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The introduction of intrinsic compliance in the design of
robots allows to reduce the risk for humans working in the
vicinity of a robotic cell. Indeed, it permits to decouple
the dynamic effects of the links’ inertia from those of the
rotors’ inertia, thus reducing the maximum impact force
in case of a collision. However, robot designers are lack-
ing modeling tools to help simulate numerous collision
scenarios, analyze the behaviour of a compliant robot and
optimize its design.

In this article, we introduce a method to reduce the
dynamic model of a multi-link compliant robot to a sim-
ple translational mass-spring-mass system. Simulation
results show that this reduced model allows to accurately
predict the maximal impact force in case of a collision
with a constrained human body part. Multiple impact sce-
narios are conducted on two case-studies, a planar serial
elastic robot and the R-Min robot, an underactuated par-
allel planar robot, designed for collaboration.

1 INTRODUCTION
Recent years have shown a continuously growing in-

terest in collaborative robotic applications, in which a
robot and a human share a common workspace. This
enables the robot to assist the human but, at the same
time, generates hazardous situations of unexpected con-
tact. A major concern in the design of such a collaborative
robotic cell thus lies in the reduction of the human-related

∗Address all correspondence to this author.

hazard under an acceptable level. The severity of injuries
was originally investigated in the context of car-accidents
for the automotive industry and led to criteria such as the
HIC (Head Injury Criteria [1]). However, this criteria was
shown to be unsuitable to evaluate the safety of a robotic
cell [2, 3]. Since then, an international standard ISO/TS
15066 [4] was edited to guide designers through the risk
assessment of a collaborative robotic workcell based on
pressure and force pain thresholds evaluated for 29 body
regions issued from an experimental study led on 100 sub-
jects [5].

Based on these safety criteria, researchers have
deeply investigated the role of multiple parameters on the
severity of an impact in order to propose new concepts
allowing to obtain intrinsically safer robots. In two early
studies, the velocity and the reflected robot’s mass at the
end-effector were shown to play a major role on the sever-
ity of an unconstrained impact [3] and especially in the
case of a constrained impact [6] (when the impacted hu-
man body region is clamped between the robot and a wall
or any other rigid and fixed part of the workspace). This
led to the development of lightweight robots [7, 8] to ob-
tain a better trade-off between safety and productivity.

Another widely explored strategy, consists in the
development of intrinsically compliant robots based on
the use of new actuation approaches [9] such as Series
Elastic Actuator (SEA) with fixed [10, 11] or variable
stiffness [9], or the Distributed Macro-Min (DM2) ap-
proach [12]. These compliant mechanisms are intended
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to decouple the effects of the links’ inertia from those of
the rotors’ inertia, i.e. decorrelate the kinetic energy of
the impacted link from the rotor’s inertia and thus reduce
the reflected mass [13] perceived at the contact point al-
lowing to mitigate the impact severity. As pointed out
in [14], the joint stiffness can be advantageously reduced
only to a certain extent. Indeed, once the rotor’s and the
link’s inertia have been decoupled, further reducing the
joint stiffness will not reduce the impact force. The role
of joint stiffness in the hazard reduction of a constrained
impact was further investigated in [15] and shown to re-
duce the maximal impact force, providing even better re-
sults when associated to a collision detection and reaction
strategy.

However, in most of the works studying the influ-
ence of the design parameters of a compliant mechanism
on safety, the robot is reduced to a single rotating link
mechanism [9, 14–16], which does not give any insight
on how the configuration of a multi-dof compliant robot,
the direction of impact, or the location of the impact on
the robot’s arm affects the severity of an impact. In [17],
authors simulate the collision of a serial multi-link robot
and simplify the problem by linearizing the equations of
motion of the robot at the time of impact and by mod-
elling the human body as a simple spring-mass system.
In [15], authors give a method to compute the parameters
of an equivalent mass-spring-mass model of a compliant
multi-link serial robot, projecting the links’ inertia ma-
trix, the rotors’ inertia matrix and the joint stiffness ma-
trix along the direction of impact. However, no simula-
tion of this reduced model was conducted on a multi-link
robot to evaluate the relevance of the proposed parame-
ters. In [18], authors directly derive a closed-form sinu-
soidal equation of the maximum impact force from the
equations of motion of a three-mass oscillatory system.
The human is therefore approximated as a spring-mass
system, the reflected mass at the contact level is computed
at the end-effector using [13] and the mass on the rotor’s
side is considered infinite. This approach is further in-
vestigated in [19] to approximate the reflected mass of
the robot or the maximal impact force directly, consid-
ering a non-infinite mass rotor inertia. However, authors
in [19] and [18] consider a fully elastic linear contact to
help solve the equation of motion (neglecting the absorb-
ing effect of the skin), thus generating conservative re-
sults.

In this article, we introduce a new method to compute
the parameters of a reduced mass-spring-mass model of a
compliant robot. This model allows to obtain the max-
imum impact force, in a computationally efficient man-
ner, from the simulation of an impact between this re-
duced system and a human body part, considering the

non-linear properties of the human body in the compu-
tation of the contact force. The proposed robot’s model
is based on the projection of the equations of motion in
two dynamically independent subspaces. This method ap-
plies indifferently to compliant robots with serial or par-
allel architectures, however, it does not apply to robots
using flexible links [20], disengaging mechanisms [16] or
preloaded mechanism with mechanical stops [21]. Two
different robots are considered as well as different loca-
tions of impact on the robot, i.e. on the end-effector or on
the elbow. To the best of the authors’ knowledge, most
of the previous works have investigated an impact at the
end-effector but nowhere else on the robot’s arm. Simu-
lation results show that the reduced model allows to ob-
tain the impact force with a very good precision, for the
two robots and for all impact scenarios and, furthermore,
highlight the role of the joint stiffness in decoupling the
links’ and rotors’ inertia of a multi-link robot and its ef-
fect on the maximum impact force.

The paper is organised as follows. The reduced mass-
spring mass model is introduced in section 2. In sec-
tion 3, simulation results of a constrained impact between
a multi-link robot and a human body are conducted using
the reduced model and compared with a full robot model.
Two robots are considered: a two-link serial elastic robot
and the R-Min robot, a planar compliant parallel robot.
Multiple impact scenarios are investigated considering an
impact at the end-effector or at the elbow, with the head
or with the chest. A conclusion is drawn in section 4.

2 CALCULATION OF A REDUCED MASS-
SPRING-MASS MODEL OF A ROBOT

2.1 Statement of the problem: definition of the target
model

It has been shown for a single-link mechanism that
the dynamic behaviour of a compliant mechanism can be
reduced to an equivalent translational mass-spring-mass
system [9, 15], consisting of a mass mc perceived at the
contact point, a mass ma reflecting the inertia on the ac-
tuator side and, in between, the reflected stiffness of the
robot kr (see Fig. 1a).

The dynamics of a mass-spring-mass system is gov-
erned by the following equations:

[
mc 0
0 ma

] [
ẍc

ẍa

]
+

[
kr −kr
−kr kr

] [
∆xc

∆xa

]
=

[
fc
0

]
(1)

where xc is the position of the reflected mass at the con-
tact point mc and xa is the position of the reflected mass
on the actuator’s side ma, and ∆xc, ∆xa their respective
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displacements with respect to the spring unloaded posi-
tion. fc is the amplitude of the contact force, at the con-
tact point, between the robot and, in the present article,
the human body.

In what follows, we present a method to reduce the
full dynamics model of a (multi-link) robot impacting its
external environment (Fig. 1b) to the set of equations (1).
This method is composed of the following steps:

1. First, the robot dynamics model is linearized around
an equilibrium configuration (Sec. 2.2), considering
that the impact is occurring during a very short inter-
val of time,

2. Then, a new set of generalized coordinates is intro-
duced (Sec. 2.3), composed of two types of coordi-
nates: a coordinate at the impact point and coordi-
nates written in a space orthogonal to the previous
one, but dynamically consistent [13]. Projecting the
linearized dynamics model on the space defined by
this new set of coordinates allows the decoupling of
the inertial effects occurring at the time of the impact.

3. Finally (Sec. 2.4), these new equations of motion are
used to provide the expressions of the parameters mc,
kr and ma making the target model (1) as close as
possible to the robot dynamics model during the im-
pact.

Since we consider a multi-link robot, the parameters
mc, kr and ma of this reduced model depend on the loca-
tion of the contact along the robot’s arm (not necessarily
at the end-effector), on the direction of impact, as well as
on the configuration of the robot at the time of impact.

2.2 Linearization of the robot dynamics model
Let us consider a robot with n degrees-of-freedom

and m motors (n > m). 1 We denote as qg ∈ Rn the set
of generalized coordinates of the robots: the m first com-
ponents of qg correspond to the motor coordinates, and
the n−m remaining ones to the (uncontrolled) underac-
tuated coordinates. The equation of motion of the robot
is thus given by [22]:

M(qg)q̈g + g(qg) + c(qg, q̇g) = u+ fext (2)

where M(qg) is the robot generalized inertia matrix,
g(qg) is the vector regrouping the effect of conservative
forces (e.g. gravity, deformations), c(qg, q̇g) is the vec-
tor of Coriolis and centrifugal effects, u = [τT 0]T , with

1In what follows, we assume that all robots under consideration are
underactuated, due to the introduction of compliance in the mechanical
architecture and/or in the controller.

(a) Reduced Mass-Spring-Mass model of a robot

 

(b) A robot impacting with an external object such as a human
body region.

Fig. 1: (a) A reduced Mass-Spring-Mass model of a robot
and (b) a model of a compliant robot colliding with a hu-
man body.

τ ∈ Rm the vector of the motor input efforts. Finally,
fext is the vector of the generalized external forces (in our
case, the impact force).

The equation of motion (2) is linearized around an
equilibrium configuration (qg = qg0, q̇g = 0, q̈g = 0)
(more details are given in Appendix A):

M0q̈g +K0∆qg = ∆u+ fext (3)

where ∆qg = qg − qg0 is a variation of the generalized
coordinates, ∆u = u − g0 is a variation of the general-
ized input forces around the equilibrium and fext is the
generalized contact force, M0 is the robot’s inertia ma-
trix computed at qg0 and K0 is the stiffness matrix of the
robot (see App. A).

Let us consider the robot impacting an external object
at a point C with coordinates pc, (Fig. 1b). The displace-
ment of the contact point C along the normal vector n is
denoted ∆xc = nT∆pc, with ∆pc the displacement of
point C. Taking the hypotheses from the norm [4], we
assume that the contact force fc at C is directed along n,
i.e. fc = fcn (no friction is considered at the contact).
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We thus obtain the vector of the generalized impact force
fext = JT

c fc where matrix Jc ∈ R1×n relates ẋc to q̇g as:

ẋc = Jcq̇g (4)

Since the impact peak force that we want to compute,
only lasts a few milliseconds and assuming that the con-
troller bandwidth is not high enough to react to this high-
frequency phenomenon, the variation ∆u is assumed to
be null in the vicinity of the impact time. We finally ob-
tain the linearized approximation of Eq. (3):

M0q̈g +K0∆qg = JT
c fc (5)

In the next section, a new set of generalized coordi-
nates is defined allowing to decouple the inertial effects
of Eq. (5).

2.3 Definition of a new set of generalized coordinates
Similarly as what is done when projecting the robot

dynamics in the task space [23], we project the linearized
dynamics model (5) in a space defined by a new set of
generalized coordinates containing xc, i.e. the general-
ized coordinate of the impact point, and some other co-
ordinates lying in a space orthogonal to xc, but dynam-
ically consistent [13]. As shown later below, projecting
the linearized dynamics model on a space defined by this
new set of coordinates, allows to decouple the inertia per-
ceived at the impact location from the remaining inertia
on the actuator’s side.

Let us define as qn = [xc xT
a ]

T ∈ Rn this new set of
generalized coordinates, containing the variable xc and
a vector xa ∈ Rn−1 which is further defined. The set
of coordinates xa reflects internal motions of the robot
whose inertia does not directly affect the acceleration of
the contact point. The generalized velocity q̇g can be ex-
pressed as a function of q̇n through the following generic
relationship:

q̇g = Ecẋc +Eaẋa (6)

where Ec ∈ Rn×1 and Ea ∈ Rn×(n−1) are two matrices
whose expressions will be provided below.

Left-multiplying Eq. (6) by Jc, we obtain:

ẋc = JcEcẋc + JcEaẋa (7)

Equations (4) and (7) imply the following properties for
matrices Ec and Ea to be satisfied:

JcEc = 1, JcEa = 0 (8)

This means that Ec is a right-hand-side generalized in-
verse of Jc. In the following, we use a dynamically con-
sistent generalized inverse J#

c ∈ Rn×1 of Jc as defined
in [13]:

J#
c = M−1

0 JT
c mc = Ec (9)

where mc is the reflected mass of the robot at the contact
point C computed as follows:

mc =
(
JcM

−1
0 JT

c

)−1
(10)

Now, let us focus on the definition of matrix Ea. The
time-derivative of any set of robot coordinates xa could
be defined thanks to the generalized velocities q̇g by a
generic relation:

ẋa = Jaq̇g (11)

where Ja ∈ R(n−1)×n is the Jacobian matrix relating ẋa

to q̇g . Left-multiplying Eq. (6) by Ja, we get:

ẋa = JaJ
#
c ẋc + JaEaẋa (12)

Equations (11) and (12) imply the following properties
for matrices Ea and Ja to be satisfied:

JaEa = I(n−1)×(n−1), JaJ
#
c = 0 (13)

where I(n−1)×(n−1) is the identity matrix of dimension
n − 1. The left-hand side of (13) means that Ea is a
right-hand-side generalized inverse J#

a ∈ Rn×(n−1) of
Ja: Ea = J#

a . We also see from the right-hand side
of (13) that, indeed, JT

a spans the nullspace of J#T
c .

Then, from (9), the transpose of Ja can be computed as:

JT
a = ker(J#T

c ) = ker(JcM
−1
0 ) (14)

It should be mentioned that, by definition, matrix M0 is
symmetric positive definite [22].
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As proven in Appendix B, matrix J#
a is given by:

J#
a = M−1

0 JT
aMa = Ea (15)

where Ma ∈ R(n−1)×(n−1) is the pseudo-kinetic energy
matrix associated to the coordinates xa defined by Khatib
in [13]:

Ma = (JaM
−1
0 JT

a )
−1 (16)

The dynamic decoupling of these two inertia appears
when projecting the linearized dynamic model expressed
in the joint space (5) in the contact space by J#T

c and, in
a complementary space, by J#T

a :

J#T
c (M0q̈g +K0∆qg) = J#T

c JT
c fc (17)

J#T
a (M0q̈g +K0∆qg) = J#T

a JT
c fc (18)

Using Eq. (9), Eq. (15) and the symmetry of M0, the two
equations above become:

mcJcq̈g + J#T
c K0∆qg = fc (19)

MaJaq̈g + J#T
a K0∆qg = 0 (20)

Since the model is linearised around an equilibrium con-
figuration for which q̇g ≈ 0 (see Eq. (40) in App. A), the
time-derivative of Eq. (4) and (11) gives:

ẍc ≈ Jcq̈g, ẍa ≈ Jaq̈g (21)

Using Eqs. (6), (9) and (15) and assuming small displace-
ments, we may write:

∆qg = J#
c ∆xc + J#

a ∆xa (22)

Then, using Eqs. (21) and (22), the system of Eqs. (19)
and (20) becomes:

mcẍc + J#T
c K0J

#
c ∆xc + J#T

c K0J
#
a ∆xa = fc (23)

Maẍa + J#T
a K0J

#
c ∆xc + J#T

a K0J
#
a ∆xa = 0 (24)

This set of equations permits to show that there exists a
set of generalized coordinates qn = [xc xT

a ]
T allowing

to describe the dynamics of the robot with two equations

of motion using independent inertia mc and Ma. Indeed,
when considering a null joint stiffness K0 = 0, the ac-
celeration of xc would not affect the acceleration of xa

and reversely, i.e. the inertial effects would be decoupled.
The set of coordinates xa, which is defined here as a set
of coordinates orthogonal to xc, is thus said to evolve in
a dynamically complementary space with respect to the
coordinate xc.

2.4 Computing the parameters of the reduced model
Let us introduce the reflected stiffness of the robot at

the contact level:

kr = J#T
c K0J

#
c (25)

which allows to rewrite (23) as:

mcẍc + kr∆xc + J#T
c K0J

#
a ∆xa = fc (26)

The vector ∆xa is projected onto a one-dimensional
space to obtain a scalar displacement ∆xa, such that
∆xa = Jx∆xa, with Jx a Jacobian matrix defined by:

−krJx = J#T
c K0J

#
a (27)

thus leading to:

mcẍc + kr∆xc − kr∆xa = fc (28)

which is nothing else than the first line of Eq. (1).
Now, left-multiplying the second line of (1) by JT

x

and considering ẍa ≈ Jxẍa around the equilibrium point,
we get:

maJ
T
xJxẍa − krJ

T
x∆xc + krJ

T
xJx∆xa = 0 (29)

Equations (24) and (29) are equivalent if and only if:

maJ
T
xJx = Ma (30)

−krJ
T
x = J#T

a K0J
#
c (31)

krJ
T
xJx = J#T

a K0J
#
a (32)

Equations (31) and (27) are equivalent, using the symme-
try of K0. From Eq. (30), we obtain:

JT
xJx =

1

ma
Ma (33)
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and from Eq. (32):

JT
xJx =

1

kr
J#T
a K0J

#
a (34)

For Eqs. (24) and (29) to be equal and for the robot to
be equivalent to the target translational mass-spring-mass
system, the following expression must be satisfied:

1

ma
Ma −

1

kr
J#T
a K0J

#
a = 0 (35)

Since this expression cannot be true in general, we
now compute the mass ma, corresponding to the reflected
mass on the actuator’s side introduced in Eq. (1), which
makes the left-hand side of Eq. (35) as close as possible
to zero (minimizing the matrix norm). Therefore, sum-
marizing the results of this section, the parameters of the
reduced mass-spring-mass model defined by Eq. (1) can
be computed using the following expressions:

mc =
(
JcM

−1
0 JT

c

)−1
(36)

kr = J#T
c K0J

#
c (37)

ma = argmin
(∥∥krMa −maJ

#T
a K0J

#
a

∥∥) (38)

It should be noted that the proposed reflected stiff-
ness kr is different from the stiffness projected along the
direction of impact given in [15, 24], which is equal to
kc =

(
JcK

−1
0 JT

c

)−1
. The proposed reflected stiffness

kr relies on the use of the dynamically consistent gener-
alized inverse J#

c [13] and thus depends on the robot’s
inertia matrix. As show in Appendix B of [25], the stiff-
ness kc has a physical meaning in the static case but not
really in the dynamic case, when the effect of inertia on
contact forces cannot be neglected.

In the next Section, we validate our simplified model
on several simulated case studies.

3 CASE STUDIES
In this section, simulation results are presented in or-

der to assess the validity of the reduced mass-spring-mass
robot model for representing the dynamic behaviour of a
robot during a collision with a human body part and es-
pecially determining the maximum impact force.

Two different planar robot architectures are consid-
ered including both open and closed-chain mechanisms.
The first robot is a serial RR robot with parallel rotational
joints actuated by Series Elastic Actuators (SEA). The

second robot is the R-Min robot [26,27], a parallel seven-
bar underactuated mechanism, designed for safe physical
interactions with a human being.

For each robot, various impact scenarios are com-
pared, considering different robot configurations and dif-
ferent contact locations (at the End-Effector (EE) or at the
elbow). Most of the simulations consider an impact with
the head, but results are also given considering an impact
with the chest.

3.1 Simulation methodology
In what follows, more details are given on simu-

lations conducted using the reduced mass-spring-mass
robot model (Eq. (1)) on the one hand, and using the
multi-body robot model (Eq. (2)) on the other hand. In
both cases, a robot interacts with an external object, more
specifically a human body region in the context of this ar-
ticle. The contact model is based on the Hertz theory and
permits to consider the non-linear properties of the skin
since it has a major positive effect on the resulting impact
force [16]. Details are also given on the controller used in
the simulation of the multi-body robot since it affects the
stiffness properties and thus the impact force.

3.1.1 Modeling of the impacted body region
In the simulation of a multi-body robot impacting an

external body, the contact force can have any direction in
space. For simplification purpose, no friction is consid-
ered such that the contact force is aligned with the vec-
tor n normal to the surface of the impacted body region
at the contact point. Figure 2 represents the considered
model for the human body, oriented along the contact
normal vector n, where kh represents the stiffness of the
human body part (kh = 150.103 N/m for the head and
kh = 25.103 N/m for the chest 2). A small damping
ch = 10 N.m−1s−1 and mass m0 = 0.00001 kg have
been introduced to avoid chattering in the simulation.

3.1.2 Contact modeling
The skin has a compliant behaviour which signif-

icantly reduces the peak impact force. In the simula-
tions, the mechanical properties of the skin are derived
from those of the damping material recommended in [28]
for the design of a biofidelic measurement system for the
safety assessment of collaborative robotic workcells. In-
deed, the skin is replaced by a rubber foam with specified
thickness and hardness aimed to mimic the biomechani-
cal properties of the impacted body region. In the simu-

2The corresponding biomechanical properties have been specified
according to the standards ISO/TS 15066 [4].
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Fig. 2: Simplified model of an impacted human body re-
gion for a constrained collision, with x0 the position of
the impacted human body part along the contact normal
n.

lation results presented in the following, the contact force
fc is obtained using the Hertz contact theory, considering
an elastic contact, with a power exponent nf = 1.5 and a
stiffness kf = 1.9·107 N.m(−nf ) obtained experimentally
using a foam of 7 mm thickness and 70 ShA hardness (as
recommended in [28] for mimicking the head and chest).

3.1.3 Discussion on control strategies
In the simulation of the full robot model, the actua-

tor torques are computed using a computed torque con-
trol [22] applied in the active joint space, using the equa-
tions of motion given in (2). A PID controller is chosen
to compensate errors in the model and to obtain a realistic
behaviour. The derivative kd, proportional kp and inte-
gral ki controller gains are chosen using the theory given
in [22]. In the reduced model, the proportional gain of
the controller is considered in the computation of the re-
flected stiffness.

In the simulation of the full robot model, a reactive
strategy is implemented to reproduce an impact detec-
tion such that the motor torques compensate the forces
derived from the potential energy, 20 ms after detecting
the impact. In the simulation of the reduced model, no
control nor reactive strategy is introduced, but an initial
velocity v0 is simply imposed to ma and mc, correspond-
ing to the impact velocity obtained with the full robot
model. Unless otherwise specified, this velocity is cho-
sen as v0 = 1 m/s.

3.2 Serial elastic RR robot
3.2.1 Robot description

The considered robot, in this section, is a serial RR
robot actuated by two rotational SEA (Fig. 3), consisting
of a motor with a gear train, a rigid link and a rotational
spring in between. The mechanism is thus composed of
four bodies (two rotating inertia and two rigid links) and
two springs with a supposed identical stiffness ks. The

Fig. 3: Representation of the serial elastic RR robot. Co-
ordinates q1 and q3 are actuated by two motors at O1 and
O2, while coordinates q2 and q4 are passively driven by a
rotational spring.

(a) impact on the end effec-
tor with an extended arm

(b) impact on the joint with
an extended arm

(c) impact on the end effec-
tor with a folded arm

(d) impact on the joint with
a folded arm

Fig. 4: Description of the four simulated scenarios for the
serial elastic RR robot.

geometric and inertia properties of the four bodies are
given in Table 1. The robot has four degrees of free-
dom and its configuration is parametrized by four angles
q = [q1, q2, q3, q4]

T , where q1 (resp. q3) is the angular
position of the output shaft of motor M1 (resp. M2), and
q2 (resp. q4) is the deflection angle of the spring k1 (resp.
k2) from its unloaded position.

In the simulations of the full robot model presented
below, the motor torques are computed using the PID
controller presented in Part. 3.1.3 with the following pa-
rameters kd = 121 rad/s, kp = 6050 rad/s2 and ki =
1.25 · 105 rad/s3.
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Table 1: Geometric and inertia properties of the elastic
RR robot

Link Length Mass Inertia1 COM2

i li (m) mi (kg) Ji (kg.m2) xi (m)

1 0 1.5 4.71 0

2 0.5 17.4 0.539 0.068

3 0 1.5 0.83 0

4 0.5 6.04 0.086 0.143
1 Moments of inertia around z are provided at the COM

(Center Of Mass).
2 COM S2 (resp. S4) (Fig. 3) are located on the lines

O1O2 (resp. O2P ). xi is the distance from O1 (resp. O2)
to Si for i = {1, 2} (resp. i = {3, 4}).

3.2.2 Considered impact scenarios
In the following, multiple simulations are conducted

considering four different impact scenarios depicted on
Fig. 4:

a) the robot arm lies in a straight configuration (defined
below) impacting at the EE (point P – Fig. 4a),

b) the robot arm lies in a straight configuration impacting
at the elbow (point O3– Fig. 4b),

c) the robot arm lies in a folded configuration (defined
below) impacting at the EE (point P– Fig. 4c),

d) the robot arm lies in a folded configuration impacting
at the elbow (point O3– Fig. 4d).

The configuration of the robot at the time of im-
pact is given by q(0) = 0 for cases (a) and (b), and
q(0) = [0, 0, π

3 , 0]
T for cases (c) and (d). Indeed, robots

are assumed to be in static equilibrium at the time of im-
pact, rotational springs are thus unloaded since the gravity
acceleration is directed along the z axis having no effect
on the impact force.

The vector of joint velocities of the robot at the time
of impact is imposed as q̇(0) = [q̇

(0)
1 , 0, 0, 0]T for sce-

nario (a-c) and q̇(0) = [−q̇
(0)
1 , 0, 0, 0]T for scenario (d),

where q̇
(0)
1 is chosen as

{
v0

ℓ2+ℓ4
, v0

ℓ2
,

2/
√

3v0
ℓ2+ℓ4

, v0
ℓ2

}
for sce-

narios {a, b, c, d} respectively.

3.2.3 Parameters of the mass-spring-mass model
The parameters of the reduced mass-spring-mass

robot model mc, kr and ma are evaluated at the time of
impact using equations (36), (25) and (38) respectively.
The reflected mass at the contact location mc depends on

103 104

104

105

106

Joint stiffness ks (Nm/rad)

k
r
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)

(a)
(b)
(c)
(d)

Fig. 5: Evolution of the reflected stiffness kr with respect
to the joint stiffness ks for the four impact scenarios of
the serial elastic RR robot.

103 104
0

5

10

15

Joint stiffness ks (Nm/rad)

m
(k

g)

ma (a) mc (a)
ma (b) mc (b)
ma (c) mc (c)
ma (d) mc (d)

Fig. 6: Evolution of the reflected mass on the actuator
side ma with respect to the joint stiffness ks for the four
impact scenarios of the serial elastic RR robot.

the robot’s configuration, on the contact location and on
the contact normal direction, but does not depend on the
joint stiffness neither on the velocity. It has thus a con-
stant value mc = {0.73, 6.46, 1.12, 9.13} kg for scenar-
ios {a, b, c, d} respectively. It can be observed from these
values that the reflected mass at the contact location mc is
lower when the impact occurs at the EE rather that at the
elbow, and also when the arm is in a straight configuration
rather than in a folded one.

Figure 5 shows that the reflected robot stiffness in-
creases quasi-linearly with the joint stiffness ks. Figure 6
shows that the reflected mass on the actuator side ma sig-
nificantly depends on the joint stiffness ks and increases
non-linearly with ks.
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3.2.4 Simulation analysis
In this paragraph, simulation results are pre-

sented for different values of the joint stiffness ks ∈
[5.102, 5.104] N.m/rad and different values of the impact
velocity v0 ∈ [0.25, 2.5] m/s.

Varying the joint stiffness Figure 7 presents the impact
force time profiles obtained from the simulation of the im-
pact scenario (a) using the full robot model (solid blue
curves) compared with those of the corresponding re-
duced mass-spring-mass model (dashed red curves). Sim-
ulations have been conducted for multiple values of the
joint stiffness ks and an impact velocity of 1 m/s. These
results show that the simulation of the reduced model not
only gives a good approximation of the maximum im-
pact force, but also of the dynamic behaviour of the im-
pact force during the first instants after the impact. It
is thus possible to deduce the maximal stiffness allow-
ing to dynamically decouple the inertia effects of the re-
flected mass at the contact mc from that of the reflected
mass on the actuator side ma. Indeed, it can be observed
from Fig. 7 that, for a joint stiffness ks ≤ 4056 N.m/rad,
multiple isolated and short force peaks occur during the
first instants after the impact with the head, whereas for
higher joint stiffnesses, these isolated impacts progres-
sively merge into a single higher and longer force peak,
increasing the severity of the impact for the human.

Since this reduced model aims to approximate the
severity of an impact, we further focus on the maximal
impact force of the first impact. Indeed, once the im-
pact has been detected, the second force peak could be
mitigated using appropriate collision detection and reac-
tion strategies [29], while the first contact is hardly avoid-
able. Figure 8 represents the maximal impact force of the
first contact as a function of the joint stiffness ks for the
four scenarios, obtained simulating the full or the reduced
model of the robot model. These results show that the
reduced mass-spring-mass model can accurately predict
the maximal impact force for the four scenarios consid-
ering an impact with the head with a mean absolute error
of {1.8, 8.7, 1.9, 6.2} % for scenarios {a, b, c, d} respec-
tively (Fig. 8a). Similar results are obtained when consid-
ering an impact with the chest showing a mean error of
respectively {2.8, 6.8, 2.8, 7.7} % (Fig. 8b).

It can be observed, from Fig. 8, that the impact force
is larger when the impact occurs at the elbow (scenarios
(b,d)) rather than at the EE (scenarios (a,c)), for an identi-
cal impact velocity. This shows the interest of considering
not only impacts at the end-effector but also on other parts
of the robot’s arm.

As a matter of comparison, simulations of a model
considering a single reflected mass mc instead of the

proposed reduced mass-spring-mass system, provide
a maximum impact force of {291, 903, 363, 1079} N
for an impact on the head resulting in an error of
{11.0, 23.5, 9.6, 14.3} % (for scenarios {a, b, c, d} re-
spectively and considering an impact velocity of 1 m/s)
and {152, 387, 156, 462} N for an impact on the chest
resulting in an error of {30.9, 32.1, 28.8, 21.8} %. This
model would systematically underestimate the impact
force.

Varying the impact velocity Figure 9 compares the
maximum impact force obtained from the simulation
of the full model or the mass-spring-mass model, for
the four impact scenarios, considering different val-
ues of the impact velocity and a constant joint stiff-
ness of 105 N.m/rad. The parameters of the reduced
model for scenarios {a, b, c, d} respectively are ma =
{3.49, 12.8, 3.88, 7.43} kg, kr = {5.1, 23.5, 5.4, 10.8}
104 N/m. For both robot models, the impact force evolves
linearly with the impact velocity. The reduced model per-
mits to approximate the impact force with a maximal er-
ror of {0.55, 4.8, 0.3, 8.2} % for scenarios {a, b, c, d} re-
spectively.

Discussion In this paragraph, we showed that it is possi-
ble to represent the dynamic behaviour of a compliant se-
rial robot during collision using the reduced mass-spring-
mass system introduced in section 2. The simulation of
such model allows to obtain a good approximation of
the maximum impact force for different impact scenar-
ios. This model also allows to identify the joint stiffness
that decouples the inertia mc and ma, which depends on
the configuration of the robot, on the location of the im-
pact on the robot’s arm and on the impacted body region.
In what follows, we evaluate the relevance of the reduced
model for an underactuated parallel robot.

3.3 R-Min robot: an underactuated parallel robot
In this section, we show that the reduced mass-

spring-mass model also allows to accurately approximate
the maximal impact force occurring during a collision be-
tween a compliant robot having a parallel architecture and
a human body. We consider the R-Min 3 robot as a case-
study, a robot designed for intrinsically safe collaboration
with human [26, 27, 30].

3In this article, we consider a modified version of the R-Min robot
presented in [30] where the preload system is replaced by two rotational
springs located on the distal joints Oi3.
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Fig. 7: Comparison of the contact force time profiles obtained from the simulation of the full robot model (solid blue
curves) and the reduced mass-spring-mass robot model (dashed red curves), for different values of the joint stiffness
ks, in the scenario (a): the serial elastic RR robot impacting the head, at the EE, in a straight configuration, considering
an impact velocity of 1 m/s.

Table 2: Dimensions and mass properties of the prototype
links

Link Length Mass Inertia1 COM2

(i; j) li,j (m) mi,j (kg) Ji,j (kg.m2) xi,j (m)

(1&2;1) 0.28 6.92 0.033 0.015

(1&2;2) 0.2 0.26 0.0021 0.120

(1&2;3) 0.2 0.20 0.0016 0.100
1 Moments of inertia around z are provided at the COM.
2 Center of masses Sij (Fig. 10) are located on the lines

OijOij+1. xi,j is the distance from Sij to Oij .

3.3.1 Presentation of the robot

The R-Min robot (see Fig. 10) consists of a seven-
bar mechanism, with five passive revolute joints on points
Oi2, Oi3 and at the EE P , and two active revolute joints
on Oi1 (i = 1, 2) allowing to actuate the robot. All revo-
lute joints have for axis z making this robot move in the
vertical plane P0 : (O11,x, z). This mechanism is un-
deractuated since it has four dofs and two motors. Two
rotational springs of stiffness ks are added on the distal
joints at points O13 and O23, to increase the robot’s stiff-
ness and make it more easily controllable. These springs
are considered to be unloaded when qi3 = 0.

The geometric and inertia properties used in the fol-
lowing simulations are issued from the CAD-model of
the R-Min robot presented in [27] (see Tab. 2). The con-
trolled torques are computed using the PID controller pre-
sented in Part. 3.1.3 with the following parameters kd =
51 rad/s, kp = 1076 rad/s2 and ki = 9.26 · 103 rad/s3.

3.3.2 Considered impact scenarios

In the following, multiple simulations are conducted
considering two different impact scenarios with the R-
Min robot depicted on Fig. 11:

e) the R-Min robot impacting at the EE (point P –
Fig. 11a),

f) the R-Min robot impacting at the elbow (point O13 –
Fig. 11b).

The configuration of the R-Min robot at the time of
impact is arbitrarily defined by q

(0)
1 =

[
q11 q21

]T
=[

−130.6◦ −50.0◦
]T

, the passive coordinates are com-
puted so that the robot is in static equilibrium by solv-
ing the direct geometrico-static problem as formulated in
[26]. Since the gravity is considered (pointing towards the
−z direction), the joint springs are close to the unloaded
position at equilibrium and the distal arms are slightly
misaligned, allowing to compute the reflected stiffness kr.

In both scenarios (e) and (f), the impact velocity v0

is chosen along the x direction with a norm of 1 m/s.
The velocity of distal passive joints is assumed to be null
q̇
(0)
3 = 0. This results in the following actuators’ ve-

locity q̇
(0)
1 =

[
−2.80 −2.74

]T
(rad/s) in case (e) and

q̇
(0)
1 =

[
−2.80 −5.00

]T
(rad/s) in case (f).

3.3.3 Parameters of the mass-spring-mass model

We obtain a reflected mass at the contact level of
mc = {1.17, 0.44} kg for scenarios {e, f} respectively.
The evolution of the reflected mass on the actuator side
ma with the joints stiffness ks is represented on Fig. 12.
Likewise the serial elastic RR robot, the reflected stiffness
kr of the R-Min robot evolves quasi-linearly with respect
to the joint stiffness ks (Fig. 13).
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Fig. 8: Comparison of the maximum impact force ob-
tained by simulation using the full model or the reduced
mass-spring-mass model of the serial elastic RR robot,
for the four impact scenarios (a) with the head (kh =
150 N/mm), (b) with the chest (kh = 25 N/mm), con-
sidering an impact velocity of 1 m/s.

3.3.4 Simulation analysis
Varying the joint stiffness Figure 14 presents the im-
pact force time profiles obtained from the simulation of
the impact scenario (f): a collision between the R-Min
robot at the elbow O13 and the head. These results show
that the reduced model gives a good approximation of the
dynamic behaviour of the impact force during the first in-
stants following the impact. It can be deduced again from
Fig. 14 that the effects of the inertia mc and ma are well
decoupled for a low joint stiffness ks ≤ 351 Nm/rad.

Figure 15 represents the maximal impact force of
the first impact obtained from the simulation of the two
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Fig. 9: Comparison of the maximum impact force ob-
tained by simulation using the full model or the reduced
mass-spring-mass model of the serial elastic RR robot,
for the four impact scenarios with the head, considering a
joint stiffness of 104 N.m/rad.

 

Fig. 10: Presentation of the R-Min robot, an underactu-
ated seven-bar mechanism with rotational springs on dis-
tal joints O13 and O23.

(a) Scenario (e): impact on the
end effector

(b) Scenario (f): impact on the
distal joint

Fig. 11: Description of the two simulated scenarios for
the underactuated parallel R-Min robot.
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Fig. 12: Evolution of the reflected mass on the actuator
side ma with respect to the joint stiffness ks for the two
impact scenarios of the parallel R-Min robot: collision at
the EE (scenario (e)), collision at the elbow O13 (scenario
(f)).
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Fig. 13: Evolution of the reflected stiffness kr with re-
spect to the joint stiffness ks for the two impact scenarios
of the parallel R-Min robot: a contact at the EE (e), a con-
tact at the elbow O13 (f).

scenarios (e) and (f), considering two different impacted
body parts: the head and the chest. It can be deduced from
this figure, that the reduced mass-spring-mass model al-
lows to accurately approximate the maximal impact force,
with a mean error of {3.6, 4.2} % for an impact on the
head and of {8.8, 13.8} % for an impact on the chest for
scenarios (e) and (f) respectively.

As a matter of comparison, simulations of a model
considering a single mass mc instead of the reduced
mass-spring-mass system, provide a maximum im-
pact force of {372, 222} N resulting in an error of
{4.6, 29.3} % for an impact on the head and {160, 95} N
resulting in an error of {10.3, 51.2} % for an impact on
the chest (for scenarios {e, f} respectively).

Discussion The variation of the maximal impact force
with respect to the joint stiffness is quite dependent on the
scenario. Indeed, the impact force is almost constant for
scenario (e) (an impact at the EE), whereas it abruptly in-
creases at a given joint stiffness for scenario (f) (an impact
at the elbow O13). For scenario (e), this can be explained
by the fact that ma is much lower than mc, such that the
inertia effect of ma does not play any role in the resulting
impact force. For scenario (f), the impact force suddenly
increases when the joint stiffness exceeds a value such
that the effects of inertia ma and mc are no longer de-
coupled. It can be seen from Fig. 15 that this transition
stiffness can be well estimated using the reduced model.

It should be mentioned that the use of the reduced
model allows to significantly reduce the duration of the
simulation. Indeed, the simulation of an impact using
the reduced model took an average time of 0.31 s versus
44.2 s with the full model. This makes the reduced model
more practical for use in a process of optimization of the
robot design when numerous simulations are necessary.

4 CONCLUSIONS
In this article, we introduced a method to compute

the parameters of a reduced mass-spring-mass model of
a compliant robot. This model allows to simulate, in
a time-efficient manner, various impact scenarios: con-
strained or unconstrained cases, while considering the
non-linear properties of the human body, and obtain the
maximum impact force can in order to evaluate the haz-
ard of a collision for a human being.

The reduced model is composed of two reflected
masses and a stiffness in between. The two masses are
obtained using a new set of generalized robot coordinates
allowing to project the dynamics of the robot at the time
of impact on two dynamically independent subspaces, a
first subspace describing the dynamics at the contact lo-
cation and a second subspace describing the remaining in-
ternal dynamics of the robot. The projection in this latter
subspace is achieved using a newly introduced dynami-
cally consistent generalized inverse. We then introduced
a dynamically consistent reflected stiffness of the robot at
the contact obtained from the Hessian of the potential en-
ergy computed at the time of impact, projected along the
direction of impact using a dynamically consistent gen-
eralized inverse. Finally, the reflected mass on the actua-
tor side is computed in such a way to minimize the error
between a linearized model of a multi-link robot and its
corresponding reduced mass-spring-mass model.

The precision of the proposed model was evalu-
ated with respect to a corresponding full multi-link robot
model for two case-studies, i.e. a two-dof elastic serial

12



0 0.5 1 1.5 2 2.5 3
·10−2

0

200

400

600

Time (s)

Im
pa

ct
fo

rc
e

(N
) full robot model

reduced robot model

(a) ks = 100 Nm/rad

0 0.5 1 1.5 2 2.5 3
·10−2

0

200

400

600

Time (s)

Im
pa

ct
fo

rc
e

(N
)

(b) ks = 351 Nm/rad

0 0.5 1 1.5 2 2.5 3
·10−2

0

200

400

600

Time (s)

Im
pa

ct
fo

rc
e

(N
)

(c) ks = 1874 Nm/rad

0 0.5 1 1.5 2 2.5 3
·10−2

0

200

400

600

Time (s)

Im
pa

ct
fo

rc
e

(N
)

(d) ks = 10000 Nm/rad

Fig. 14: Comparison of the contact force time profiles obtained from the simulation of the full robot model (solid blue
curves) and the reduced mass-spring-mass robot model (dashed red curves), for different values of the joint stiffness
ks, considering an impact at the elbow O13 (scenario (f)) between the R-Min robot and the head, with an impact
velocity of 1 m/s.
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Fig. 15: Evolution of the maximum impact forces for an
impact (a) at the elbow O13 and (b) at the EE. Two cases
for the human are considered, a collision with the head
and a collision with the chest.

robot and the R-Min robot, a seven-bar underactuated par-
allel robot. Simulation results show that the mass-spring-
mass reduced model allows to precisely approximate the
maximum impact force in various scenarios.

In future works, we will investigate using this re-
duced model in order to optimize the design parameters
of a compliant robot, allowing to find the best trade-off
between accuracy and safety.

APPENDIX A: LINEARIZATION OF THE DY-
NAMICS MODEL
Computation of the linearized model

Let us linearize the left-hand side of equation (2)
around an equilibrium configuration (qg = qg0, q̇g =
0, q̈g = 0). Let us call this function h:

h(qg, q̇g, q̈g) = M(qg)q̈g + g(qg) + c(qg, q̇g) (39)

Around an equilibrium configuration (qg = qg0, q̇g =
0, q̈g = 0), we have:

h(qg, q̇g, q̈g) ≈ h(qg0,0,0) +
∂h

∂q̈g

∣∣∣∣
(qg0,0,0)

q̈g

+
∂h

∂q̇g

∣∣∣∣
(qg0,0,0)

q̇g +
∂h

∂qg

∣∣∣∣
(qg0,0,0)

(qg − qg0)

(40)

A discussion on the reasons of choosing the linearization
about the equilibrium configuration (qg = qg0, q̇g =
0, q̈g = 0) and not another one with non-null acceler-
ations and velocities is made at the end of App.A.

From the structure of Eq. (2), the different terms
in (40) take the following forms:

h(qg0,0,0) = g(qg0) = g0 (41)

∂h

∂q̈g

∣∣∣∣
(qg0,0,0)

= M(qg0) = M0 (42)

∂h

∂q̇g

∣∣∣∣
(qg0,0,0)

= 0 (43)

∂h

∂qg

∣∣∣∣
(qg0,0,0)

=
∂g(qg0)

∂qg
=

∂2V (qg0)

∂q2
g

(44)
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where V (qg0) is the robot potential energy4 at qg0 and

M0 is the inertia matrix at qg0. The term ∂2V (qg0)
∂q2

g
repre-

sent the stiffness matrix K0 of the robot:

K0 = K(qg0) =
∂2V (qg0)

∂q2
g

(45)

It should be mentioned that, by definition, K0 is symmet-
ric. As a result, introducing (40) and (44) into (2), the
linearized dynamic model can be written under the form:

M0q̈g +K0∆qg = ∆u+ fext (46)

where ∆qg = qg − qg0 is a variation of the generalized
coordinates and ∆u = u− g0 is a variation of the gener-
alized input forces around the equilibrium, and fext is the
generalized contact force.

Discussion about the linearization of the robot dy-
namic model around the equilibrium configuration
(qg = qg0, q̇g = 0, q̈g = 0)

In Section 2.2, we decided to linearize the dy-
namic model around the equilibrium configuration (qg =
qg0, q̇g = 0, q̈g = 0) while, during an impact, the veloc-
ity and the acceleration would be non null. We chose this
equilibrium configuration because of the following con-
siderations.

First, linearizing around a non null acceleration q̈g =
q̈g0 would have only changed the expression of the matrix
K0 that would have taken the following form:

K0 =
∂2V (qg0)

∂q2
g

+
∂(M(qg)q̈g0)

∂qg

∣∣∣∣
(qg0)

(47)

The term
∂(M(qg)q̈

∗
g)

∂qg

∣∣∣
(qg0)

is an additional dynamic stiff-

ness. However, during the impact, the configuration qg

has a very small variation, and the derivative of the ma-
trix M is very small. Thus, these terms can be neglected,
as it is confirmed by the simulation of the considered case
studies.

Then, linearizing around a non null velocity q̇g =
q̇g0 would have changed two main things:

4The stiffness due to a proportional controller can be added in the
potential energy by using the expression 1/2(qa−q∗

a)
TKp(qa−q∗

a),
where Kp is the matrix of proportional gains, qa are the motor coordi-
nates and q∗

a their reference configurations.

− The expression of the matrix K0 would have taken
the following form:

K0 =
∂2V (qg0)

∂q2
g

+
∂c(qg, q̇g)

∂qg

∣∣∣∣
(qg0,q̇g0)

(48)

The variation of the Coriolis and Centrifugal effect
with respect to the configuration is much smaller than
their variation with respect to the velocity terms (vec-
tor c is quadratic in the velocity). Thus, as in the
previous case, these terms can be neglected as it is
confirmed by the simulation of the considered case
studies.

− The term ∂h
∂q̇g

∣∣∣
(qg0,0,0)

would have been different

from zero, leading to a linear damping term in the
equation (5). This damping term would have led to
the obligation to add some damping in our simplified
model (1), that was not necessary in our opinion, and
as confirmed by the simulation of the considered case
studies detailed in the next Section.

For all these reasons, we decided to linearize the model
around the configuration (qg = qg0, q̇g = 0, q̈g =
0). Obviously, the reduced model proposed in this work
could be refined by using another equilibrium configura-
tion.

APPENDIX B: A NEW SET OF GENERALIZED
COORDINATES

In this Appendix, we want to verify that qn =
[xc xT

a ]
T is a new set of the robot generalized coordi-

nates. Therefore, beginning from the definition of the
generalised inverse matrices J#

c in Eq. (9) and J#
a in

Eq. (15), we want to check that the jacobian matrices Jc

and Ja satisfy the following properties (see Section 2.3):

JcJ
#
a = 0 (49)

JaJ
#
a = I(n−1)×(n−1) (50)

JaJ
#
c = 0 (51)

JcJ
#
c = 1 (52)

with: Jcẋc = q̇g (53)
Jaẋa = q̇g (54)

q̇g = J#
c ẋc + J#

a ẋa (55)

The properties (51) to (54) have been already proven in
Section 2.3. Let us then focus, on the one hand, on the
properties (49), (50), and, on the other hand, on (55).
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First, from the definitions (14) and (15) for Ja and
J#
a , it is possible to see, by left-multiplying (15) by Jc,

that we have:

JcJ
#
a = JcM

−1
0 JT

aMa (56)

Recalling that, by the definition (14), JcM
−1
0 JT

a = 0, we
get

JcJ
#
a = 0 (57)

which is the property (49). Moreover, from the definition
of Ma in Eq. (16), we have

JaJ
#
a = JaM

−1
0 JT

aMa = I(n−1)×(n−1) (58)

as should be obtained in (50).
Now, we need to prove that Eq. (55) is valid. For this,

let us define a vector z such as:

z = J#
c ẋc + J#

a ẋa (59)

Introducing (53) and (54) into (59), we have

z =
(
J#
c Jc + J#

a Ja

)
q̇g (60)

Left-multiplying on one hand Eq. (60) by Jc and in
the other hand by Ja. We obtain the two following equa-
tions:

Tz = Tq̇g (61)

where the matrix T ∈ Rn×n is square and defined by

T =

[
Jc

Ja

]
(62)

z = q̇g if and only if the square matrix T is of full rank.
Because, by construction, Ja in (14) is full rank, and Jc

in (4) is a single-row matrix, the condition for T to be full
rank is that the rows of Jc and Ja are independent. To
prove this, we can apply a Reductio ad absurdum. Let us
assume that there exist a non null vector λ1 and a scalar
λ2 such that:

λ1Ja + λ2Jc = 0 (63)

In other words, λ1 and λ2 allows to show a linear depen-
dency between the row of Jc and Ja.

Let us right-multiply (63) by J#
c . From the definition

of Ja in (51), we have JaJ
#
c = 0. Moreover, from (52),

we have JcJ
#
c = 1, which at the end, imposes λ2 = 0.

That is contrary to the initial assumption. The rows of
the matrix Jc and Ja are thus independent. Moreover,
qn = [xc xT

a ]
T is a new set of generalized coordinates.

An interesting property If we take the eq. (60) and use
the proven property that w = q̇g , then:

In×n = J#
c Jc + J#

a Ja (64)

Using the definitions of J#
c and J#

a provided in (9)
and (15), we get :

In×n = M−1
0

(
JT
c

(
JcM

−1
0 JT

c

)−1
Jc

+JT
a

(
JaM

−1
0 JT

a

)−1
Ja

)
(65)

Finally, left-multiplying by M0 and using (10) and (16),

M0 = JT
c

(
JcM

−1
0 JT

c

)−1
Jc + JT

a

(
JaM

−1
0 JT

a

)−1
Ja

= JT
c mcJc + JT

aMaJa (66)

This expression shows that we have decoupled the inertia
of our system in two subsystems. There is an inertia mc

at the level of the impact point C and a remaining inertia
Ma in the rest of the robot.
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