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Abstract—Clustering or cluster analysis is one of the most im-
portant data mining techniques, its objective is to regroup similar
objects (data points) into groups, with the aim of maximizing
the similarity between objects in the same group (intra-cluster
similarity) and minimizing it between the objects of different
groups (inter-cluster similarity) in unsupervised way. Recently,
support-based clustering methods attracted a lot of attention,
especially Support Vector Clustering (SVC) due to its capability
to overcome the main hardships of classical clustering methods.
SVC can easily handle complex shape clusters and easily identify
the number of clusters without initialization. SVC undergoes
on two main steps, training step and labelling step, the first
one consist of solving a quadratic programming problem (QPP)
to obtain a decision mathematics function, the next step uses
the decision function to label all objects with their appropriate
cluster by constructing the adjacency matrix known as complete
graph (CG). However, training an SVC model (solving a QPP)
and labelling objects using huge data sets can lead to a high
computation burden, in order to surmount this main issue and
trying to improve the SVC performance, many methods and
techniques was proposed in literature. In this paper, we aim to
highlight and classify some of the most insightful works works
proposed by researchers according to their targeted SVC step.

Index Terms—Clustering, Support vector clustering, support
vector machine, sequential minimal optimization.

I. INTRODUCTION

The last few decades have witnessed the rise and the
advance of the information age, which is due to the

evolution on the information technologies and computing in-
frastructures. With these technologies empowering all sectors,
there has been a surge of data available in digital form.
Meanwhile, improving data collection and storage has proving
to be quite difficult on developers. However, the challenge is
not in collecting neither storing data, but the dilemma is how
to deal with this new generation data in order to maximize
information and insights extraction, deliver accurate results
faster, even in real time, for the fundamental aim which is help-
ing organizations make more-informed decisions. Many fields
and disciplines were emerged to optimize the benefit extracted
from acquired data. One of these advantageous disciplines is
Data Mining, which is a computational process of discover-
ing interesting and useful patterns and relationships in large
volume of data. The field combines tools from mathematics,
statistics and artificial intelligence with database management

to analyze large digital collections, known as data sets. Since
the nature of the analyzed data and the purpose of use of the
results is widely diverse, data mining has incorporated many
tasks as clustering, classification, regression, association rule
learning, etc. Clustering, also known as cluster analysis, has
been identified as a core task in data mining [3], its objective
is to form natural groups of patterns (e.g. objects, data points,
or feature vectors) in a supervised way [4]. The aims are to
maximize intra-cluster similarity and minimize inter-cluster
similarity [4]. Since the apparition of K-means in 1955, the
simplest and most known clustering algorithm, thousands of
algorithms have been published such as k-Medoids, DBSCAN,
BIRCH, STING, etc. [1]. During the course of developing new
clustering algorithms and optimizing existing ones, they have
been widely and successfully used in many domains such as
business intelligence, image pattern recognition, Web search,
biology and security. In spite of this success, these methods of-
ten have an unstable performance when extracting appropriate
cluster boundaries and identifying the exact number of clusters
[4]. Support Vector Clustering (SVC), is a relatively new
kernel-based algorithm, proposed in 2000 by Ben-Hur et al.
[6], inspired by the Support Vector Machine (SVM) method, it
accurately groups data point into clusters based on two main
steps training and labeling. The SVC training step uses the
kernel trick to form the minimum sphere that enclose most of
the data points, then, by mapping back to the input space, the
obtained sphere generates the cluster boundaries. Labeling step
compute the adjacency matrix based on the direct connection
test between data point, then it labels the whole data points
in terms of the adjacency matrix [6]. Due to its ability of
generating complex cluster boundaries, and its smoothness on
dealing with outliers, also, the no necessity of predefining the
number of clusters, the SVC method outperforms clustering
conventional methods. However, dealing with large data sets
shows a significant time consumption, both in training and
labeling step, and it presents great challenges. In addition,
the resulting clustering is very sensitive to the selection of
some parameters, which are basically done in a supervised
way . Trying to solve these bottlenecks, many works have been
proposed in the literature with various optimization concepts,
Li et al. [4] presented a survey, in which they summarized and
classified a large number of works done until mid-2014 into
theory or application works. In this work, we will spotlight
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Fig. 1: SVC main steps.

and discuss the innovative theories in both, the most insightful
works presented in [4], and the latest significant researches
proposed after [4], in the aims of making simple and fast to
get familiar with the SVC method and its latest research trends.
Finally, we give our vision of optimizing the SVC method.

II. A REVIEW OF SUPPORT VECTOR CLUSTERING

Based on support vector domain description (SVDD) by Tax
and Duin [8] and Support Vector Machine by Vapnik [7], Ben-
Hurr proposed a robust mathematical kernel-based method
called support vector clustering (SVC) [6]. The method task is
to accurately label a set of data points in an unsupervised way,
throw two main steps. Training step to construct a trained ker-
nel radius function, and the label step to assign a cluster index
for each data point. In this section, we present an overview
of SVC method principals, and show why it is considered as
an advantageous method compared to conventional clustering
methods, and the main upgrade possibilities to overcome its
drawbacks.

A. SVC training

Also known as the estimation of a trained support function.
Two major approaches are proposed in the literature to
define the domain of novelty in this step, the large margin
hyperplane (LMH) [9], [10], [27] and the minimum englobing
sphere (MES) [6], [8] Fig.2.

1) LMH: From a given data set X = x1, x2, . . . , xN , the
LMH method tries to define the domain of novelty by learning
an optimal hyperplane that can separate the data samples
and the origin such that the margin, i.e., the distance from
the origin to the hyperplane, is maximized. This optimization
problem is formulated as follows [9]:

max
w,ρ

(

∣∣ρ∣∣∥∥w∥∥2 )
subject to

yi(w
Tϕ(xi)− ρ) ≥ 0, i = 1, 2, ..., N

Using Lagrangian and some transformations, we get the
following dual problem [10]:

(a) LMH

(b) MES

Fig. 2: LMH vs MES.

min
α

∑
i,j

αiαjk(xi, xj)−
∑
i

αik(xi, xj)

subject to

0 ≤ αi ≤
1

vl

∑
i

αi = 1

.

2) MES: However, the MES method, starts by defining a
hypersphere as following:
Let {xi/i = 1, 2, . . . , N} ⊂ X represent the set of N data
points, with X ⊂ Rn, the data space. And let Φ be the
nonlinear transformation from X to high-dimensional feature-
space. The goal is to find the smallest hypersphere with radius
R, and a center a that enclose almost of the data set, so we
can write:

min
R,αξj

R2 + C
∑
j

ξj (1)

s.t


∥∥∥Φ(xi)− a

∥∥∥2 ≤ R2 + ξj , j = 1, 2, ...N

ξj ≥ 0, j = 1, 2, ...N

Where ξj ≥ 0 are slack variables that relax the constraints,
and C ∈ [0, 1] is a constant parameter allows controlling
the penalty of noise, are introduced to allow dealing with
the outliers. In order to solve the primal problem (1), we
need to solve the following Wolfe dual problem -obtained
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by introducing the Lagrangian and the KKT complementary
condition of Fletcher (1987) in (1)- [6], [11]:

max

N∑
i=1

βiK(xi, xi)−
N∑
i=1

N∑
j=1

βiβjK(xi, xj) (2)

s.t

{∑N
i=1 βi = 1

0 ≤ βi ≤ C ∀i = 1, 2, ..., N

Where βi are Lagrange multipliers, and K(xi, xj) =
Φ(xi).Φ(xj) is the kernel function. According to [6], only
the points with 0 ≤ βi ≤ C lies on the hypersphere’s surface,
they are known as the support vectors (SVs), and they can
define the cluster boundaries. Points with βi = 0 lies inside
the hypersphere and are called inner data points (ID). Data
points with βi = C lies outside the hypersphere and they are
called bounded support vectors (BSVs). Many kernel functions
can be used as polynomial and sigmoid, but the widely used
one is the Gaussian kernel with the following form:

K(xi, xj) = exp
−q

∥∥∥xi − xj

∥∥∥2

The decision function is given by:

f(x) = R2 =
∥∥ϕ(x)− a

∥∥2
= K(x, x)− 2

N∑
i=1

βiK(xi, x) +

N∑
i=1

N∑
j=1

βiβjK(xi, xj) (3)

B. SVC labeling (cluster assignment):

The obtained decision function 3 indicates only if the tested
data point is inside one of the clusters or not, it does not
differentiate between points that belong to different clusters
[6]. To do so, a simple graphical direct connection test can be
used to assign each sample to the appropriate cluster. For any
two points xi, xj , and using the function (3), we check the
m segmers on the line segment that connect their images in
the hyperspace, if all the m segmers lies in the hypersphere,
xi, xj should be labeled with the same cluster, otherwise, they
will be assigned to two different clusters.

III. MOST IMPORTANT CURRENT WORKS ON SVC

The decision function f(x) (3) is considered as the back-
bone of the SVC method, since the whole clustering operation
is strongly depending on its results. For that, almost of
the optimization works on the literature are turning around
it. Optimizing the computational time required to formulate
f(x) depends on solving its quadratic programming problem
(QP). As well as, f(x) is influenced by many parameters.
Getting high accurate results is strongly depending on tuning
those parameters. In addition, labeling computational time
and connectivity graph storage requirements are with high
dependency of the function f(x).

As it is mentioned in the introduction, the main drawback
of SVC method is the computational time requirement in both,
training and labeling step. Thus, almost of the theoretical

research works on the literature are focusing on minimizing
time consumption with the preservation -or even improvement
in some propositions- of the method’s accuracy.

Ping et al. [4] have classified the theoretical contributions
into three main classes: parameter selection and optimiza-
tion, solving dual problem and improving cluster labeling
methods. In what following, we will follow this classification
on describing and discussing the most important works sited
with some adaptations. We will use parameter tuning instead
of approaches to parameter selection and optimization, and
we will add the fourth class which is data space reduction.
In addition, a miscellaneous class is proposed to group the
researches that propose an uncommon ideas or reformulating
the original proposed SVD method principals.

A. Data space reduction

Given that we are dealing with huge amount of data,
reducing it or selecting the most relevant data points shown
that it has a great effect on reducing computational time
requirement. In fact, there is two possible position where we
can reduce the data points used in the SVC method process.

1) Reducing data before training: According to [4], [8],
[12] only a few data points are needed to define f(x), these
points are the SVs. So, the aim is to pinpoint these SVs
and use only them to train f(x). Many algorithms proposed
to eliminate a large data point proportion and use only the
remaining small part –which implicitly contains the SVs- to
train the model.

Based on local geometrical and statistical information
method proposed Y. Li et al. [13], Y. Ping et al. [14] proposed
a border-edge pattern selection (BEPS) method to identify the
boundaries points. Their algorithm tries to localize points with
all of their neighbors or almost of them are locating on one
side (upside or downside) of the tangent plane passing throw
that points, depending on the curvature of the surface Fig. 3.

Fig. 3: border-edge pattern selection (BEPS). [14]

Applying BEPS result on a reduced data set, which sig-
nificantly reduce the amount of training time. However, the
necessity to set some parameters as: the thresh hold γ which
is used to control the curvature of the surface, and test if a
data point is a boundary point, and the number of neighbors
k, can affect the accuracy of the method.

Authors in [15], suggested another method to eliminate
unnecessary data, they proposed, as first step, to eliminate the
noise data points using the shared nearest neighbor (SNN)
algorithm, then identify and eliminate the core data points
using the unit vectors concept and only keep the boundary
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points to use in the training step. However, this method
can’t effectively detect and eliminate all core points. In
addition, they need to define a thresh hold δ test the similarity
between data points, and a constant k for minimum number
of neighbors.

2) Reducing data before labeling: To avoid testing every
pairwise data points and label them one by one, most of
remarkable works in this axe of research are based on
separating the data set into groups, usually known as convex
hulls, then with each group, locating the most representative
points that attract all remaining data points, generally named
stable equilibrium points (SEPs) or stable equilibrium vectors
(SEVs), Label the SEVs, and then each inner data point is
labeled according to its SEVs.

Based on the topological property of the trained kernel
radius function, J. Lee et al. [16] proposed a novel method
to reduce computational time required in the labeling step in
two phases. Firstly, they used a generalized gradient descent
process to decompose data set into a small number of disjoint
groups and locate the representative point (SEP) of each of
these groups. Then in second step, label the obtained SEPs
using the classical method but with a reduced graph (RG)
instead of complete graph (CG), thus, label all data points
of each group according to their SEP. Their method shows
a great reduction in time consumption storage requirement.
However, it suffers from the cluster convexity problem as
shown in Fig.4a. This problem has been solved by J. Lee et
al. [17] by introducing the basin cells and adjacency points
notion. The authors proved that the original space can be
decomposed to regions named basin cells (BS), and every
basin cell contains a SEP and all the data point that converge
to that SEP. The of intersection of these BS are adjacency
points. These adjacency points are used in the labeling step
as following: if di is an adjacency point between two SEPs
sj , sk, and if f(di) ≤ r, then sjandsk are in the same cluster.
Despite this improvement, the method still leads to a relatively
high error on irregular-shaped data [12].

B. Solving dual problem

Although reducing data space can allow a great performance
improvement, finding an alternative problem to the original
dual problem attracted the main researchers’ attention due its
high computational complexity.

The first attempt to find an alternative problem to the SVC
dual problem was in [6], authors proposed to use the sequential
minimal optimization (SMO) algorithm. It decomposes the
original dual problem into a series of small-scale convex
quadratic programming problems. In each problem, only two
samples are required as the working set. Thus, in order to
obtain a globally optimal solution, the algorithm starts with
two heuristically selected factors β while the others are fixed
[4]. Despite the improvement that SMO guarantied, it still
requires a high time complexity.

(a)

(b)

Fig. 4: (a):SEP and convexity problem [16], (b): BC, the
solution of convexity problem [17]

C. Guo et al. [14] followed the Jaynes’ maximum entropy
principle and replaced the QP by an Iterative problem. Based
on the problem constraints:

N∑
j=1

βj = 1

0 ≤ βj ≤ 1

It meets the probability definition. Based on the probability
interpretation that: the center of the sphere represents the mean
vector of the images of all data points, and that βi represents
the probability that xi is a SV so, the search of the MES can
be considered as the probability assignment of βi.

Another remarkable work done by J. H. Chiang et al.
[18]. The authors used a fuzzy clustering principal which
consider that a data point can belong to many clusters at
the same time, with a certain membership grade to every
cluster, instead of belonging to only one cluster. This definition
is used in addition to some other principals (such as the
nonlinear mapping, cell growing principal and points density
region) to define a new algorithm (named MSV-clustering
algorithm) which aims to map original data points into many
hyper-spheres instead of a single one. When mapped back,
every hyper-sphere forms a single cluster with a specified
decision function. However, in addition to the need to set
many parameters (cluster compactness, vigilance threshold,
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etc.), the algorithm still shows high computation and storage
complexity.

In the aim to make SVC consume less, Y. Ping et al.
[22] proposed to use the dual coordinate descent method
(DCD), which was firstly proposed by C.-J. Hsieh et al. [23]
to solve large scale linear SVM. Firstly, they reformulated
the original dual problem to a linear one similar to SVM,
however it still an unsupervised model. Thus, they extended
it to an iterative algorithm to compute the βi coefficients.
The resulting model shows a flexibility when dealing with
storage resources. It offers two ways to compute and store
kernel values, search on demand or calculate on demand,
depending on the used platform capabilities. If the platform
has sufficient storage resources, one can calculate and store
the whole kernel matrix in the memory, then use the search on
demand policy. Otherwise, we compute only the needed block
of the kernel matrix on demand. This strategy can reduce the
storage complexity of the SVC and allow individuals to use
their limited platform resources to deal with large-scale data.

T. Pham et al. [9] applied the stochastic gradient descent
(SGD) to the LMH version of the SVC. Their SGD-LMSVC
algorithm iteratively train an optimal hyperplane. In each
iteration t, it uniformly samples a single data point from
the training data set to form a new hyperplane based on the
updated information from the previous one.

wt+1 = (1− 1

t
)wt +

C

t
I[wT

t ϕ(xnt )≤1]ϕ(xnt
)

Where IA is an indicator function, it returns 1 if A is true
and 0 otherwise. This kind of solution allows its use in a
dynamic mode and optimize memory usage. However, the
use of the kernels can lead to a considerable model growth,
which can slower the computation rate and cause a potential
memory overflow. To overcome this issue, the same authors
proposed in [27] to fix the size of the current model using
the budget approach. If the current model size exceeds the
budget, a maintenance procedure which includes two strategies
is applied. A removal strategy, consist of removing the most
redundant vector, and a projection strategy, which projects the
most redundant vector onto the linear span of the remaining
vectors in the support set in the feature space before removing
it. The proposed update can limit the model growth, however,
another parameter to optimize is added, which is the size of
the budget. If the budget is too small a precious learning
information can be lost, and a rise of computation rate and
memory usage is expected if the budget is too big.

C. Improving cluster labeling

Cluster label assignment operation is based on pair-wise
testing and graph construction using the decision function
f(x), which shown a considerable time and storage complex-
ity. Thus, most of researches in the literature, who are dealing
with this step, are interested on how reducing data points used
in both, pair-wise tests and graph construction.

Methods concerned by data points reduction are presented in
the section: reducing data points before labeling. In addition,
some other methods proposed to solve dual problem have a
transitive effect on the improvement of the cluster labeling
step. J. H. Chiang et al. [18] method, discussed in solving
dual problem section, leads to train many functions, one for
each cluster, so, assigning a cluster label to a data point simply
done by testing which function gives a positive result.

Ben-Hur et al. [6] proposed to use SVs in the graph
construction (named SVG) instead of using whole original
data points complete graph (CG), which led to computation
and storage space improvement, but they need another step to
assign the remaining inner data points into their appropriate
clusters. L. Ping et al. [19] presented a novel method named
NSVC, in which they proposed to label the remaining inner
points using spectrum analysis (SA), and a weighted-voting
kNN (WkNN). However, according to [4], the spectrum anal-
ysis is time consuming, especially in high dimension data
sets. Y. Ping et al. [12] used the SVs to decompose the
data space into separated and non-overlapped subsets which
contains most of the inner data points, every subset represents
a so-called convex hull, which is considered as a prototype
for connectivity analysis. Contrary to J. Lee et al. [17] which
used the representative data points of every basin cell to
construct the graph, authors in [12] used the line segment
connecting two nearest neighboring convex hulls, (from the
vertex of one convex hull which is the nearest to the other
convex hull to any point on the corresponding border [12]). Y.
Ping et al. [22] also used the convex hull decomposition and
the most representative point of the sub-cluster named stable
equilibrium vectors (SEVs), however, their algorithm checks
whether any two convex hulls belongs to same cluster by
checking the connectivity between the SEV of one sub cluster
and the nearest SV of the other sub cluster. The decision is
made using sample once for connection checking first strategy,
explained in sample rate tuning section.

D. Parameter tuning

The aim of training f(x) step is to estimate the βi coef-
ficients. However, and as seen in the previous section, f(x)
results depends also on other parameters, such as: the kernel
width q, the penalty factor C and the sample rate m -which
has an influence on the labeling step-. Thus, many researches
in the literature are interested on tuning those parameters due
to their great influence on the clustering results. Following,
we will discuss the influence of every parameter, and some
important researchers work done about that parameter.

1) Kernel width q: The selected kernel function defines how
the data points will be mapped to the new hyperspace. As
well as, the most used one is the Gaussian kernel, the clusters
boundary shape depends on the selected q value. In addition,
and as we have seen previously, some of the boundary data
points known as SVs, are with direct responsibility of defining
the function f(x), thus, increasing or decreasing the number
of the SVs will obviously affect the cluster’s boundary shape.
Ben-Hur et al. [6] showed that the kernel width q is on direct
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Fig. 5: Parameters tuning influence on clustering results [6].

relation with the SVs. The authors proposed to begin with
small q value, equal to 1/maxi,j

∥∥xi − xj

∥∥2, which leads
to generate one cluster englobing all of the data points, then
incrementally increasing it into obtaining the desired cluster
split, Fig.5. S.-H. Lee et al. [20] characterized R2 as a function
of q, and established that: 0 ≤ R2 ≤ 1−1/N for 0 ≤ q ≤ ∞,
R2 = 0 for q = 0, R2 = 1−1/N if and only if q = ∞. Also,
they provided that R2 is monotonically increasing function of
q. With a fixed C value, their secant-like algorithm generates
a number of q values. The previous methods show an efficient
way to set the kernel width q. However, it is too difficult to
apply these technics, and define when to stop increasing q on
an unsupervised clustering.

D. Huand et al. [24] discussed the problem of setting the
kernel and the trade-off parameters (q and C) manually using
trial and error strategy, and how to properly select them.
They proposed an algorithm named ensemble-driven support
vector clustering (EDSVC) which can automatically compute
the parameters values based on ensemble learning strategy.
Authors proposed to construct an ensemble of m clustering
using k-means (they used m = 10 and k ∈ [2, 3

√
N ]]).

Then they proposed the following steps: set an ensemble of
candidate values for each q(nq) and C(nc) (they used 100
candidates for each), vary one parameter while fixing the value
of the other parameter and train an SVC model, and vice
versa. Compute the average normalized mutual information
(ANMI) between each trained SVC model and the constructed
ensemble of m clustering. The parameters of the SVC cluster
with maximum ANMI are adopted. EDSVC showed high
performance on selecting parameter values. However, it shows
huge computation consumption and still depends on other
parameters like k,m, nq and nc. In addition, and according to
[26], the algorithms based on k-means unstable and strongly

Fig. 6: Penalty factor influence [6].

depend on the initial labels.
2) Penalty factor C (trade-off parameter): From the fact

that working on real data sets, and trying to divide them into
separated clusters is usually not allowed even with different q
values, Ben-Hur et al [6] confirmed the necessity of allowing
the BSVs for cluster separation, they concluded that the
number of outliers is monotonically decreasing function of
C as following (where nbsv):

nbsv ≤ 1/C

In case of a large portion of data points turns into SVs
or singleton clusters appears, authors in [6] warns that is
the indication to consider BSVs, to allow points turns into
outliers allowing contour separation. Also, authors noted that
increasing or decreasing the penalty factor C does not affect
only the number of BSVs, but also affects the number of SVs,
and as result it affects the shape of the cluster. Same issues
with defining optimal q value, it is difficult to set the optimal
value of the factor C when dealing with an unsupervised
clustering. Thus, the number of support vectors and the shape
of the clusters depends on both q and m.

To tackle manual affectation of the penalty factor C, F. Pu
[25], and in order to reflect the within class importance, he
assigned an exponential local weight factor to each data point
based on its image on the feature space and the center of
the feature space images. The author reformulated the original
dual problem to a new one, which suppress the effect of the
outliers, represent by the penalty factor C, and replace them
by weight factor.

3) Sample rate m: Another important parameter to tune,
the sample rate m. It does not affect the cluster shape as the
previous two parameters, but it has a great influence on the
labeling step. However, not a lot of interest in the literature
about this parameter.

The sample rate m is crucial on determining the connection
between components. Increasing m allows high labeling ac-
curacy but leads to the increase on computational complexity.
Decreasing m leads to incorrect labeling results but minimize
the computational time. According to the literature’s, the
preferred sample rate m range is from 10 to 20 [4], [6]. In
addition, we differentiate three strategies on how checking
the m segmers. The first one is a linear sampling, it stops
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Fig. 7: Sampling strategies [22].

when either the number of tested points reach m or a negative
check result is obtained [6]. Authors in [12], [21], used the
disconnected checking first strategy, which uses a nonlinear
sample sequence. The later one shows a reduction on the
sample rate -less than two-.

As well as they used the convex hull decomposition, and
specific connection checking between sub clusters, described
in section III-C, Y. Ping et al. [22] proposed a new and very
reduced sampling method, they only test the first segmer which
connect the SEV of the first sub cluster to the closest SV of
the second sub-cluster Fig.7.c. The decision is made if and
only if f(x(tested segmer)) ≤ R2 which means the two sub
clusters are in the same cluster. Otherwise, a second inversed
test is done between SV of the first sub cluster and the SEV
of the second sub cluster. If f(x(tested segmer)) ≤ R2 then
the two sub cluster are in the same cluster, else they are a
different clusters. Although the proposed method showed a
great reduction in time consumption, it can fail when dealing
with a very complicated cluster shapes.

E. Miscellaneous

In this section, we will present some works which applied
a novel ideas or propose extensions to the original SVC
algorithm, these ideas can’t be classified in any of the previous
sections. Almost all aforementioned researches have totally
omitted the outlier data points, R. Saltos et al. [11] consider
the closest BSVs to the formed clusters can contain some
insights which can be exploited. They proposed the rough
fuzzy support vector clustering (RFSVC) algorithm, which
undergoes three steps: training, labeling and fuzzification. The
last step, uses the fuzzy set theory to construct a fuzzy matrix.
Each element of the matrix is a Gaussian distance from the
ith BSV to either the closest SV, given by:

µi,j = µ(xi, SVj) = k(xi, SVj) = exp
q
∥∥∥xi, SVj

∥∥∥2

or the mean distance to all SVs of the jth cluster, given by:

µi,j =
1∣∣SVj

∣∣ ∑
x∈SVj

k(BSVi, xk)

Based on the fact that almost all real-world phenomena
are characterized by dynamicity, where their data structures
changes over time, and believing that changes leads to uncer-
tainty, R. Saltos et al. [28] introduced a dynamic aspect to the
original static RFSVC algorithm [11] to dynamically cluster
moving data sets. As well as the technics for uncertainty mod-
eling have been integrated successfully into dynamic clustering
algorithms, authors in [28] combined the fuzzy logic and rough
sets with the SVC to obtain the dynamic rough-fuzzy support
vector clustering (D-RFSVC) algorithm. The fuzzy logic and
rough sets are integrated to model the uncertainty aspect of
the dynamic data, by providing a membership degree of data
points to the found clusters, in the aim to trace their evolution
over time. However, the SVC is chosen because of its ability to
deal with outliers and represent clusters with complex shapes
as in real world. The D-RFSVC undergoes three more steps
in addition to the basic steps of RFSVC algorithm, which are
training update, labeling update and fuzziffication update when
a new data point is present. Training update, step consist of
determine a feasible solution to the new system, then optimize
the obtained feasible solution. In this step, some of inner data
points can become SVs or the inverse. Labeling update step,
updates the adjacency matrix and data points labels. If some
changes occurred on the SVs set, the algorithm updates the
membership matrix in the last step. According to [28], the
application of the Dynamic RFSVC can occur the following
changes on each update cycle of the model: creation, deletion,
movement, merging, splitting, change of shape, dilatation,
and contraction of the cluster, in addition to the change of
uncertainty level and outlier traceability.

R. Khemchandani et al [29] proposed a novel plan-based
binary classifier, the twin support vector machine (TWSVM),
it solves two related smaller-size QPPs instead of a single
large one as in a classical SVM to construct two nonparallel
separating hyperplane. Z. Wang et al. [26] proposed the un-
supervised version of TWSVM for clustering purpose named
twin support vector clustering (TWSVC). The new proposed
clustering algorithm iteratively train a plane for each cluster,
the obtained plan is close to data points of its own cluster
and far away from the data points of the other clusters from
both sides as showed in Fig.8. The TWSVC uses a reduced
data set in the training step, which results on a considerable
computational complexity reduction. However, it omits one of
the important advantages of the SVC method, which is the
automatic detection of the cluster’s number. In addition, as
TWSVC began the training step by an initial cluster labels,
the final results may depend on the first cluster initialization.
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Fig. 8: Geometric interpretation of TWSVC [26].

Several works are proposed based on the new TWSVC
algorithm. R. Khemchandani et al. [30] introduced their fuzzy
least square version of the TWSVC algorithm named F-
LS-TWSVC. The least squares principle is used to redefine
the solution of TWSVC, which requires solving QPP and
a system of linear equations, to solve a series of system
of linear equations [30]. The fuzzy principal is applied by
defining a membership degree matrix of every data point to
different available clusters. The matrix is initialized using the
fuzzy nearest neighbor algorithm, and it is updated in each
iteration. Experiment results in [30] showed a considerable
computational time reduction. The accuracy was maintained
or even enhanced in some cases compared with the original
TWSVC or the classical plane-based clustering (PC) methods
(k-PC, proximal PC).

In order to alleviate the effect of the outliers, Q. Ye et al.
[31] suggested to use the L1-norm in the distances computa-
tion instead of using L2-norm, which make their first algorithm
(robust TWSVC) more robust to outliers’ effect. They also
proposed an effective iterative algorithm to accelerate their
first version algorithm and upgrade it to be fast robust TWSVC
(FRTWSVC). The experiments showed that booth RTWSVC
and FRTWSVC are generally more accurate against TWSVC
and classical plane-based clustering (k-PC, PPC). However,
RTWSVC is a high time consuming algorithm compared to
other methods, which let the FRTWSVC on the lead followed
by TWSVC.

Motivated by the idea of the TWSVM, and based on
maximum margin clustering (MMC) algorithm [33]. J. Fang et
al. [32] developed their version of TWSVC. They proposed to
reformulate the original MMC optimization problem (which is
a non-convex) to a semi-definite (SDP) programming problem,
then decompose it into several smaller ones and performing an
alternative optimization. To improve the algorithm generaliza-
tion ability, authors integrated the structural risk minimization
(SRM). Authors proved that the obtained algorithm until this
phase (alternating twin bounded SVC (ATBSVC)) can suffer
from the premature convergence problem. Hence, they relaxed
it by replacing the hinge loss by the Laplacian loss, the
algorithm becomes: alternating relaxed twin bounded SVC
(ARTBSVC).

Another algorithm based non-parallel hyperplanes is pro-
posed by J. Fang et al. [34]. They designed a synchronized
feature selection process based on the non-parallel hyperplane
SVM (NHSVM) instead of TWSVC, because the first is a
single QPP which is more adequate. However, an iterative
optimization strategy is also adopted to allow the NHSVM
dealing with the unsupervised learning (clustering). In this
alternating work, authors also replaced the hinge loss with
Laplacian one to avoid premature convergence, and the L-
infinite penalization norm is imposed to both hyperplanes for
the feature elimination. It’s important to note that the proposed
algorithm in [34] (Iterative tighter non-parallel hyperplane
support vector clustering with simultaneous feature selection
(IT-NHSVC-SFS)) is applied for binary clustering only, and
generalization to multi-class clustering is suggested by the
authors.

IV. CONCLUSION

We highlighted several SCV research papers, and we clas-
sified them according to the studied SVC section onto four
classes, data space reduction, solving dual problem, improving
cluster labelling and parameter tuning. As we mentioned in
the introduction, the main issue of the SVC method is when
dealing with huge data sets, thus the most important classes
are data space reduction, solving dual problem. Also, we can
notice that almost of the works are based on mathematics, in
another hand the AI methods and some of newly computer
science methods are ignored as cloud computing.
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