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Abstract: miRNAs, small non-coding RNAs that regulate gene expression, are involved in various
pathological processes, including viral infections. Virus infections may interfere with the miRNA
pathway through the inhibition of genes involved in miRNA biogenesis. A reduction in the number
and the levels of miRNAs expressed in nasopharyngeal swabs of patients with severe COVID-
19 was lately observed by us, pointing towards the potential of miRNAs as possible diagnostic
or prognostic biomarkers for predicting outcomes among patients with severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) infection. The objective of the present study was to investigate
whether SARS-CoV-2 infection influences the expression levels of messenger RNAs (mRNAs) of
key genes involved in miRNA biogenesis. mRNA levels of AGO2, DICER1, DGCR8, DROSHA, and
Exportin-5 (XPO5) were measured by quantitative reverse-transcription polymerase chain reaction
(RT-qPCR) in nasopharyngeal swab specimens from patients with COVID-19 and controls, as well
as in cells infected with SARS-CoV-2 in vitro. Our data showed that the mRNA expression levels
of AGO2, DICER1, DGCR8, DROSHA, and XPO5 were not significantly different in patients with
severe COVID-19 when compared to patients with non-severe COVID-19 and controls. Similarly, the
mRNA expression of these genes was not affected by SARS-CoV-2 infection in NHBE and Calu-3
cells. However, in Vero E6 cells, AGO2, DICER1, DGCR8, and XPO5 mRNA levels were slightly
upregulated 24 h after infection with SARS-CoV-2. In conclusion, we did not find evidence for
downregulation of mRNA levels of miRNA biogenesis genes during SARS-CoV-2 infection, neither
ex vivo nor in vitro.

Keywords: miRNA; SARS-CoV-2; RNA interference; COVID-19; Ago2; Dicer; DGCR8; Drosha;
Exportin-5

1. Background

A novel coronavirus, named severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) emerged in 2019 [1]. It rapidly spread around the globe and caused a pandemic
with more than 670 million cases and more than 6.8 million deaths as of 10 March 2023 [2].
The end of COVID-19 as a public health emergency of international concern was recently
declared by the head of the World Health Organization (WHO), however, stating that this
does not mean that the disease is no longer a global threat [3]. The pandemic has had
profound impacts on society and economy due to containment measures, including travel
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restrictions, school closures, and even complete lock-downs [4]. It also has shed light on the
importance of having access to rapid and accurate diagnostics; however, massive diagnostic
testing led to shortages in several reagents and plasticware needed for performing RT-PCR
for SARS-CoV-2 detection [5,6].

SARS-CoV-2, the etiological agent of coronavirus disease 2019 (COVID-19) [7], belongs
to the genus Betacoronavirus of the Coronaviridae family [8] and is an enveloped virus with
a positive-sense single-stranded RNA genome of approximately 30 kb [9]. Severe forms
of this disease are characterized by a state of hyperinflammation called ‘cytokine storm’
and are associated with severe lung disease with acute respiratory distress syndrome
(ARDS) [10,11]. Several symptoms can be present, such as fatigue, fever, cough, dyspnea,
headache, conjunctivitis, sore throat, dysgeusia, hyposmia, and gastrointestinal symptoms
such as diarrhea, nausea, and vomiting [12,13]. Despite the development of vaccines and
the availability of some treatment options, the understanding of the pathophysiology of
the infection still remains a priority, especially due to observed symptoms of post-acute
sequelae of SARS-CoV-2 infection (PASC), also known as “long COVID”, possibly related
to a persistence of SARS-CoV-2 and reactivation of the latent pathogen [14]. Regarding
the pathophysiology, several studies have shown that miRNAs are involved in infections
caused by other coronaviruses [15–20]. microRNAs have also been shown to be involved
in the pathophysiology of SARS-CoV-2 infection [21–24].

RNA silencing is a fundamental cellular mechanism of gene regulation and includes
the small interfering RNA (siRNA) and microRNA (miRNA) pathways [25,26]. The
miRNA pathway is evolutionarily conserved in metazoans [27]. miRNAs are small non-
coding RNAs of approximately 22 nucleotides that regulate gene expression at the post-
transcriptional level. miRNAs exert their function by binding most commonly to the 3′

untranslated regions (UTRs) or alternatively to 5′ UTRs or in the open reading frames
(ORFs) of their target mRNAs [27–29]. miRNA biogenesis begins with the transcription
from genes encoding the miRNA in the nucleus, resulting in a primary transcript with a
hairpin structure, named pri-miRNA [30]. Then, the loop end of the pri-miRNA is cleaved
by the microprocessor complex formed by the ribonuclease III Drosha and the co-factor
DGCR8 (DiGeorge syndrome critical region gene 8) [31]. The cleavage results in the gen-
eration of the precursor miRNA, named pre-miRNA, which has a hairpin structure of
about 70 nucleotides [32]. Next, the pre-miRNA is exported into the cytoplasm through
Exportin-5 [31]. In the cytoplasm, the pre-miRNA is cleaved by Dicer, a cytoplasmic
RNase endonuclease, to form the mature miRNA duplex of around 22 nucleotides [33].
This mature duplex miRNA associates with one argonaute protein (AGO), and following
the expulsion of one of the miRNA strands, termed the passenger strand, the remaining
single-stranded guide miRNA becomes part of the miRNA-induced silencing complex
(miRISC) [34]. This complex allows the post-transcriptional regulation of gene expression
through two mechanisms: translational repression or mRNA degradation [34–36].

The total number of human miRNAs is estimated to be 2300 [37]. miRNAs regu-
late the expression of most human genes and are involved in several physiological and
pathological processes, such as development, cancers, viral infections, and antiviral im-
mune responses [27]. Viruses interact with the miRNA machinery of their hosts and this
interaction can either result in an increase or a repression of the expression of specific miR-
NAs. Thus virus infections profoundly affect cellular miRNA expression profiles [38–42].
Furthermore, several viruses encode their own viral miRNAs [38,39,41]. On the other
hand, viruses can also globally interfere with the miRNA pathway. In fact, in plants and
insects, RNA silencing pathways function as antiviral defense mechanisms [43,44]. Re-
cent findings suggest they may also have antiviral functions in mammalian cells [44,45].
To escape this antiviral defense, plant and insect viruses possess virus-encoded suppres-
sors of RNA interference that modulate the activity of central components of the RNA
silencing pathways in order to favor viral replication or to inhibit host antiviral defense
mechanisms [39,44,46]. There is some evidence that viruses also interfere with the miRNA
pathway in mammals [39,44,47,48].
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Several studies have shown a difference in miRNA expression levels between COVID-
19 patients and uninfected individuals [49–62]. In our previous study [55], a lower total
number of miRNAs expressed in nasopharyngeal swabs of patients with severe COVID-19
was noted. Furthermore, most differentially regulated miRNAs were downregulated in
severe COVID-19 patients [55]. Among the hypotheses put forward to explain this observa-
tion was that SARS-CoV-2 infection inhibited cellular miRNA biogenesis. In the current
study, we therefore investigated the impact of SARS-CoV-2 infection on the expression of
miRNA biogenesis genes.

2. Materials and Methods
2.1. Patients and Specimens

Nasopharyngeal swab specimens of 60 patients were used in the study, including 19
patients with severe COVID-19, 21 patients with non-severe COVID-19 and 20 patients
without COVID-19 (control group) [55]. Patients with severe COVID-19 needed inten-
sive care unit admission and oxygen treatment and patients with non-severe COVID-19
required neither intensive care nor oxygen treatment. Nasopharyngeal swab specimens
were obtained for routine diagnostic purposes by using flocked swabs that were placed
in universal transport medium. Nasopharyngeal swab specimens were stored at −80◦C.
The study was approved by the French Institutional Authority for Personal Data Protection
(Commission Nationale de l’Informatique et des Libertés DR-2020-178, 22 October 2020)
and the ethics committee (Comité de Protection des Personnes Nord Ouest IV, ECH20/09,
7 September 2020).

2.2. Cells

The Vero E6 cell line (ATCC, CRL-1586) is a clone of strain 76, isolated from the
kidney of an African green monkey with the morphology of epithelial cells. The Calu-3 cell
line (Merck #SCC438, Sigma Aldrich, Saint-Quentin-Fallavier, France) is an epithelial cell
line derived from human lung adenocarcinoma. The Vero E6 and Calu-3 cell lines were
cultivated with DMEM medium, 4.5 g/L glucose, 10% fetal calf serum, 1% L-glutamine, and
1% penicillin and streptomycin (Gibco #15070-063, Thermofisher Scientific, Courtaboeuf,
France) at 37 ◦C in 95% air/5% CO2 atmosphere.

Normal Human Bronchial Epithelial (NHBE) (Lonza, Switzerland) are human ep-
ithelial cells isolated from the airway epithelium above the bifurcation of the lungs of
healthy patients. They were cultured with PneumaCultTM-Ex Plus Medium (StemCell
Technologies, Saint Égrève, France) at 37 ◦C in 95% air/5% CO2 atmosphere.

2.3. Virus

SARS-CoV-2, variant B.1.617.2 (delta variant, GISAID ID EPI_ISL_2143633) was iso-
lated from a clinical specimen and cultivated on Vero E6 cells in a biosafety 3 (BSL3)
facility.

2.4. Infection of Cells

For Vero E6 cells, 104 cells per well were plated in 96-well plates two days before
infection. Four replicates were used. For Calu-3 cells, 105 cells per well were plated
in 48-well plates one day before infection. Four replicates were used. For NHBE cells,
5 × 105 cells per well were plated in 6-well plates one day before infection. Four replicates
were used. Cells were infected with SARS-CoV-2 with a multiplicity of infection (MOI) of
0.1 for 24 and 48 h, with incubation of cells with the virus for 1 h at 37 ◦C in 95% air/5%
CO2 atmosphere, followed by three washes with DMEM culture medium.

2.5. RNA Extraction

RNA was extracted from nasopharyngeal swab specimens using the MagMAX mir-
Vana Total RNA Isolation Kit (Thermofisher Scientific, Courtaboeuf, France) according to
the manufacturer’s instructions.
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RNA extraction from NHBE and Vero E6 cells was performed using miRNAeasy
Tissue/Cells Advanced Micro Kit (QIAGEN, Courtaboeuf, France) according to the manu-
facturer’s instructions. RNA extraction from Calu-3 cells was performed using a QIAamp
Viral RNA kit (QIAGEN, Courtaboeuf, France) according to the manufacturer’s instructions.
RNA extracts were treated with DNAse (Jena Bioscience, Germany) for 10 min at 37 ◦C
followed by 10 min at 65 ◦C. RNA extracts were stored at −80 ◦C.

2.6. RT-qPCR

The primer sequences for AGO2 (PrimerBank ID: 257467481c1), DICER1 (Primer-
Bank ID: 307133774c1), DGCR8 (PrimerBank ID: 298358603c1), DROSHA (PrimerBank ID:
155030235c1), and XPO5 (PrimerBank ID: 221136812c1) genes (Table 1) were retrieved from
the PrimerBank of Harvard Medical School [63]. RT-qPCR was performed to quantify
mRNA expression of the genes involved in miRNA biogenesis by using 5 ng of extracted
RNA of cells and 5 microL of RNA extracts of patients’ specimens, respectively, and the
Sybr green Luna Universal one-step RT-qPCR kit (New England BioLabs, Evry, France)
according to the manufacturer’s instructions using a 7500 Real-Time PCR System (Ther-
moFisher Scientific, Courtaboeuf, France). The following thermal profile was used: 10 min
at 55 ◦C followed by 1 min at 95 ◦C and 40 cycles of 10 s at 95 ◦C, 30 s at 53 ◦C and 60 s at
60 ◦C. The beta-actin (ACTB gene) was used for normalization. Results were analyzed by
using the 7500 Software (v2.0.6, Life Technologies, Thermofisher Scientific, Courtaboeuf,
France). Results were presented as delta Ct values = Ct of the gene of interest − Ct of
beta-actin. Fold changes were calculated according to the 2 −delta delta Ct method, with delta
delta Ct = delta Ct (infected cells)—delta Ct (uninfected cells) [64].

Table 1. List and sequences of primers.

Name of Oligonucleotides Sequence (5′-3′)

AGO2
Forward TCCACCTAGACCCGACTTTGG

Reverse GTGTTCCACGATTTCCCTGTT

DICER1
Forward GAGCTGTCCTATCAGATCAGGG

Reverse ACTTGTTGAGCAACCTGGTTT

DGCR8
Forward GCAGAGGTAATGGACGTTGG

Reverse AGAGAAGCTCCGTAGAAGTTGAA

DROSHA
Forward TGTCACAGAATGTCGTTCCAC

Reverse GGGCCTAAAGGATGGTGCT

XPO5
Forward ATCCTGGAACACGTTGTCAAG

Reverse CACTACAATTCGAGACAGAGCAT

ACTB
Forward TTGCCGACAGGATGCAGA

Reverse GCCGATCCACACGGAGTACT

2.7. Statistical Analysis

Statistical analysis was performed with Prism 9 for Windows (Version 9.5.1) using
nonparametric and unpaired tests; Kruskal–Wallis test and Mann–Whitney U test. The
results were considered significant when the p-value was below 0.05.

3. Results
3.1. Expression of miRNA Biogenesis Genes in COVID-19 Patients’ Specimens

In our previous study, the number of miRNAs detected in nasopharyngeal swabs of
severe COVID-19 patients was lower than in non-severe COVID-19 patients and controls.
Furthermore, most differentially expressed miRNAs were downregulated in severe COVID-
19 patients compared to patients with non-severe COVID-19 and controls [55]. In order
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to determine whether this could be due to an inhibition of miRNA biogenesis during
severe COVID-19, we compared mRNA expression of genes involved in miRNA biogenesis,
namely AGO2, DICER1, DGCR8, DROSHA, and XPO5, in nasopharyngeal swabs of severe
and non-severe COVID-19 patients and controls. As shown in Figure 1, there were no
statistically significant differences in mRNA levels of these genes between the three different
patient groups.
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Figure 1. mRNA expression levels of genes involved in miRNA biogenesis. Normalized mRNA
expression (delta Ct values) of AGO2 (A), DICER1 (B), DGCR8 (C), DROSHA (D), and XPO5 (E)
genes in nasopharyngeal swabs of patients with severe COVID-19 (n = 19), patients with non-severe
COVID-19 (n = 21) and controls (n = 20). Each data point represents one nasopharyngeal swab
specimen. The bar indicates the median value.
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3.2. Expression of miRNA Biogenesis Genes in SARS-CoV-2 Infected Cells

We next investigated whether SARS-CoV-2 infection impacted the expression of genes
involved in miRNA biogenesis in vitro. To this end, primary cultures of human bronchial
epithelial (NHBE) cells were used as they represent a cellular model close to the human
respiratory tract. In addition, two epithelial cell lines that are commonly used for in vitro
studies concerning SARS-CoV-2, namely Calu-3 and Vero E6 cell lines, were also included
in this study. The three cell types were infected with the SARS-CoV-2 delta variant at an
MOI of 0.1, and mRNA expression levels of AGO2, DICER1, DGCR8, DROSHA, and XPO5
were measured 24 h and 48 h after infection. In parallel, we confirmed that SARS-CoV2
effectively infected these cells by measuring the viral RNA production (data not shown).
Again, as shown in Figures 2 and 3, no significant differences in mRNA levels of these
genes were observed after infection of NHBE and Calu-3 cells with SARS-CoV-2 at 24 h and
48 h post infection. However, as shown in Figure 4, mRNA levels of miRNA biogenesis
genes were impacted by SARS-CoV-2 infection in Vero E6 cells at 24 h post infection. A
significant increase in mRNA levels of AGO2, DICER1, DGCR8, and XPO (all p-values= 0.03)
was found 24 h after infection (Figure 4A). In contrast, 48 h after infection, no significant
differences in mRNA levels of these genes were observed (Figure 4B). We next calculated
the fold change expression of mRNA levels in infected Vero E6 cells. Indeed, mRNA
levels were higher in infected Vero E6 cells as compared to uninfected cells (Figure 5).
mRNA level changes of DICER1, DGCR8, and XPO were approximately 2-fold, and of
AGO2 approximately 4.6-fold, 24 h after infection. Thus, we observed a slight and transient
overexpression of mRNA levels of key miRNA biogenesis genes after SARS-CoV-2 infection
in Vero E6 cells at 24 h post infection but not at 48 h post infection.
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Figure 2. mRNA expression of genes involved in miRNA biogenesis in NHBE cells. Normalized
mRNA levels (delta Ct values) of AGO2, DICER1, DGCR8, DROSHA, and XPO5 genes were measured
in NHBE cells infected with SARS-CoV-2 (black circles) or in non-infected cells (empty circles), 24 h (A)
and 48 h (B) post infection. Four independent infections are shown, each data point represents one
replicate. The bar indicates the median.
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Figure 5. Fold changes of mRNA expression of genes involved in miRNA biogenesis in infected Vero
E6 cells. Fold changes of mRNA expression of AGO2, DICER1, DGCR8, DROSHA, and XPO5 genes
in SARS-CoV-2 infected compared to uninfected Vero E6 cells at 24 h (A) and 48 h (B) post infection.
Means and standard deviations of four independent infections are shown.

4. Discussion

While a reduced number of miRNAs was expressed in nasopharyngeal swabs speci-
mens of patients with severe COVID-19 compared to non-severe COVID-19 patients and
controls, and most miRNAs were downregulated in severe COVID-19 patients [55], the
reasons for these observations were not clear. The inhibition of miRNA biogenesis during
SARS-CoV-2 infection was considered to be the most likely underlying reason, as sup-
ported by a study by Mousavi et al., who noted that AGO2, DICER, and DROSHA were
downregulated in COVID-19 patients compared to controls [65] and suggested that viruses
may interact with the miRNA biogenesis pathway [44,46].

A dysregulation of the expression of genes involved in miRNA biogenesis had actually
been found in several other viral infections: Dengue virus infection led to a decrease of
mRNA levels of DICER, DROSHA, AGO1, and AGO2 in Huh-7 cells and this was associated
with increased viral replication [66]. In another study, infection of A549 cells with dengue
virus 4 resulted in reduced mRNA levels of DICER, DROSHA, and DGCR8 [67]. Vaccinia
virus infection led to a general decrease of miRNA expression in infected cells and was
associated with a decrease of DICER expression at the mRNA and protein levels [68].
Influenza virus A infection also led to a decrease of DICER mRNA and protein levels in
infected A549 and Vero cells [69]. Interestingly, DROSHA mRNA levels were not impacted
by vaccinia virus infection. In contrast, infection with herpes simplex type 1 and type
2, influenza A virus, and human respiratory syncytial virus had no effect on DICER
expression [68], suggesting that the impact of virus infection on the expression of genes
involved in miRNA biogenesis differs between viruses. One study even observed a different
impact of yellow fever virus genotype I versus genotype II on mRNA levels of miRNA
biogenesis components in infected cells [70].

Furthermore, most studies investigated the effect of virus infection on miRNA biogen-
esis genes by using in vitro infected cells. To date, only a few studies have investigated
this effect in clinical samples. Apart from the above-mentioned study [65], one study
investigated miRNA expression and expression of miRNA biogenesis genes in HTLV-1 in-
fected patients [71]. Interestingly, the authors measured DROSHA, DGCR8, XPO5, DICER1,
AGO2, and AGO3 mRNA expression, and only DICER1 mRNA was differently expressed
in CD8+ T-cell–depleted PBMCs from HTLV-1 asymptomatic carriers when compared to
patients with acute adult T cell Leukemia. This led to a reduction in the expression level
of several miRNAs [71]. Another study found that patients with chronic hepatitis B who
had high hepatitis B virus loads had reduced mRNA levels of DROSHA, DICER1, and
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AGO2 compared with patients with low virus loads [72]. Interestingly, reduced mRNA
expression levels of DICER, DROSHA, and AGO2 were also observed in hepatitis B virus
replicon-transfected HepG2 cells [72].

In the present study, we investigated the expression levels of genes implicated in
miRNA biogenesis both in vitro and ex vivo. Measured mRNA levels of AGO2, DICER1,
DGCR8, DROSHA, and XPO5 were not significantly different in nasopharyngeal swab
specimens of severe COVID-19 patients compared to non-severe COVID-19 patients or
controls (Figure 1). No impact of SARS-CoV-2 infection on mRNA expression levels
of key genes involved in miRNA biogenesis was observed, in contrast to the study by
Mousavi et al., who found that mRNA levels of AGO2, DICER1, and DROSHA, but not
DGCR8, differed between COVID-19 patients and controls [65]. There are several differences
between our study and the one from Mousavi et al. First, in the present study, we used
nasopharyngeal swab specimens, whereas Mousavi et al. used whole blood specimens.
Second, there were differences in the experimental protocols: Mousavi et al. used RT
followed by qPCR, whereas we used one-step RT qPCR. The primer sequences used in the
two studies were not the same. The gene used for normalization was GAPDH in the study
by Mousavi et al., whereas we used beta-actin. While all of these differences may have an
impact on the results, the most likely explanation for the discrepancy in the findings of the
two studies is, in our opinion, the fact that we measured mRNA expression in very different
specimen types [65]. When investigating mRNA expression in nasopharyngeal swabs,
we studied the local effect of SARS-CoV-2 infection directly on the targeted respiratory
epithelium and confirmed that in vitro SARS-CoV2 infection of airway epithelial cells did
not affect mRNA expression of these genes. In contrast, measuring mRNA expression in
the blood reflected a systemic effect of infection in leucocytes, which may or may not have
been caused by SARS-CoV-2 infection directly. Of note, it was not mentioned whether
SARS-CoV-2 viruses had been detected in the patients’ blood [65].

The impact of SARS-CoV-2 infection on the expression of genes involved in miRNA
biogenesis in in vitro models was tested to validate the clinical observations. The results
showed that infection of NHBE and Calu-3 cells with SARS-CoV-2 did not impact mRNA
expression levels of AGO2, DICER1, DGCR8, DROSHA, and XPO5 at 24 and 48 h post
infection (Figures 2 and 3), in good concordance with our results on patient samples. On the
other hand, infection of Vero E6 cells with SARS-CoV-2 impacted mRNA levels of AGO2,
DICER1, DGCR8, and XPO5 at 24 h (Figure 4A). However, rather than being downregulated
as we had hypothesized, mRNA levels were slightly and transiently increased in SARS-
CoV-2 infected cells at 24 h post infection. mRNA expression changes were around two-
fold in most cases (Figure 5), and even if differences were statistically significant, it is
uncertain whether these slight changes have a biological impact. Furthermore, at 48 h
post infection, mRNA levels were not significantly different between SARS-CoV-2 infected
and uninfected cells (Figure 4B). Indeed, increased mRNA expression of genes involved
in miRNA biogenesis has been observed in other virus infections. For example, increased
DICER1 and DROSHA mRNA expression were found in some human papillomavirus
(HPV) positive cervical cancer cell lines [73]. Expression of the HPV E6 and E7 oncoproteins
in primary human foreskin keratinocytes resulted in the upregulation of DICER1 mRNA
and DROSHA mRNA expression [73], suggesting that these viral proteins are responsible
for the induction of gene expression. Another example is that infection with Kaposi’s
sarcoma-associated herpesvirus (KSHV) resulted in increased expression of DICER1 mRNA
in primary human umbilical vein endothelial cells, whereas mRNA expression levels of
DGCR8, DROSHA, and XPO5 did not change significantly [74]. The authors hypothesized
that KSHV induced upregulation of DICER1 expression in order to counteract the miRNA
biogenesis inhibition caused by the human MCP-1-induced protein-1 [74].

Taken together, we found no evidence that SARS-CoV-2 infection inhibited miRNA
biogenesis by downregulation of mRNA levels of key miRNA biogenesis genes. How-
ever, the fact that the mRNA levels of genes involved in miRNA biogenesis were not
downregulated after SARS-CoV-2 infection does not necessarily mean that the miRNA
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pathway is not affected by SARS-CoV-2 infection. There are several alternative mecha-
nisms by which SARS-CoV-2 infection may interfere with the miRNA pathway [39]. For
example, there could be a direct interaction of viral factors with central components of
the miRNA pathway, leading to their inhibition. Indeed it was shown that human ade-
novirus virus-associated RNAs inhibited DICER activity [47]. Similarly, the insect flock
house virus B2 protein interacted with DICER and thereby inhibited siRNA biogenesis [75].
Furthermore, the Zika virus capsid interacted with DICER and inhibited miRNA biogene-
sis [76]. Interestingly, and in parallel to our observation of reduced miRNA expression in
severe COVID-19 [55], Zika virus infection of neural stem cells resulted in a reduction of
total miRNA reads, and 138 miRNAs were significantly downregulated; in contrast, only
two miRNAs were upregulated [76]. HSV-1 used a different mechanism to interfere with
miRNA biogenesis, namely by blocking pre-miRNA nuclear export [77]. Reduced expres-
sion of mature miRNAs can also be explained by cleavage of miRNA precursors. Indeed,
human MCP-1-induced protein-1 cleaved the terminal loops of pre-miRNAs leading to
the destabilization of pre-miRNAs and resulting in their degradation [74,78]. Increased
turnover of mature miRNAs could also underlie a reduced miRNA expression [39,74,79].
For example, poxvirus-encoded poly(A)-polymerase mediated poly-adenylation of cel-
lular miRNAs, resulting in their degradation. This phenomenon was observed in insect
and mammalian cells. Interestingly, restoring miRNA function resulted in reduced virus
replication suggesting that the virus-induced degradation of host miRNAs favored virus
replication [80].

Altogether, these findings show that many viruses interact with the miRNA pathway
and that the mechanisms used are different. Concerning SARS-CoV-2 infection, the possible
mechanisms need to be explored in future studies.

5. Conclusions

Taken together, our results suggest that there is no detectable downregulation of
mRNA expression of genes involved in miRNA biogenesis during SARS-CoV-2 infection,
neither ex vivo nor in vitro.
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