compared
against the corresponding FIT results in Fig. 5. Since the rect-
angular pulse is a highly idealised situation, the exponential
curve described by the second signal is taken as a characteristic
current profile when the coil is fed by a typical voltage source
[9]. Note that the EMF response is calculated with FIT via
direct integration of the magnetic vector potential

V = −2π
Np
Sp

d

dt

∫
pickup

A(r) dS (44)
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Fig. 3: Excitation signals used for the solution validation: 40%
dc square pulse and pulse with exponential relaxation (charge-
discharge mode).

where the integration is carried out on the cross-section of the
pickup coil, with Sp = (z2p − z1p)(r2p − r1p) and Np/Sp
standing for the windings density.

A final comparison is realised between the semi-analytical
results for the EMF in the pickup coil calculated using the
timestepping approach and the TD reciprocity theorem and
the corresponding results obtained using the Laplace approach
described in [13], where the Stehfest algorithm is used for the
calculation of the inverse Laplace transform. The calculations
have been carried out for step excitation since the Stehfest
algorithm does not work for non-monotonous excitations. The
comparison is shown in Fig. 6

All results show a very good agreement verifying the
accuracy of the TD approach.

VII. CONCLUSION

In this work the TREE semi-analytical approach has been
combined with time-stepping integration for the calculation of
the eddy-current transient response under arbitrary signals. The
main advantage of the time-stepping approach with respect to
Fourier or Laplace inversion is the robustness of the solution
(Gibbs effect or instabilities due to non-monotonicity of the
input). To the drawbacks of the approach can be counted the
mathematicam complexity of the scheme (one has to deal with
the inhomogeneous Helmholtz equation) and the potentially
large number of time samples one has to consider for certain
excitations. Laplace-based approaches are much more flexible,
providing the possibility of a highly inhomogeneous sampling
of the time-axis. Hence, the herein presented approach can
be considered as complementary to the Laplace solutions
for situations where smooth transients in a reasonable time
interval need to be calculated.

The TD version of the reciprocity theorem provides an
elegant way of calculation the receiver EMF. Note that the
approach presented in section IV is compatible with Laplace
calculations of the step response, making the algorithm also
applicable beyond the scope of the time-stepping solution of
this work.

(a)

(b)

Fig. 4: Semi-analytical vs. numerical (FIT) solution for (a)
Bρ and (b) Bz field components as a function of time at the
selected observation point under the specimen. The transient
signals are shown for both current excitations of Fig. 3.

APPENDIX

In this appendix, we shall derive the TD version of the
reciprocity theorem for the special case of the eddy-current
problem. The derivation will follow in general Felsen and
Marcuvitz [33]. Further references can be sought mostly in the
wave propagation literature such as [23]–[29]. The list does
not claim exhaustiveness.

We start the analysis by writing the Maxwell equations in
the free space for an arbitrary current source vector J

∇×Es = −dBs

dt
(45)

∇×Hs = J (46)

where the index s stands for source. Introducing the conductive
medium, and subtracting the free-space solution from the one
in the presence of the conductor, we obtain for the field
difference in the source region (the air region where source
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Fig. 5: EMF at the pick-up coil for the exponential pulse.
The semi-analytical results calculated via the TD reciprocity
relation are compared against the FIT results calculated by
direct integration of the induced voltage (44).

Fig. 6: Comparison of the semi-analytical calculation of the
pickup EMF using the TD and the Laplace domain approach
(Stehfest) for a step excitation.

lies in)

∇×Eec = −dBec

dt
(47)

∇×Hec = 0 (48)

with Eec = E − Es and similarly for the magnetic field and
magnetic induction variations, i.e. Hec and Bec, respectively.

We apply the transformation t → t′ − t, which performs a
temporal reflection and a shift of the time axis, to (47),(48)
resulting to the adjoint set of equations

∇×E†ec =
dB†ec
dt

(49)

∇×H†ec = 0. (50)

with the adjoint electric and magnetic fields E† = E†(r, t) and
H† = H†(r, t), which are linked with the original solution of

the untransformed equation E and H, via the relations

E†ec(r, t) = Eec(r, t
′ − t) (51)

H†ec(r, t) = Hec(r, t
′ − t) . (52)

The magnetic induction B† is defined accordingly.
Following the usual procedure, we multiply (45),(46) with

H†ec and E†ec and (47),(48) with Hs and Es, respectively, use
of the vector identity

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B

one gets after some trivial manipulations

∇ ·
(
E†ec ×Hs −Es ×H†ec

)
= −H†ec ·

dBs

dt
−Hs ·

dB†ec
dt
−E†ec · J (53)

and multiplying with the permeability of the free-space µ0

∇ ·
(
E†ec ×Bs −Es ×B†ec

)
= − d

dt

(
B†ec ·Bs

)
− µ0E

†
ec · J.

(54)

Integrating (54) throughout the air region and applying the
Gauss theorem in order to get rid of the divergence operator,
we obtain

−
∮
∂V

(
E†ec ×Bs −Es ×B†ec

)
· dS

=
d

dt

∫
V

B†ec ·BsdV + µ0

∫
V

E†ec · JdV (55)

where dS stands for the outwards pointing normal to the
boundary ∂V vector.

Using (1),(2), the integrand of the boundary integral can be
written successively

Eec ×Bs −Es ×Bec

=
dAec

dt
× (∇×As) +

dAs

dt
× (∇×Aec)

=
d

dt
(Aec ×∇×As)−Aec ×

(
∇× dAs

dt

)
+
dAs

dt
× (∇×Aec)

and recalling that in the 2D problem the magnetic potential is
lying along the azimuthal direction A = Aeφ, the last relation
reduces to

Bs ×Eec −Es ×Bec =
d

dt
(Aec ×∇×As)

−
(
Aec∇

dAs
dt
− dAs

dt
∇Aec

)
.
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Integrating (55) in time, taken into account the previous
relation for the boundary integral and rearranging the terms
we arrive at the equation

t′∫
0

dt

∫
V

E†ec · JdV

= − 1

µ0

∮
∂V

(Aec ×∇×As) · endS −
∫
V

B†ec ·BsdV

t
′

0

+
1

µ0

t′∫
0

dt

∮
∂V

(
A†ec∇

dAs
dt
− dAs

dt
∇A†ec

)
· dS. (56)

Making the assumption that the the system initially is in
the zero state and that the excitation current starts from
zero value the first term of the right-hand-side vanishes since
As(r, 0) = 0 and A†ec(r, t

′) = Aec(−r, 0) = 0. Furthermore,
the left-hand-side is equal to the time convolution of the EMF
at the pick-up coil with the excitation current ∆V (t′) ∗ I(t′),
yielding the relation

∆V (t′) ∗ I(t′) =
1

µ0

∮
∂V

(
Aec ∗ ∇

dAs
dt
− dAs

dt
∗ ∇Aec

)
· dS

(57)

with (• ∗ •) standing for the time convolution integral. Equa-
tion (57) provides a very elegant way of calculating the EMF
of the receiving coil, in direct analogy with the classical Auld’s
reciprocity formula [21], [22] for the impedance variation
calculations in harmonic problems.
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