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The dielectric properties of Bi2Te3, a layered compound crystallizing in a rhombohedral structure, are
investigated by means of first-principles calculations at the random phase approximation level. A special
attention is devoted to the anisotropy in the dielectric function and to the local field effects that strongly
renormalize the optical properties in the UV-visible range when the electric field is polarized along the stacking
axis. Furthermore, both the Born effective charges for each atom and the zone center phonon frequencies and
eigenvectors needed to describe the dielectric response in the infrared range are computed. Our theoretical
near-normal incidence reflectivity spectra in both the UV-visible and infrared range are in fairly good agreement
with the experimental spectra, provided that the free carriers Drude contribution arising from defects is included
in the infrared response. The anisotropic plasmon frequencies entering the Drude model are computed within
the rigid band approximation, suggesting that a measurement of the reflectivity in the infrared range for both
polarizations might allow one to infer not only the type of doping but also the level of doping.

DOI: 10.1103/PhysRevB.107.174305

I. INTRODUCTION

A great deal of interest has been focused on Bi2Te3 because
of its outstanding thermoelectric properties at room temper-
ature arising from both a narrow gap electronic structure
and a low thermal conductivity [1]. The more recent discov-
ery of three-dimensional topological insulators has renewed
the interest for this compound. Indeed, soon after Bi2Te3

was theoretically predicted to host topologically nontrivial
metallic surface states with a Dirac-like dispersion around
the surface Brillouin zone center [2], some angular-resolved
photoemission spectroscopy (ARPES) studies revealed the
existence of such linearly dispersing surface states [3–5].
While these extraordinary electronic properties encoded in
the bulk wavefunctions have been thoroughly investigated
both experimentally [6–10] and theoretically [11–16], the
infrared (IR) and optical responses have been studied more
sparsely [17–20], notwithstanding the fact that applications
in the technology relevant IR to visible range have been
envisioned. Indeed, experiments have shown that Bi2Te3

can support surface plasmons in the entire visible range
[21] and some ellipsometry measurements even suggest that
Bi2Te3 is a natural hyperbolic material in the near-IR to
visible spectral range with appealing applications like hyper-
resolved superlensing [22]. Surprisingly, the optical properties
inferred from reflectivity spectra [19] or ellipsometry mea-
surements [20–22] are rather scattered. Hence it is important
to compute reference optical properties at a given level of
theory [23] that can be directly compared to the available
experimental results. Such a confrontation between theory
and experiment is crucial not only to refine the level of
theory needed to achieve a good description of the experi-
mental results but also to spur new experiments guided by
theory.

The paper is organized as follows. In Sec. II, we give an ac-
count of the technicalities used to perform our first-principles
calculations. In Sec. III, we describe the crystallographic
structure of Bi2Te3 and compare our calculated lattice con-
stants and internal coordinates to the experimental values
extracted from x-ray measurements. In Sec. IV, we discuss
the rather complex band structure including spin-orbit cou-
pling (SOC) computed within the local density approximation
(LDA) and show that the band gaps, as expected and al-
ready demonstrated in other theoretical studies [13–16], are
underestimated with respect to the values inferred from opti-
cal spectroscopy measurements. In Sec. V, we compute the
optical properties within the random phase approximation
(RPA) for an electric field either parallel or perpendicular to
the stacking axis, discuss the crucial role of local field (LF)
effects, and make a direct comparison with available exper-
imental results. In Sec. VI, we compare our calculated zone
center phonon frequencies to the frequencies extracted from
both Raman and infrared (IR) spectroscopy measurements.
In Sec. VII, we compute the Born effective charge tensors
that are key ingredients to compute the IR dielectric tensor.
In Sec. VIII, we derive the formalism used to compute the
IR dielectric tensor with our homemade code and discuss the
anisotropy in our computed dielectric tensor for frequencies in
the THz range. In Sec. IX, we compute the normal incidence
reflectivity spectra for both polarizations and only partially
reproduce the experimental spectra because free carriers aris-
ing from defects contribute to the IR dielectric tensor and
lead to a drastic change in the calculated spectra. Finally, in
Sec. X, we compute the anisotropic plasmon frequencies us-
ing a rigid band approximation for different type and level of
doping. A direct comparison with the fitted plasmon frequen-
cies used in Sec. IX to reproduce the experimental spectra
seems to indicate that it might be possible to infer not only
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FIG. 1. (a) Rhombohedral structure with five atoms per unit cell.
The two Te1 atoms, the Te2 atom, and the two Bi atoms are respec-
tively colored in red, purple, and blue. (b) Hexagonal structure with
15 atoms per unit cell. The planes containing Te1 atoms are high-
lighted and one quintuple layer (QL) Te1-Bi-Te2-Bi-Te1 is shown.

the type of doping but also the level of doping from our
calculations.

II. COMPUTATIONAL DETAILS

All the calculations are done within the framework of
the local density approximation (LDA) for the exchange-
correlation functional to density functional theory (DFT)
using the ABINIT code [24,25]. Relativistic separable dual-
space Gaussian pseudopotentials [26] are used with Bi
(6s26p3) and Te (5s25p4) levels treated as valence states. Spin-
orbit coupling is included and an energy cutoff of 40 Hartree
in the plane-wave expansion of wavefunctions together with a
16×16×16 k-point grid for the Brillouin zone integration are
used.

III. LATTICE PARAMETERS
AND INTERNAL COORDINATES

Bi2Te3 crystallizes in a rhombohedral structure, also called
A7 structure, with five atoms per unit cell. The vectors span-
ning the unit cell are given by

a1 =
(

aξ,− aξ√
3
, h

)
, a2 =

(
0,

2aξ√
3

, h

)
,

a3 =
(

−aξ,− aξ√
3
, h

)
, (1)

where ξ = sin[ α
2 ] and h = a

√
1 − 4

3ξ 2. The length of the three
lattice vectors is equal to a and the angle between any pair of
vectors is α. The three Te atoms can be classified into two
inequivalent types. Two of them, labeled as Te1, are located at
±νc, while the last Te atom, labeled as Te2, is set at the origin.
The two Bi atoms are equivalent and located at ±μc. Here
ν and μ are dimensionless parameters and c = a1 + a2 + a3

is parallel to the trigonal axis (C3 axis). The rhombohedral
structure is depicted in Fig. 1(a). Alternatively, the structure
can be viewed as a hexagonal structure depicted in Fig. 1(b)

and spanned by the following three lattice vectors:

a⊥,1 = a1 − a2, a⊥,2 = a2 − a3, a‖ = c, (2)

where a⊥,1 = a⊥,2 ≡ a⊥. The lattice cell parameters of the
two structures are related to each other by the following re-
lations:

a⊥ = 2a sin
(α

2

)
, a = 1

3

√
3a2

⊥ + a2
‖,

a‖ = a
√

3 + 6 cos(α), sin
[α

2

]
= 3

2
a⊥

/√
3a2

⊥ + a2
‖.

(3)

The hexagonal structure is easier to visualize as compared
to the rhombohedral structure and can be viewed as made of
three quintuple layers Te1-Bi-Te2-Bi-Te1. However, it is worth
noting that all the calculations have been performed using the
rhombohedral structure because it contains three times atoms
less than the hexagonal structure.

The calculated LDA lattice parameters including spin-orbit
coupling (SOC) are displayed in Table I and compared to
the lattice parameters obtained from x-ray diffraction exper-
iments performed at 300 K [27], as well as to other existing
theoretical results [12]. Our calculated lattice parameters a‖,0
and a⊥,0 are slightly larger than those obtained by Luo et al.
[12]. Such a difference might be due to a different choice of
the pseudopotentials and/or to a different implementation of
the electronic structure calculation. We also observe that our
calculated a‖,0 and a⊥,0 are respectively underestimated from
2.6% and 0.3% with respect to the experimental values [27].
Such an underestimation for a‖,0 might be ascribed to thermal
expansion effects ignored in our calculations and to long range
effects such as van der Waals interactions not captured by
the LDA exchange-correlation functional. It is worth consid-
ering the three relevant distances between successive planes
perpendicular to the stacking axis (trigonal axis). When con-
sidering the fully relaxed structure, the two shortest distances
dBi-Te1 = 1.75 Å and dBi-Te2 = 2.0 Å are in fairly good agree-
ment with d expt

Bi-Te1
= 1.74 Å and d expt

Bi-Te2
= 2.03 Å, whereas the

largest distance dTe1-Te1 = 2.40 Å is strongly underestimated
with respect to d expt

Te1-Te1
= 2.61 Å in accordance with the fact

that van der Waals interactions between Te1 atoms are ex-
pected to be significant. In contrast, the interplane distances
dBi-Te1 = 1.75 Å, dBi-Te2 = 2.04 Å, and dTe1-Te1 = 2.59 Å are
almost correctly predicted when imposing the experimental
lattice parameters and relaxing the internal coordinates μ and
ν. All the forthcoming calculations have been performed for
the experimental lattice parameters [27] and for the relaxed
internal coordinates shown in Table I.

IV. ELECTRONIC STRUCTURE AT THE LDA LEVEL

The electronic structure of Bi2Te3 has received a lot of
attention and has been studied either at the DFT level [11,12]
or at the GW level [13–16]. As shown in Fig. 2, the band
structure, even at the LDA level, is rather complex. Indeed,
the spin-orbit coupling (SOC) produces a band inversion
in the vicinity of the � point and shifts the band extrema
from the high symmetry lines. Our calculated band extrema
are found in the three mirror planes in agreement with other
theoretical studies [11–13,16]. As two extrema are found in
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TABLE I. Calculated LDA lattice parameters and internal parameters including spin-orbit coupling (SOC) compared to both existing
experimental [27,28] and theoretical [12] results.

Rhombohedral structure Hexagonal structure Internal parameters

a0 (Å) α0 (deg) V0 (Å3) a‖,0 (Å) a⊥,0 (Å) ν (Te) μ (Bi)

Expt. [27,28] 10.473 24.159 169.10 30.487 4.383 0.2095 0.4001
This work (0 K) 10.214 24.706 163.71 29.692 4.370 0.2071 0.4009
LDA+SOC [12] 10.124 24.806 160.65 29.423 4.349 0.2063 0.4012
This work (300 K) 10.473 24.159 169.10 30.487 4.383 0.2091 0.4002

each mirror plane, the multiplicity of our calculated extrema
is 6 as suggested by Shubnikov–de Haas experiments [6,7]
and Landau level spectroscopy [8]. The extrema of the valence
band and conduction band in the x = 0 mirror plane depicted
in Fig. 3 are respectively found at ±(0.349, 0.523, 0.349)
and ±(0.542, 0.647, 0.542) in units of the reciprocal lat-
tice vectors, while these extrema are respectively located at
±(0.37, 0.54, 0.37) and ±(0.58, 0.68, 0.58) in Ref. [13]. Fur-
thermore, the calculated LDA indirect gap is ∼42 meV, while
the minimum direct gap is ∼91 meV. The indirect gap differs
from the LDA gap ∼87 meV reported in Ref. [13]. Such a dif-
ference might be ascribed to the lattice cell parameters and/or
internal coordinates that are expected to play a significant role
on both the positions of the extrema and the values of the gaps
[16]. Optical measurements performed at 10 K led to a prob-
ably indirect band gap of 150 ± 20 meV [29] and a direct gap
of 220 ± 20 meV [29] confirmed by more recent ellipsometry
measurements [20]. The discrepancy between the theoretical
and experimental results is noticeable and reflects the fact
that the LDA eigenvalues cannot be interpreted as quasipar-
ticle energies. More sophisticated approaches based on the

FIG. 2. (a) LDA band structure of Bi2Te3 including spin-orbit
coupling (SOC) calculated along F -�-L, where F = (0, 0.5, 0.5)
and L = (0, 0.5, 0) in units of the reciprocal lattice vectors. The last
valence bands and first conduction bands are respectively colored
in blue and red. (b) Density of states (DOS) per unit cell computed
for a 256×256×256 grid of k points with a Gaussian smearing of
10 meV. In both panels, the valence band maximum is set at zero and
displayed as a blue dashed line, while the conduction band minimum
is displayed as a red dashed line. The conduction bands are shifted
towards higher energies from 120 meV to mimic the self-energy
corrections.

evaluation of the self-energy within the GW approximation
[23,30–32] are needed to provide a better description of quasi-
particle properties. All the GW calculations [13–16] produce
band gaps in better agreement with experiments. It is worth
highlighting that an accurate description of the quasiparticle
band structure near the � point necessitates taking into ac-
count the nondiagonal elements of the self-energy operator
[15]. The self-energy corrections, while less than 200 meV for
one band and one k point [14], are highly nontrivial. Indeed,
the rigid shift scissor approximation is not valid for the highest
valence band and lowest conduction band [14,15], especially
in the vicinity of the � point where the band inversion oc-
curs and where the direct LDA band gaps are reduced [15].
However, as this approximation seems to be well founded for
other bands, we shift all conduction bands from 120 meV
with respect to the valence bands to reproduce both the ex-
perimental indirect and direct gaps and keep in mind that we
only achieve a poor description of the self-energy corrections
needed to compute the optical properties beyond the standard
random-phase approximation (RPA).

V. OPTICAL PROPERTIES AT THE RPA LEVEL

Within the RPA [33,34], the dielectric matrix for a given q
wave vector reads

εG,G′ (q, ω) = δG,G′ − e2

4πε0

4π

v|q + G||q + G′|
1

N

×
∑
k,n,m

fn,k−q − fm,k

εnk−q − εmk + h̄ω + iδ

×〈nk−q|e−i(q+G)·r|mk〉〈mk|ei(q+G′ )·r|nk−q〉,
(4)

where (G, G′) is a couple of reciprocal lattice vectors, εmk
are the Kohn-Sham energies for band m and wave vector k,
fm,k ≡ f (εmk ) are the occupation numbers within the Fermi-
Dirac distribution f at temperature T , v is the unit cell
volume, and N is the number of k points included in the
summation. In this expression, the time dependence of the
field was assumed to be e−iωt and the small positively defined
constant δ guarantees that the matrix elements of ε(ω) are
analytic functions in the upper half plane. The macroscopic
dielectric tensor ε(ω) is a 3×3 matrix given by

q̂
 ε(ω) q̂ = 1/ lim
q→0

ε−1
0,0 = lim

q→0
ε0,0(q, ω) − lim

q→0

×
∑

G,G′ �=0

ε0,G(q, ω)ε−1
G,G′ (q, ω)εG′,0(q, ω), (5)
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FIG. 3. First Brillouin zone where the x = 0 mirror plane (in
blue) has been highlighted and where four high symmetry k points,
labeled �, Z , L, and F , are shown. The x = 0 mirror plane is spanned
by the reciprocal lattice vectors b2 (�-L direction) and b1 + b2 + b3

(�-Z direction) and the two other mirror planes (not shown) are
obtained by applying C3 rotations around the trigonal axis to the
x = 0 mirror plane.

where q̂ is a unitary vector along the wave vector q. Ne-
glecting the local field (LF) effects amounts to assuming
that the dielectric matrix is diagonal, i.e., to neglecting the
second term in Eq. (5). Given the hexagonal symmetry of
Bi2Te3, ε(ω) is diagonal with only two independent elements,
namely ε⊥(ω) and ε‖(ω), that are respectively obtained for q̂
perpendicular and q̂ parallel to the trigonal axis. The dielec-
tric matrix defined in Eq. (4) is computed with the YAMBO

code [35,36], which requires the ground state electronic struc-
ture computed with the ABINIT code [24,25]. Indeed, the
Kohn-Sham eigenvalues εmk and eigenvectors |mk〉 are key
ingredients to compute the dielectric function at the RPA
level. From a practical point of view, we used a 64×64×64
k-points grid (22 913 irreducible k points) and included 28
valence bands and 34 conduction bands in our calculations to
converge the dielectric function without LF effects. The LF
effects are included by taking into account the second term
in Eq. (5), where a 302×302 body matrix εG,G′ (q → 0, ω)
with G, G′ �= 0 ensures the convergence of the macroscopic
dielectric function.

Both the imaginary part and the real part of the dielectric
function ε⊥,‖(ω) computed with LF effects (thick black lines)
and without LF effects (blue dashed lines) at T = 300 K
are displayed in Fig. 4 and compared to the experimental
results [19,20] shown as circles and diamonds in the upper
panels of Fig. 4. The imaginary part of the dielectric function
computed without LF effects for an electric field E ⊥ c [see
Fig. 4(a)] displays two peaks respectively located at 0.32 eV
and 1.21 eV, while the experimental peaks [20] are respec-
tively located at 0.42 eV and 1.22 eV. Such a difference might
be related to our crude implementation of the self-energy
corrections (the conduction bands have been shifted from
120 meV with respect to the valence bands) or to excitonic
effects neglected at our level of approximation [23,37,38]. It
is important to point out that the peak located at 0.32 eV is
sensitive to the temperature T and disappears at T = 300 K
when the conduction bands are not shifted, which can be
explained by the unphysical thermal excitation of electrons
from the highest valence band to the lowest conduction band
arising from the tiny indirect band gap ∼42 meV at the LDA
level. We also observe that the LF effects do not affect the
positions of the peaks but slightly reduce the intensity of the

FIG. 4. Imaginary and real part of the dielectric function of
Bi2Te3 computed at the RPA level with LF effects (thick black
lines) and without LF effects (blue dashed lines) for an electric field
perpendicular to the trigonal axis (upper panels) and parallel to the
trigonal axis (lower panels) as a function of the photon energy h̄ω

(in eV). All the conduction bands have been shifted from 120 meV
with respect to the valence bands in order to roughly reproduce the
self-energy corrections. The imaginary and real part of the dielectric
function obtained from ellipsometry measurements [20] and from
a Kramers Kronig analysis of reflectivity measurements [19] are
respectively displayed as green circles and red diamonds in the upper
panels. The two vertical arrows in panels (a) and (c) show how the
imaginary part of the dielectric function evolves when LF effects are
included. The stars in panels (b) and (d) denote the experimental
clamped-nuclei static dielectric constants extracted from the IR re-
flectance spectra measured at 300 K [17].

peak located at 1.21 eV. The situation is clearly different
for E ‖ c [see Fig. 4(c)]. Indeed, the imaginary part of the
dielectric function computed without LF effects displays one
peak located at 1.31 eV, which is shifted to 1.43 eV when
LF effects are included. Furthermore, the intensity of this
peak is decreased by ∼25% when LF effects are included,
suggesting that LF effects are crucial to predicting the optical
properties for E ‖ c. This observation is somehow expected
as the LF effects, vanishing for a homogeneous electron gas,
are as large as the degree of inhomogeneity in the charge
density increase [37]. Indeed, the inhomogeneity in the charge
density is undeniably strong along the trigonal axis, namely
the stacking axis of the quintuple layers.

We observe a discrepancy between theory and experiment
as our calculated imaginary part of the dielectric function
for E ⊥ c [see Fig. 4(a)] falls in between the two exper-
imental results [19,20]. Importantly, the two experimental
results only coincide above 3 eV, where the anisotropy in
the optical response starts to be negligible as shown in our
calculations with or without LF effects. The experimental
results of Ref. [19] are deduced from a Kramers-Kronig (KK)
transformation of the near-normal incidence reflectivity spec-
tra for E ⊥ c. Thus both the real and imaginary part of the
dielectric function might be erroneous because they are very
sensitive to small errors in the reflectivity data and in the high
energy extrapolation. The experimental results obtained from
ellipsometry measurements [20] might also be in error as the
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authors assumed that they only probe the in-plane component
of the dielectric function (ε⊥) in the oblique geometry of
their measurements while they also probed the out of plane
component of the dielectric function (ε‖), introducing some
errors in the determination of ε⊥ as our calculations show
that the anisotropy in the optical response up to 3 eV is
far from being negligible. Therefore, it is difficult to draw
a definitive conclusion as two measurements do not lead to
the same results, highlighting the need for new experimental
studies. It is also important to point out that excitonic effects,
neglected at the RPA level, might change the calculated di-
electric function. However, excitonic effects are expected to
be small because of the large dielectric screening. Indeed,
our clamped-nuclei static dielectric constants ε∞,⊥ and ε∞,‖
with (without) LF effects are respectively equal to 105 (110)
and 56 (67), while the experimental static dielectric constants
inferred from infrared spectroscopy measurements [17] and
shown as stars in Figs. 4(b) and 4(d) are respectively equal
to 85 and 50. Such a large contribution of the electrons to
the static dielectric constants can be understood from the
Kramers Kronig transformation that relates the real part of
the dielectric function to the imaginary part of the dielectric
function. Indeed, we have

ε∞,⊥,‖ = 2

π

∫ ∞

0
dω

Im[ε⊥,‖(ω)]

ω
. (6)

As Im[ε⊥(ω)] > Im[ε‖(ω)] for h̄ω below 1.4 eV, we can
conclude that ε∞,⊥ > ε∞,‖ since the anisotropy in the optical
response is weak above 1.4 eV when LF effects are included.
Furthermore, ε∞,⊥ and ε∞,‖ are very large because of strong
interband transitions starting from 210 meV (direct LDA band
gap increased from 120 meV) that strongly contribute to the
static dielectric constant because of the 1/ω weighting factor
in the integrand of Eq. (6).

Interestingly, as shown in Figs. 4(b) and 4(d), the real part
of ε⊥ (ε‖) including LF effects crosses the zero axis around
1.42 eV (1.56 eV) and becomes negative up to 6 eV. Thus plas-
monic applications, as nicely demonstrated in Ref. [21], can
be envisioned but with the inconvenience that the imaginary
part of the dielectric function is far from being negligible in
this spectral range, especially in the visible range. Our calcu-
lations also show that Bi2Te3 behaves as a hyperbolic material
in a very narrow range of energy between 1.42 and 1.56 eV,
where the permittivity components in different directions have
opposite sign (ε⊥ · ε‖ < 0). Therefore, our theoretical results
contradict the ellipsometry measurements of Ref. [22], where
the authors claimed that Bi2Te3 is a natural hyperbolic mate-
rial in the visible range. Such a discrepancy might be ascribed
to the fact that the real part of the dielectric function for E ‖ c
is incorrectly measured.

We also computed the normal incidence reflectivity accord-
ing to

R⊥,‖(ω) =
∣∣∣∣n⊥,‖(ω) − 1

n⊥,‖(ω) + 1

∣∣∣∣
2

, (7)

where n⊥,‖(ω) = √
ε⊥,‖(ω) is the optical index calculated

with or without LF effects for E ⊥ c or E ‖ c. As shown
in Fig. 5(a), the overall agreement between theory and ex-
periment [19] for E ⊥ c is fairly good when LF effects are

FIG. 5. Computed optical reflectivity with (thick black lines) and
without (thin blue dashed lines) LF effects for E ⊥ c (left panel)
and E ‖ c (right panel) compared to the near-normal incidence re-
flectance spectra (open circles) measured at 300 K for E ⊥ c [19].

included. It is worth remarking that LF effects do not change
the reflectivity spectra very much between 0 eV and 4 eV as
can be inferred from Figs. 4(a) and 4(b) but lead to a strong de-
crease of the calculated reflectivity from 6 to 9 eV bringing the
calculated spectra in closer agreement with the experimental
spectra [19]. The situation is more contrasted for E ‖ c as LF
effects are noticeable everywhere. As shown in Fig. 5(b), the
calculated reflectivity with LF effects is much smaller than the
calculated reflectivity without LF effects almost everywhere
up to 9 eV, except for a narrow range of energy between 5.5 eV
and 6.4 eV, where the reflectivity displays a dip.

VI. FREQUENCIES AT THE ZONE CENTER

As the primitive cell contains five atoms, there are 15
lattice dynamical modes at the Brillouin zone center, three of
which are acoustic modes. Group theory classifies the remain-
ing 12 optical modes into 2 A1g (R), 2 Eg (R), 2 A2u (IR), and
2 Eu (IR) modes, where R and IR refer to Raman and infrared
active modes, respectively. We computed the zone center fre-
quencies within a DFPT approach [39] for the experimental
structure at 300 K [27], where only the internal coordinates
have been relaxed (see Table I). As shown in Table II, the
overall agreement between theory and experiment [17,40] is
satisfactory and the largest discrepancy occurs for the A1

1g

and E1
u frequencies that are respectively underestimated and

overestimated from 8% with respect to the experimental fre-
quencies. Such a difference might be ascribed to anharmonic
effects not captured in our calculations [41].

VII. BORN EFFECTIVE CHARGES

We used a finite electric field approach [42] in order to
compute the Born effective charge tensors. The force along
β acting on atom p reads

Fβ
p = e

∑
α

Z∗
p,α,βEα, (8)
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TABLE II. Experimental and theoretical values of Raman and in-
frared phonon frequencies for Bi2Te3 in units of cm−1. Experimental
Raman [17,40] and infrared values [17] were measured at 300 K. The
values within parentheses correspond to the frequencies in THz and
the most recent experimental results [40] are underlined.

Symmetry Experiment Theory

E 1
g 37 (1.11) 36.81 (1.10)

A1
1g 62.5 (1.87) 62 (1.86) 57.25 (1.71)

E 2
g 103 (3.09) 102 (3.06) 97.96 (2.93)

A2
1g 134 (4.02) 135 (4.05) 129.25 (3.87)

E 1
u 50 ± 2 (1.50 ± 0.06) 54.25 (1.62)

A1
2u 94 ± 4 (2.82 ± 0.12) 93.23 (2.79)

E 2
u 95 ± 5 (2.85 ± 0.15) 91.75 (2.75)

A2
2u 120 ± 5 (3.60 ± 0.15) 120.25 (3.60)

where Eα is the component along α of the macroscopic elec-
tric field and Z∗

p,α,β is the Born effective charge tensor defined
for each atom p. Given the hexagonal symmetry of Bi2Te3, the
tensor is diagonal and reduces to two values Z∗

p,⊥ = Z∗
p,1,1 =

Z∗
p,2,2 and Z∗

p,‖ = Z∗
p,3,3 for each atom. Using Eq. (8), we

conclude that

Fβ
p = Z∗

p,⊥Eβ when β = 1, 2,

Fβ
p = Z∗

p,‖Eβ when β = 3. (9)

Thus we computed the forces acting on each atom for an
electric field perpendicular and parallel to the trigonal axis
whose amplitude is varied from −10−6 a.u. to 10−6 with a
step of 0.5×10−6 a.u. (2.57 kV cm−1). As shown in Fig. 6,
the forces Fp acting on each atom p vary linearly with the
amplitude of the macroscopic electric field E . A linear fit-
ting provides the Born effective charges that are gathered
in Table III. It is worth pointing out that the acoustic sum
rule

∑
p Z∗

p,⊥ or ‖ is fulfilled to within 10−5 suggesting that

FIG. 6. Forces Fp (in a.u.) as a function of the macroscopic elec-
tric field E (in a.u.) applied perpendicular (upper panel) and parallel
(lower panel) to the trigonal axis for the experimental structure at
300 K [27].

TABLE III. Calculated Born effective charges for the two equiv-
alent Bi atoms, the two equivalent Te1 atoms, and the Te2 atom
underlying the five-point basis. The degree of anisotropy in the Born
effective charges is quantified by Z∗

‖ /Z∗
⊥.

Bi Te1 Te2

Z∗
‖ 6.60 −2.64 −7.91

Z∗
⊥ 9.05 −5.27 −7.55

Z∗
‖ /Z∗

⊥ 0.729 0.500 1.047

our calculations are well converged. The effective charges are
large and differ strongly from what can be expected for fully
ionic configurations corresponding to closed shell ions (+3
for Bi and −2 for Te). However, it is worth recalling that
effective charges are dynamic only and reflect the effect of
covalency [43]. Interestingly, the Born effective charges have
surprisingly different values for the Te1 and Te2 atoms and
show large anisotropy for the Te1 atoms that form strongly
covalent bonds with the Bi atoms as the distance between
the Te1 and Bi atoms is the shortest one. The Born effective
charges of Bi atoms also display some degree of anisotropy.
From a physical point of view, the two Bi atoms and the
two Te1 atoms behave respectively as anisotropic cations and
anions, while the Te2 atom behaves as an isotropic anion.

VIII. INFRARED DIELECTRIC TENSOR

We consider a unit cell of volume v containing n atoms.
The total energy of the unit cell Etot, when a macroscopic
electric field E is applied, can be Taylor expanded as

Etot = E0 + 1

2

∑
p,p′,α,α′

uα
p

∂2Etot

∂uα
p∂uα′

p′
uα′

p′ +
∑
p,α,β

∂2Etot

∂uα
p∂Eβ

uα
pEβ

+ 1

2

∑
α,β

∂2Etot

∂Eα∂Eβ
EαEβ, (10)

where uα
p is the displacement of atom p (p ∈ {1, . . . , n})

along the direction α and Eβ the component of the macro-
scopic field along β with α, β ∈ {1, 2, 3}. We can introduce
the elastic constants Cα,α′

p,p′ , the dimensionless Born effective
charge tensor Z∗

p,β,α , and the dimensionless electronic tensor
susceptibility χα,β , respectively defined by

Cα,α′
p,p′ = ∂2Etot

∂uα
p∂uα′

p′
, Z∗

p,β,α = −1

e

∂2Etot

∂uα
p∂Eβ

,

χα,β = − 1

vε0

∂2Etot

∂Eα∂Eβ
. (11)

Thus the total energy reads

Etot = E0 + 1

2

∑
p,p′,α,α′

uα
pCα,α′

p,p′ uα′
p′ − e

∑
p,α,β

Z∗
p,β,αuα

pEβ

− 1

2
vε0

∑
α,β

χα,βEαEβ, (12)

leading to a force [see Eq. (8)] exerted on atom p by the
macroscopic electric field when the atoms are held at their
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equilibrium position. From Eq. (12), we get the component
along β of the polarization

Pβ = −1

v

∂Etot

∂Eβ
= Pβ,ion + Pβ,el , (13)

where the ionic contribution to the polarization reads

Pβ,ion = e

v

∑
α,p

Z∗
p,β,αuα

p (14)

and the electronic contribution reads

Pβ,el = ε0

∑
α

χβ,αEα. (15)

Using Eq. (12), the equation of motion for atom p of mass
Mp reads

Mpüα
p = −∂Etot

∂uα
p

= −
∑
p′,α′

Cα,α′
p,p′ uα′

p′ + e
∑

β

Z∗
p,β,αEβ. (16)

When E = 0, we can plug

uα
p =

√
M

Mp
εα

p exp[−iωt], (17)

where M = ∑
p Mp, in Eq. (16) and solve the following eigen-

value problem: ∑
p′,α′

Dα,α′
p,p′ ε

α′
p′ (λ) = ω2

λε
α
p (λ), (18)

where Dα,α′
p,p′ = Cα,α′

p,p′ /
√

MpMp′ is the dynamical matrix at the
zone center. Here ωλ and εα

p (λ) are respectively the frequency
and the displacement of atom p along α for the mode λ,
where λ ∈ {1, . . . , 3n}. The eigenvectors of Eq. (18) satisfy
the orthogonality relations∑

p,α

εα
p (λ)εα

p (λ′) = δλ,λ′ ⇐⇒ ε(λ)
ε(λ′) = δλ,λ′ , (19)

since the zone center dynamical matrix is real and symmetric.
When E = E0 exp(−iωt ), where ω is the frequency of the

electric field in the THz range, we can plug

uα
p =

√
M

Mp
zα

p exp[−iωt] (20)

into Eq. (16). Thereby, the following equation

ω2zα
p =

∑
p′,α′

Dα,α′
p,p′ zα′

p′ − e√
MMp

∑
β

Z∗
p,β,αEβ

0 (21)

must be solved. As {ε(λ), λ = 1, . . . , 3n} forms a complete
basis set, we can seek a solution in the form

zα
p =

∑
λ

A(λ)εα
p (λ), (22)

where the coefficients A(λ) have to be determined. Introduc-
ing Eq. (22) in Eq. (21) and using Eq. (18) leads to∑

λ′
A(λ′)

[
ω2 − ω2

λ′
]
εα

p (λ′) = − e√
MMp

∑
β

Z∗
p,β,αEβ

0 . (23)

By multiplying this identity with εα
p (λ), summing over p and

α, and using the orthogonality relation [Eq. (19)], we obtain

A(λ) = − e

M

1

ω2 − ω2
λ

∑
β ′

Zβ ′ (λ)Eβ ′
0 , (24)

where the mode effective charge

Zβ (λ) =
∑
p,α

√
M

Mp
εα

p (λ)Z∗
p,β,α (25)

is a dimensionless quantity. Plugging Eq. (24) in Eq. (22), and
using the definition of ionic polarization [Eq. (14)] as well as
Eq. (20), we obtain

Pβ,ion(ω) = e2

v

1

M

∑
β ′,λ

Zβ (λ)Zβ ′ (λ)

ω2
λ − ω2

Eβ ′
. (26)

By analogy with the definition of the electronic susceptibility
[Eq. (15)], we can define an ionic susceptibility

χ ion
β,β ′ (ω) = e2

ε0v

1

M

∑
λ

Sβ,β ′ (λ)

ω2
λ − ω2 − 2iωγλ

, (27)

where 2γλ is the full width at half maximum (FWHM) of the
phonon peak and Sβ,β ′ (λ) = Zβ (λ)Zβ ′ (λ) is a dimensionless
3×3 real symmetric matrix. It is straightforward to show
using Eq. (25) that this matrix S is zero for a gerade mode.
Interestingly, S might be nondiagonal for degenerated modes
like the E1

u mode at 1.62 THz or the E2
u mode at 2.75 THz

that can couple to an electric field perpendicular to the trigo-
nal axis. However, the matrix S becomes diagonal when the
polarization of the first Eu mode is chosen along one of the
twofold axes (x axis), while the polarization of the second Eu

mode lies along one of the mirror planes (y axis). Thus we get

χ ion
⊥,‖(ν) = e2

4π2ε0v

1

M

∑
λ

S⊥,‖(λ)

ν2
λ − ν2 − iνγλ/π

, (28)

where S⊥(λ) = [Z1(λ)]2 or [Z2(λ)]2, S‖(λ) = [Z3(λ)]2 [see
Eq. (25)], and where the summation can be restricted to the
IR active modes.

The oscillator strengths S⊥ and S‖ for an electric field
respectively perpendicular and parallel to the trigonal axis
are reported in Table IV. We have previously seen that the
oscillator strengths are related to both the eigenvectors of the
zone center dynamical matrix and the mode effective charges
[see Eq. (25)]. The huge difference between the oscillator
strength for the E1

u and E2
u modes arises from the fact that

all atoms contribute to S⊥ for the E1
u mode while only the Bi

atoms contribute significantly for the E2
u mode. Indeed, the

displacements of atoms have the same sign for both modes
with the exception of the Te2 atom whose displacement along
the E2

u mode is reversed, producing an almost complete can-
cellation of the Te atoms to S⊥.For the sake of completeness,
the displacements of atoms inside the hexagonal unit cell for
the four different IR active modes are depicted in Fig. 7.

The IR dielectric constant is defined as

ε⊥,‖(ν) = ε∞,⊥,‖ + χ ion
⊥,‖(ν), (29)

where the electronic contribution to the static dielectric
function at the RPA level denoted as ε∞,⊥,‖, also named
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TABLE IV. Frequencies (in THz), oscillator strengths (dimensionless quantities), and normalized atomic displacements [see Eq. (19)] for
the IR active modes. The calculations have been done for the experimental lattice structure [27] using the values of the Born effective charges
reported in Table III.

Oscillator strengths Normalized atomic displacements

Symmetry Frequency S⊥ S‖ Te1 Bi Te2 Bi Te1 Direction

E 1
u 1.62 1318.15 0.310 −0.475 0.596 −0.475 0.310 x, y

E 2
u 2.75 15.48 0.494 −0.114 −0.696 −0.114 0.494 x, y

A1
2u 2.79 540.46 0.122 0.262 −0.913 0.262 0.122 z

A2
2u 3.60 273.73 0.571 −0.413 −0.085 −0.413 0.571 z

clamped-nuclei dielectric constant, can be approximated as a
constant for frequencies less than 5 THz. Figures 8(a) and 8(c)
display the real part of the IR dielectric function computed
for an electric field perpendicular (E ⊥ c) and parallel (E ‖ c)
to the trigonal axis. The two Eu modes can be driven for
E ⊥ c, while the two Au modes can be driven for E ‖ c. The
real part changes sign each time the frequency ν crosses the
frequency of an IR active mode depicted as a vertical dashed
line in Fig. 8. The only exception concerns the mode E2

u whose
oscillator strength is very weak (see Table IV). Interestingly,
our calculations reproduce the static dielectric functions de-
noted as stars for both polarizations. The ionic and electronic
contributions to the total susceptibility are respectively ∼192
and ∼104 (∼29 and ∼55) for E ⊥ c (E ‖ c), reflecting the

FIG. 7. Displacements of the atoms for the two Eu modes polar-
ized along the x axis and for the two A2u modes polarized along the
z axis (trigonal axis). The Te1, Te2, and Bi atoms are respectively
colored in red, purple, and blue.

high degree of anisotropy of the optical properties in the THz
range. It is worth outlining that Re[ε⊥] · Re[ε‖] < 0 for the
three restrahlen bands depicted as vertical colored domains in
Fig. 8. Hence Bi2Te3 as h-BN [44] or α-MoO3 [45] exhibits
natural hyperbolicity and might support hyperbolic phonon
polaritons. We also note that the imaginary part of the IR
dielectric function displayed in Figs. 8(b) and 8(d) has a
Lorentzian profile in the vicinity of each resonance with a full
width at half maximum (FHWM) given by γλ/π and recall
that the phonon lifetime is given by 1/γλ. Here, we assumed
that the lifetimes of both Eu modes is ∼2.27 ps while the

FIG. 8. Imaginary and real part of the IR dielectric function of
Bi2Te3 computed with Eq. (28) for an electric field perpendicular
to the trigonal axis [panels (a) and (b)] and parallel to the trigonal
axis [panels (c) and (d)] as a function of frequency ν (in THz). We
assumed that γλ = 0.44 THz for the Eu modes and that γλ = 0.22
THz for the A2u modes. Note that the frequencies of both Eu modes
have been slightly renormalized to match the experimental frequen-
cies [17] reported in Table II, while the theoretical frequencies of
both A2u modes have been considered. The stars in panels (a) and
(c) denote the experimental static dielectric constants extracted from
the IR reflectance spectra measured at 15 K [17] and the colored
domain in panel (a) delimits the restrahlen band of the E 1

u mode
situated between the transversal optical frequency at 1.5 THz and the
longitudinal optical frequency at 2.49 THz, while the two colored
domains in panel (c) delimit the restrahlen bands of the A1

2u (A2
2u)

mode situated between the transversal optical frequency at 2.79
THz (3.60 THz) and the longitudinal optical frequency at 3.14 THz
(3.95 THz).
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FIG. 9. Computed IR reflectivity spectra with (thick lines) and
without (dashed lines) the free electron contribution for E ⊥ c (left
panel) and E ‖ c (right panel) compared to the experimental spectra
(open circles) recorded at 15 K [17]. The restrahlen bands are de-
picted as colored domains and the horizontal lines correspond to the
expected value of the reflectivity well above the highest IR frequency
(∼3.6 THz) but below the band gap frequency (∼51 THz).

lifetimes of both Au modes is ∼4.54 ps to best reproduce the
IR reflectance spectra discussed in the following section.

IX. INFRARED REFLECTIVITY SPECTRUM

The normal incidence reflectivity spectra computed ac-
cording to Eq. (7) for E ⊥ c and E ‖ c are compared to
the experimental spectra at 15 K [17] in Fig. 9. Roughly
speaking, the overall agreement between the calculated reflec-
tivity (dashed lines) and the experimental reflectivity (open
circles) for both polarizations is fairly good within the re-
strahlen bands, while poor outside, suggesting that the free
electrons arising from doping contribute to the dielectric func-
tion. Hence we consider the dielectric function

ε⊥,‖(ν) = ε⊥,‖(ν) − ν2
pl,⊥,‖

/
ν(ν + iγ⊥,‖), (30)

where ε⊥,‖ is defined in Eq. (29) and where the charge carrier
contribution depends on two parameters, namely the plasmon
frequency νpl,⊥,‖ and plasmon damping γ⊥,‖. The calculated
reflectivity shown as a solid line in Fig. 9 for E ⊥ c (E ‖ c)
with νpl,⊥ ∼ 26.6 THz (νpl,‖ ∼ 24.2 THz) reproduces nicely
the experimental reflectivity provided that the plasmon damp-
ing constant γ⊥ (γ‖) is well chosen. We found that a constant
plasmon damping γ⊥ ∼ 0.95 THz allows one to reproduce the
experimental reflectivity spectra for E ⊥ c, while a frequency
dependent plasmon damping γ‖ is crucial to reproducing the
reflectivity spectra for E ‖ c. Hence we considered the follow-
ing formula:

γ‖(ν) = γl + γh

2
+ γh − γl

2
tanh

(
ν − ν0

�ν

)
(31)

to interpolate between the low frequency value of the plasmon
damping denoted as γl ∼ 0.24 THz and the high frequency
value, denoted as γh ∼ 1.7 THz with a fairly steep variation
in a frequency interval 2�ν ∼ 1.4 THz centered on ν0 ∼
2.3 THz.

X. PLASMON FREQUENCIES

As shown in the previous part, the Drude contribution to
the IR reflectivity cannot be ignored. Indeed, a bulk charge
carrier contribution originates from intrinsic defects, such as
anion vacancies and antisite defects that are ubiquitous in
most compound semiconductors [46]. For instance, focusing
on the latter, either a Te1 atom can be replaced by a Bi atom,
leading to hole charge carriers, or a Bi atom can be replaced
by a Te atom, leading to electron charge carriers. From an
experimental point of view, the p-type or n-type charge car-
rier concentration can range from 3×1017 to 5×1019 cm−3,
depending on the growth conditions. Assuming that the rigid
band model is valid, the plasma frequencies can be evaluated
by tuning the Fermi level to achieve either electron or hole
doping. In such a case, it is straightforward to show that
the intraband contribution to the dielectric tensor defined in
Eq. (5) behaves as −ω2

pl/ω
2, where

ω2
pl,α,β = e2

4πε0

4π

v

1

N

∑
k,n

vα
nkv

β

nk

(
−∂ f

∂ε

)
εnk

. (32)

Here vnk ≡ ∇kεnk/h̄ are the band velocities. It is important to
note that only states at the Fermi level contribute to ω2

pl,α,β at

T = 0 since − ∂ f
∂ε

→ δ[ε − εF ] when T → 0 and that ω2
pl,α,β

is expected to increase when T increases because of the larger
number of states contributing to the sum in Eq. (32). Replac-
ing εnk by h̄2k2/2m in Eq. (32) is tantamount to considering
a free electron gas and leads to the classical equation ω2

pl =
n e2/mε0, where n is the electron density number. In such a
case, we obtain an isotropic plasma frequency. For Bi2Te3,

the situation is clearly different. Indeed, ω2
pl is a diagonal

tensor with only two independent elements, namely ω2
pl,⊥ ≡

ω2
pl,1,1 = ω2

pl,2,2 and ω2
pl,‖ ≡ ω2

pl,3,3. Furthermore, both the last
valence and first conduction band near the six extrema dis-
cussed in Sec. IV display a nonparabolic dispersion as shown
in Shubnikov–de Haas experiments [6,7]. We computed the
plasmon frequencies νpl,⊥,‖ = ωpl,⊥,‖/2π as a function of
doping n with n up to 1018 cm−3, corresponding to a low level
of doping (∼1.69×10−4 electrons or holes per unit cell). As
shown in Fig. 10, νpl,⊥ is larger than νpl,‖ for each n and they
both increase when n increases. However, νpl,‖ increases faster
for hole doping [see Fig. 10(b)] than for electron doping [see
Fig. 10(a)], while νpl,⊥ does not depend on the type of doping
up to nc = 4×1017 cm−3 and becomes larger for hole doping,
as compared to electron doping, above nc. Interestingly, we
reported in Fig. 10 the range of νpl,⊥ (see the dashed black
lines) and νpl,‖ (see the dashed red lines) respectively giving a
fairly good agreement between theory and experiment for R⊥
and R‖. The corresponding values of n are colored in black
(red) for νpl,⊥ (νpl,‖). A nice agreement between our fitted
and theoretical values involves an overlap between the two
colored domains. Neither the calculations for electron doping
nor the calculations for hole doping produce such an overlap.
However, the two colored domains in Fig. 10(b) are closest to
each other, suggesting that the sample used in the experiments
[17] might be hole doped with n ∼ 4×1017 cm−3. While our
approach to model doping is very crude, our calculations
suggest that a measure of the reflectivity spectra in the THz
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FIG. 10. Plasmon frequencies νpl,⊥ and νpl,‖ (in THz) computed
as a function of electron doping (left panel) and hole doping (right
panel) up to n = 1018 cm−3. The horizontal dashed lines of the same
color span the range of plasmon frequencies that gives a good fitting
of the reflectivity spectra shown in Fig. 9. The range of doping
corresponding to the range of νpl,⊥ (νpl,‖) is depicted in black (red).
The plasmon frequencies, that are hard to converge, are computed
using a very dense 256×256×256 grid of k points for a temperature
T ∼ 15 K.

range for both polarizations might be helpful to infer both type
and level of doping. The validity of our approach might be as-
sessed by cross-checking the results with Hall measurements.

XI. CONCLUSION

We studied the optical properties of Bi2Te3 in both the
visible and IR range. Our first-principles calculations reveal
that the dielectric functions computed at the RPA level are
rather anisotropic (a fact disregarded in ellipsometry mea-
surements [20]) and strongly impacted by the LF effects
when the electric field is polarized along the trigonal axis.
The agreement between our calculated near-normal incidence

reflectivity spectra for an electric field perpendicular to the
trigonal axis and the experimental spectra [19] is fairly good,
assessing the validity of our approach to compute the optical
spectra by simply shifting the conduction bands with respect
to the valence bands from 120 meV to roughly mimic the
self-energy corrections. The clamped nuclei static dielectric
constants including LF effects (ε∞

⊥ ∼ 105 and ε∞
‖ ∼ 56) are

very large because of strong direct interband transitions start-
ing from the direct band gap ∼210 meV and extending up
to 4 eV, suggesting that excitonic effects can be neglected in
the optical calculations. The ionic contributions to the static
dielectric constants, that can be computed from both the Born
effective charges and the IR phonon frequencies and eigen-
vectors, are also very large as χ ion

⊥ ∼ 192 and χ ion
‖ ∼ 29. The

huge value for χ ion
⊥ reflects the strong coupling between an

electric field perpendicular to the trigonal axis and the E1
u

mode. Furthermore, the calculated reflectivity spectra in the
THz range agree fairly well with the experimental spectra [17]
provided that the unavoidable contribution of the free carriers
arising from defects is taken into account by considering a
Drude contribution parametrized by plasmon frequencies and
plasmon damping that are fitted to reproduce the experimen-
tal spectra. We showed that the plasmon frequencies can be
computed within the rigid band approximation as a function
of both type and level of doping. Thus a measurement of the
reflectivity in the THz range for both polarizations might offer
the opportunity to infer not only the type of doping but also
the level of doping. Finally, this work is a first step towards the
understanding of the mechanisms governing the generation of
the coherent A1g phonon in a THz excited Bi2Te3 nanofilm
[47] as a nonlinear coupling between the E1

u mode driven by
the THz pulse and the A1g mode might be at the heart of the
experimental observations [48].
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