
HAL Id: hal-04125135
https://hal.science/hal-04125135

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

(DEMO) EDICT: A simulation tool for performance
metrics datasets in IoT environments

Houssam Hajj Hassan, Georgios Bouloukakis, Denis Conan, Ajay Kattepur,
Mahdi Trabolsi, Nikolaos Papadakis, Djamel Belaïd, Kostas Magoutis

To cite this version:
Houssam Hajj Hassan, Georgios Bouloukakis, Denis Conan, Ajay Kattepur, Mahdi Trabolsi, et al..
(DEMO) EDICT: A simulation tool for performance metrics datasets in IoT environments. 19th
International Conference on Distributed Computing in Smart Systems and the Internet of Things
(DCOSS-IoT), Jun 2023, Pafos, Cyprus. �10.1109/DCOSS-IoT58021.2023.00020�. �hal-04125135�

https://hal.science/hal-04125135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

(DEMO) EDICT: A Simulation Tool for
Performance Metrics Datasets in IoT Environments

Houssam Hajj Hassan1, Georgios Bouloukakis1, Denis Conan1, Ajay Kattepur2, Mahdi Trabolsi1, 3,
Nikolaos Papadakis1, 4, Djamel Belaı̈d1, Kostas Magoutis4, 5

1SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France
{houssam.hajj hassan, georgios.bouloukakis, denis.conan, djamel.belaid}@telecom-sudparis.eu

2Ericsson AI Research, India, ajay.kattepur@ericsson.com
3Université Jean Monnet, Sainte-Étienne, France, mahdi.trabolsi@etu.univ-st-etienne.fr

4Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH),
{papadakni, magoutis}@ics.forth.gr

5Computer Science Department, University of Crete, Greece

Abstract—This paper demonstrates EDICT, a simulation tool
for performance metrics datasets in IoT environments. Such envi-
ronments are represented using the NGSI-LD data model. EDICT
uses NGSI-LD instances and Open Queueing Networks for the
composition of a concrete QoS model that is then simulated to
generate a performance metrics dataset. This dataset captures
performance metrics of Edge interactions such as response time
and throughput. We demonstrate the utility of EDICT by showing
how a perfomance metrics dataset can be generated for a specific
IoT environment.

Index Terms—Simulation, IoT, Edge Environments, Datasets.

I. EDICT ARCHITECTURE

With the recent advances in Artificial Intelligence (AI)
and Machine Learning (ML) techniques to provide IoT-based
solutions, there is a growing need for datasets that capture the
performance of data flows in smart environments. EDICT [1] is
a simulation tool for generating performance metrics datasets
of IoT enviroments that aims to facilitate IoT system tuning
tasks. This paper demonstrates how EDICT can be used for
such purposes. Fig. 1 shows the high-level architecture of
EDICT. We briefly describe next the main components of this
architecture.

Dataset
Generator

NGSI-LD Instance NGSI-LD
Parser

Queueing Network
Composer

Automated
System
Tuning

QoS
Prediction

EDICT

Performance
Metrics Dataset

Fig. 1: EDICT high-level architecture

A. IoT System Representation

We leverage the NGSI-LD [2] specification to represent
characteristics of smart environments. We propose an NGSI-
Model to represent IoT interactions in smart environments
by extending existing models and enriching them with new
entities and relationships. The model captures information
related to the devices and applications deployed in the smart
environment, as well as the QoS requirements that applications
define. A description of our proposed NGSI-LD representation
of smart environments is available in [1].

B. Queueing Network Composition

We rely on Open Queueing Networks to create a generic
QoS Model that represents application-layer interactions in
IoT environments. EDICT takes as input the NGSI-LD repre-
sentation of a smart environment and parses it to extract the
information needed to instantiate the generic QoS Model and
compose the corresponding Queueing Network that evaluates
Edge interactions in the provided environment. This is possible
through API calls to the open-source Java Modelling Tools
(JMT)1 queueing simulator. EDICT composes and simulates
the JMT queueing network to generate a dataset containing
performance metrics of data flows in the IoT-enhanced en-
vironment. A more detailed description about the queueing
network composition process is provided in [3].

C. Performance Metrics Dataset Generation

After simulating the composed JMT queueing network,
EDICT extracts the simulation results from the JMT jsimg

files and creates a performance metrics dataset as a csv file.
The generated dataset includes metrics related to response
time, throughput, and data drop rate for each data flow in
the simulated smart environment. In addition, the file contains
the configuration parameters of the data exchange system.
These parameters include the priorities and data drop rate
set for each application category, as well as the available
network resources and the network allocation policy used.
These features facilitate the use of the dataset for automated
system tuning approaches [4]. We demonstrate how the dataset
can be readily used for QoS prediction in [1].

II. USING EDICT

In this section, we demonstrate how EDICT can be used
by IoT systems designers to generate a performance metrics
dataset of Edge interactions in smart environments. For the
sake of example, we consider an IoT system consisting of
30 devices that capture 30 different observations, with 16
applications to receive the observations generated by the IoT

1https://jmt.sourceforge.net/

devices. The deployed applications belong to four application
categories with different QoS requirements: analytics (AN),
real-time (RT), transactional (TS), and video streaming (VS).
The EDICT code can be downloaded at https://github.com/
SAMSGBLab/edict.

A. Defining the IoT System Components

As a first step, IoT designers need to define the components
of their IoT system infrastructure. For this purpose, EDICT
provides a Graphical User Interface (GUI) to add, edit, and
delete such components. The drag and drop interface (Fig. 2)
allows designers to add new devices, and edit and delete
existing ones. For each device, designers have the option to
specify the size of messages generated by the device, the
frequency at which messages are generated, a probability
distribution based on which messages are generated, and the
observations that the device captures.

Fig. 2: EDICT Devices Window

Next,designers can add new applications and editing their
properties (the application category they belong to, the ob-
servations they receive, and the rate at which they process
messages). This is where designers also have the option to
define specific priorities for applications. In a similar fashion,
designers can define properties of application categories, QoS
requirements, and observations in dedicated interfaces.

Once all IoT system components are defined, EDICT
generates the JSON-LD files corresponding to these
components according to the NGSI-LD model presented
in [1]. The NGSI-LD context used in all JSON-Ld
files is https://raw.githubusercontent.com/SAMSGBLab/
edict--datamodels/main/context.jsonld. Listing 1 shows
how an IoT device is defined in JSON-LD format. Each
device has a name and is identified by a unique URN
(id). A device sends messages with a messageSize at
a specific publishFrequency. In addition, we consider
that devices generate messages based on a probability
distribution (dataDistribution). A device captures
one or more observation; this is represented in the
capturesObservation relationship.
1 "id": "urn:ngsi-ld:edict:Device:dcbd9ee7-...",
2 "type": "Device",
3 "name": "device 1",
4 "publishFrequency": 150,
5 "messageSize": 2000,

6 "dataDistribution": "exponential",
7 "capturesObservation": ["urn:ngsi-ld:edict:

Observation:85c38830-...", ...]},
8 ...

Listing 1: IoT device definition

Similarly, the definition of applications deployed in the smart
space is shown in Listing 2. Each application belongs to
an applicationCategory and is assigned a priority.
Note that a lower integer represents a higher priority. Appli-
cations receive one or more observation, which are defined
as a list in the receivesObservation field. In addition,
applications process the received messages at a specific rate
(processingRate), and following an exponential probability
distribution (processingDistribution).
1 "id": "urn:ngsi-ld:edict:Application:a3b6dc85-...",
2 "type": "Application",
3 "name": "app 1",
4 "applicationCategory": "AN",
5 "priority": 0,
6 "processingRate": 1000,
7 "processingDistribution": "exponential",
8 "receivesObservation": [
9 "urn:ngsi-ld:edict:Observation:01437e79-...",

10 "urn:ngsi-ld:edict:Observation:58f0581d-...",
...],

11 ...

Listing 2: Application definition

Each application deployed belongs to a specific category
(Listing 3).
1 "id": "urn:ngsi-ld:edict:ApplicationCategory:b340208c

-...",
2 "type": "ApplicationCategory",
3 "name": "analytics",
4 ...

Listing 3: Application category definition

Finally, QoS requirements are defined in terms of maximum
response time (in seconds), minimum throughput (in Kbps),
and maximum drop rate (Listing 4).
1 {"id": "urn:ngsi-ld:edict:QosRequirement:9ffd2f4b

-...",
2 "type": "QosRequirement",
3 "name": "realtime requirements",
4 "maxResponseTime": 0.4,
5 "minThroughput": 28.2,
6 "maxDropRate": 0.02,
7 ...

Listing 4: QoS requirements definition

Note that IoT designers that are familiar with the NGSI-
LD data model and that already have a representation of their
IoT system in the JSON-LD notation may readily upload their
files to EDICT. We provide the complete JSON-LD files for
the aforementioned setup in https://github.com/SAMSGBLab/
edict--datamodels.

B. Setting the Edge Infrastructure Configuration Parameters

After defining the components of their IoT system infras-
tructure, designers can now specify the configuration parame-
ters of their systems, as shown in Fig. 3. Designers can specify
the available network resources (i.e., the available bandwidth
between the data exchange system and the applications), and

Subscription Category Priority Priority Priority Priority Dropping Dropping Dropping Dropping Network Network Response Throughput ...
Flow AN RT TS VS AN RT TS VS policy resources time

amazonecho/app14 TS 0 0 0 0 0 0 0 0 default 650 1.694455 ...
amazonecho/app14 TS 0 0 1 0 0 0 0 0 maxmin 650 0.121488 ...

intrusion/app12 RT 0 0 0 0 5 0 0 2 shared 650 1.232349 ...
energymanagement/app1 AN 0 3 1 2 0 0 0 0 default 650 3.466959 ...
...

TABLE I: Output Dataset Format

the network resource allocation policy to be used. Currently,
EDICT supports three network allocation policies: (i) the
default policy, where all network resources are used to forward
all data flows, (ii) the shared policy, where network resources
are equally shared between the application categories defined,
and (iii) the max-min policy, which shares network resources
among categories based on the max-min resource allocation
policy. Moreover, the configuration parameters include setting
drop rates for application categories, and defining the capacity
(in number of messages) of the data exchange system. Design-
ers can then define some simulation settings: the simulation
duration, an alias to be used for saving the simulations results,
and a global message size to be used when running the
simulation.

Fig. 3: EDICT Parameters Window

C. Generating a Performance Metrics Dataset

Once the configuration parameters are set, EDICT is ready
to generate the performance metrics dataset. Through calls
to the JMT library, EDICT composes and simulates the JMT
queueing network (Fig. 4). Then, EDICT generates a dataset as
a csv file consisting of performance metrics of the simulated
system. IoT designers can also test different configuration
parameters for the same system to evaluate the performance
of their systems under different situations (e.g., using different
network resource allocation policies, different drop rates). This
enables creating a richer dataset, where each row contains the
metrics for a flow matching a subscription under different
configurations parameters. As depicted in Table I, metrics
are generated for each flow matching a subscription, and
when applicable, for the whole system. For example, EDICT
stores end-to-end latency per flow and the utilization of the
data exchange system under all configurations specified. In
Table I, each row contains the metrics for a flow matching

a subscription under different configurations parameters. For
example, if the developer chooses to simulate an IoT system
using the default network allocation policy as well as the max-
min policy, a subscription flow would have two entries in the
dataset that represent its metrics under these two policies. Note
that the columns in this csv file are features that impact the
performance of the IoT system (i.e., response time of data
flows). Hence, as shown in [1], this dataset format enables
applying ML models directly for system tuning purposes (e.g.,
runtime QoS prediction).

Fig. 4: JMT Composed Queueing Network

III. CONCLUSION

This paper shows how to use EDICT, a tool for generating
performance metrics datasets in IoT environments. Through
standard NGSI-LD data modeling and queueing network com-
position, EDICT is able to generate a metrics dataset that
captures the performance of IoT data flows in smart environ-
ments. The dataset generated by EDICT can be integrated in
various IoT system tuning approaches such as adaptive data
flow management and runtime QoS prediction.

REFERENCES

[1] H. Hajj Hassan, G. Bouloukakis, A. Kattepur, D. Conan, and D. Belaı̈d,
“EDICT: Simulation of Edge Interactions across IoT-enhanced Environ-
ments,” in IEEE/ACM International Conference on Distributed Comput-
ing in Smart Systems and the Internet of Things (DCOSS-IoT), Paphos,
Cyprus, 2023.

[2] “Context Information Management (CIM) NGSI-LD API V1.4.2,”
https://www.etsi.org/deliver/etsi\ gs/CIM/001\ 099/009/01.04.02\ 60/
gs\ cim009v010402p.pdf, 04 2021.

[3] H. Hajj Hassan, G. Bouloukakis, A. Kattepur, D. Conan, and
D. Belaı̈d, “EDICT: Simulation of Edge Interactions across IoT-
enhanced Environments,” Télécom SudParis, Tech. Rep., 2023. [Online].
Available: https://hal.science/hal-04078497

[4] ——, “PlanIoT: A Framework for Adaptive Data Flow Management
in IoT-enhanced Spaces,” in IEEE/ACM International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
Melbourne, Australia, 2023.

