
HAL Id: hal-04125134
https://hal.science/hal-04125134v1

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

EDICT: simulation of edge interactions across
IoT-enhanced environments

Houssam Hajj Hassan, Georgios Bouloukakis, Ajay Kattepur, Denis Conan,
Djamel Belaïd

To cite this version:
Houssam Hajj Hassan, Georgios Bouloukakis, Ajay Kattepur, Denis Conan, Djamel Belaïd. EDICT:
simulation of edge interactions across IoT-enhanced environments. 19th International Conference on
Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT), Jun 2023, Pafos,
Cyprus. �10.1109/DCOSS-IoT58021.2023.00037�. �hal-04125134�

https://hal.science/hal-04125134v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


EDICT: Simulation of Edge Interactions across
IoT-enhanced Environments

Houssam Hajj Hassan1, Georgios Bouloukakis1, Ajay Kattepur2, Denis Conan1, Djamel Belaı̈d1

1SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France
{houssam.hajj hassan, georgios.bouloukakis, denis.conan, djamel.belaid}@telecom-sudparis.eu

2Ericsson AI Research, India, ajay.kattepur@ericsson.com

Abstract—This paper presents EDICT, a tool for simulating
Edge interactions in IoT-enhanced environments. Recently, ML
and AI-based techniques have gained prominence to solve IoT-
related challenges. However, such models require large and
diverse datasets to perform well. Finding real-world datasets that
capture the performance of IoT systems is a challenging task due
to the cost of deploying devices and instrumenting environments,
as well as privacy/security concerns. This task becomes more
challenging when datasets for specific situations (e.g., overloaded
system, emergency scenarios) are needed. EDICT enables IoT
systems designers to evaluate the performance of their IoT sys-
tems at design time. EDICT is capable of generating performance
metrics datasets for specific instances of IoT-enhanced envi-
ronments under different configuration parameters. To support
runtime adaptation of smart environments, EDICT enables rapid
performance prediction using ML techniques.

Index Terms—Simulation, Smart Environments, QoS, Data
Exchange

I. INTRODUCTION

With the advent of Internet of Things (IoT) devices and
supporting technologies, spaces (e.g., buildings, homes) are
becoming smarter and interconnected. Edge-based infrastruc-
tures of today’s sensorized environments include: IoT devices
to sense physical phenomena or receive actuation commands;
software components to process raw data and provide seman-
tically enriched data; message brokers to exchange data; Edge
servers as hosting machines; and the networking infrastructure.
IoT applications operating over such Edge-based infrastruc-
tures provide services to improve people’s daily activities, life
quality, and public safety. Such applications are composed of
different Quality of Service (QoS) requirements such as end-
to-end latency bounds, throughput, and tolerated message loss
rates. IoT systems designers have to tune the data exchange
infrastructure to ensure that the QoS requirements of appli-
cations are satisfied, while proactively addressing dynamic
situations that may require additional resources. Currently,
designing such a distributed IoT system is a manual “by-
experience” process that is error-prone and time consuming.

Commercial and open-source simulation tools [1], [2] have
been developed to facilitate such tasks prior to system de-
ployment. Network emulators [3] can be used as well to
emulate networking events and evaluate the performance of
networking infrastructures. Existing simulators usually provide
graphical/command line interfaces, or scripts to create a virtual
representation of the IoT system and run simulations. IoT

designers have to spend considerable effort in learning how
to use a simulator for representing an IoT system. In addition,
it is often hard to define the desired output (e.g., performance
measurements, energy consumption). Finally, creating varia-
tions of an IoT system that represents multiple situations,
often requires complex simulation deployments. Hence, there
is a need for a simulation tool that enables IoT designers to
quickly simulate IoT systems designed based on standard IoT
representations and data exchange architectures.

This paper presents EDICT, a simulation tool for evaluating
the performance of Edge interactions in IoT-enhanced envi-
ronments. EDICT abstracts the hardware and network imple-
mentation details, as well as the application-layer interactions
of an IoT system as a queueing network [4] (also called
generic QoS model). First, EDICT leverages the standard
NGSI-LD (Next Generation Service Interfaces-Linked Data)
protocol specification [5] to represent systems deployed in IoT-
enhanced environments. Second, Edge interactions are repre-
sented based on the IoT-suitable publish/subscribe interaction
paradigm [6]. These are given as input to the EDICT generic
QoS model to be instantiated for simulating and evaluating
the performance of Edge interactions. Multiple QoS model
instances can be used to represent different situations (e.g.,
number of devices/applications), or QoS configuration param-
eters (e.g., applying priorities and resource allocation policies)
can be applied to provide designers with a performance metrics
dataset that can be used for design time system tuning. In
addition, to support runtime adaptation of IoT systems, EDICT
provides designers with a QoS prediction component that
rapidly generates performance metrics when changes in the
IoT system occur. The key contributions of this paper are:

• A standard representation of IoT data exchange in smart
environments using an extended NGSI-LD model and a
publish/subscribe architecture (§IV).

• A simulation tool for generating multiple customizable
datasets containing performance metrics of Edge interac-
tions in distributed IoT-enhanced environments (§IV).

• A QoS prediction mechanism for rapid runtime adapta-
tion (§V).

In §II, we compare EDICT against existing IoT simulators.
An overview of the EDICT architecture is presented in §III.
EDICT’s usefulness for design time system tuning and runtime
adaptation is presented in §V. We conclude the paper with a



look towards future extensions of EDICT in §VI.

II. RELATED WORK

This section provides a comparative summary of EDICT
against a number of existing IoT simulators. In particular,
based on Table I, we compare the IoT layer abstraction that the
tools provide, the scope, simulation domain, and application
domain for which the tools are intended to be used, and
the input and output format of the simulators. These formats
determine the usability of the tools and how easy it is to
integrate the simulators in automated system tuning solutions.
An extensive evaluation of related work is provided in [11].

While the presented tools are powerful enough for simu-
lating IoT systems, we identify a number of challenges. IoT
designers have to learn and get used to the specifics of the
simulator they choose to use. Tools like CupCarbon [1] require
users to learn a new scripting language to program sensor
nodes. This requires spending considerable time learning how
to use the tool to get the desired output, hence hindering the
usability of the tool. In contrast, as shown in § III, EDICT
users only need to provide the NGSI-LD description of their
system. EDICT then automatically simulates Edge interactions
in the provided environment and outputs simulation results as
a dataset. In addition, using existing tools for simulating the
same environment with multiple configuration parameters
usually requires creating a new simulation with new instances
of IoT devices and applications. This can be time consuming
especially when IoT designers need to evaluate the perfor-
mance of their systems in different situations. EDICT provides
simulation results per subscription for multiple configuration
parameters of the IoT system in one iteration and as a CSV-
based performance metrics dataset (§IV-C, §V-A). This makes
it easy to integrate EDICT in automated system tuning
approaches, especially with the recent advances in ML and
AI techniques that drive autonomous IoT systems. Exist-
ing simulators provide results visually ([7]–[10]) or provide
them in files that require further processing [3], thus adding
complexity for interpreting and analyzing simulation results.
Finally, existing tools do not provide support for runtime
adaptation of IoT systems. If changes occur in the Edge
infrastructure, IoT designers have to re-run the simulations;
this process is time consuming and cannot be done at runtime.
A distinguishing feature of EDICT is that it provides a QoS
prediction component that can be integrated in a runtime
adaptation approach for timely readaptation of IoT systems.

III. EDICT OVERVIEW

Fig. 1 shows the high-level architecture of EDICT. To
represent characteristics of smart environments, we leverage
the NGSI-LD specification [5]. In particular, EDICT uses
existing data models for the standard representation of smart
environments as NGSI-LD entities that are further enhanced
with IoT aspects based on our proposed application categories
and QoS requirements. More details about the proposed NGSI-
LD representation are presented in §IV-A. The IoT-enhanced
NGSI-Model can be instantiated to represent the interactions

configuration 
parameters

NGSI-LD Instances

IoT-enhanced 
NGSI-LD Model

Queueing 
Composer

Smart 
Environments

QoS Model

JMT sim 1 JMT sim 2

JMT sim 3 JMT sim 4

Dataset

dataset linked to ngsi-ld instance

System 
Tuning

QoS 
Prediction

new configuration

Predicted Dataset

Software 
Components

Models

Instances

Fig. 1: EDICT Architecture
of smart environments to be simulated. NGSI-LD instances
of smart environments and their interactions are represented
using JSON-LD notation, a JSON-based serialization format.

To simulate interactions between IoT-enhanced NGSI-LD
entities, we rely on Queueing Networks [4]. In particular,
we define a generic QoS Model that consists of series of
queues to model IoT interactions in smart environments. Such
queueing networks can be composed on-the-fly depending
on the corresponding smart environment instance and the
ongoing situation (e.g., applications activated for emergency
response)—more details in § IV. Finally, the EDICT end-
user can configure simulations by applying parameters such as
priorities, dropping rates, routing policies, network allocation
policies, that can improve the end-to-end performance (i.e.,
latency and throughput) of IoT interactions. Depending on the
given NGSI-LD instance and the configuration parameters, the
Queueing Composer instantiates the composed code artifacts
that, when executed, simulate end-to-end IoT interactions
(from the IoT sensor to the IoT application) using the open-
source queueing simulator Java Modeling Tools (JMT) [12].

IV. IOT SYSTEM REPRESENTATION

To build a tool for simulating IoT interactions at the Edge of
any smart environment requires relying on a generic architec-
ture to represent: (i) the environment and its IoT capabilities;
and (ii) the interactions between IoT entities. Related generic
models are presented in this section.

A. IoT Domain Model

NGSI-LD is a data model for the standard representation
of smart environments that provides an API for publishing,
querying, and subscribing to context data. Existing models
are focused on describing the functional semantics of IoT
systems and not QoS semantics such as requirements of
applications and categories. In addition, entities that represent
observations and the processing of raw data are missing. We
extend the NGSI-LD representation of an IoT system by
introducing Entities and Relationships as shown in Fig. 2.
First, an existing Device entity is extended by adding at-
tributes and relationships with new entities to represent the
general function of IoT devices. In addition, we create a
new SmartEnvironment entity that can either extend ex-
isting NGSI-LD models (e.g., Building) or define a new
environment. IoT devices deployed in the smart environment
can either be sensors that sense physical characteristics and
generate Observations or ActuationCommands, or actu-
ators that receive ActuationCommands. An Observation



Tool IoT Layer Abstraction Scope Input Automated System Tuning Simulation Domain Support for Readaptation
DPWSim [2] Fog/Cloud Deployment of web services on IoT devices GUI Through graphs Generic No
iFogSim [7] Fog/Edge Resource management / application scheduling GUI / API calls / JSON Through graphs Generic No
IoTSim [8] Cloud Big data processes API calls Through graphs Generic No

IoTNetSim [9] Cloud/Edge/Network Simulation of IoT services API calls Through graphs Generic No
IoTSim-Edge [10] Edge Mobility modeling / resource provisioning GUI / JSON Configuration Through graphs Healthcare / Transportation No

CupCarbon [1] Network Distributed algorithms / Environmental scenarios GUI Through CSV files Smart City No
NS-3 [3] Network Discrete network event simulation API calls Through PCAP / ASCII files Generic No
EDICT Edge interactions over pub/sub Simulation of Edge interactions in IoT environments GUI / NGSI-LD models Through CSV files Generic Yes

TABLE I: Comparison of Existing IoT Simulation Tools
represents a quantitative measurement in a specific physi-
cal space. For example, a temperature sensor deployed in
room324 would generate the observation "temperature

in room324". Thus, an application can easily receive the
necessary data by specifying the type of data needed with
the name/identifier of the space.

Device

ActuationCommand Observation

captures

Existing Data Model

Extends:
Relationship:

QoSRequirement

Garden

SmartSpace

Building Museum

Device

Extended Data Model

New Data Model

Device

Device

generates/receives

ActuationCommand

captures

Observation

receives generates receives

VirtualSensor Application

hasDeployedApplication

SmartEnvironment

belongsTo ApplicationCategory

hasQoSRequirement

QoSRequirement

Building Museum

Space deployed in

Fig. 2: NGSI-LD Data Model for IoT-enhanced Environments

We also create a new Entity type VirtualSensor, which rep-
resents software components that process raw IoT data to pro-
duce high-level measurements. Unlike physical sensors, virtual
sensors take as input one or more Observation, process the
received data, and output a new type of Observation. Finally,
to represent different categories and QoS semantics of ap-
plications, we classify them into ApplicationCategories

with each category specifying QoSRequirements (e.g., end-
to-end latency, energy consumption, drop rates) that have
to be met. The NGSI-LD model presented in Fig. 2 can
be instantiated to describe an IoT system in diverse smart
environments. Our extended NGSI-LD data models along with
examples of smart environments can be found in [11] and at
https://github.com/SAMSGBLab/edict--datamodels.

B. IoT Data Exchange Model

Existing IoT deployments consist of devices employing
network access protocols (e.g., Z-Wave) for data collection
in IoT gateways, as well as application-layer protocols (e.g.,
CoAP, MQTT) that forward data to message brokers (e.g.,
EMQx) for data processing and dissemination. EDICT relies
on the publish/subscribe paradigm [6] to represent IoT inter-
actions at the Edge of smart environments, where IoT devices
and applications interact via a message broker. We develop a
generic QoS model [11] that abstracts the underlying network,
different application categories, and application instances that
interact via the message broker with the IoT devices. The
broker manages all the traffic at the Edge, and for this reason,
message handling strategies are applied at the broker.

As depicted in Fig. 3A, IoT devices act as publishers
that produce data related to the environment sensed; these
data are encapsulated into messages that are tagged with a
topic name for routing. Messages of a topic can be captured

from both IoT devices and virtual sensors, while topics are
characterized from the observation type (e.g., temperature
data), the space in which a device is deployed (e.g., room
2065), the average message size and the message frequency.
Such information can be found in the NGSI-LD instance
describing a smart environment. Virtual sensors, actuators,
and applications subscribe to receive relevant messages using
topic-based subscription filters. Virtual sensors receive input
from one or more sources of messages, process the received
messages (e.g., using AI-based algorithms), and generate out-
put messages that are sent back to the message broker. Note
that such processed messages can be received by applications
or other virtual sensors. IoT applications can be characterized
by heterogeneous QoS requirements and they can be grouped
into application categories (RT: real-time, ST: streaming, TS:
transactional, AN: analytics, EM: emergency) depending on
their QoS requirements, as specified in [13]. A message broker
system is responsible for forwarding data from IoT devices to
the corresponding application recipients. IoT systems design-
ers can configure the data exchange infrastructure according
to their needs. For instance, they can assign priorities to
some topics via a Data Flow Management component, or/and
specify a network resources allocation policy (e.g., max-min
policy [14]) via a Network Resource Management component.
Thus, IoT systems designers can use different configurations
to tune the system and ensure the desired QoS performance
at runtime. A formal representation of IoT date exchange and
our QoS Model (Fig. 3B) is available in [11].

ngsi: space type 
and name

ngsi: «type : value»

Networking infrastructure

Data Flow 
Management

Message 
Prioritization

Message 
Dropping

Network Resources 
Management

Bandwidth 
Regulation

Bandwidth 
Allocation Policies

Energy Resources 
Management

Computing Resources 
Management

…….

Data Exchange System

IoT sources App 1

App 2

Actuator 1

Virtual 
Sensor

ngsi: topic 1

ngsi: topic 2

ngsi: topic 3

ngsi: topic 4

ngsi: topic 5
ngsi: «type : value»

𝑑𝑒𝑣𝑖𝑐𝑒0

𝑑𝑒𝑣𝑖𝑐𝑒𝑖

…
..

M/M/1

multiclass & 
priority

𝜇 𝜇𝑤

Queueinput Queuenetwork

𝑡𝑜𝑝𝑖𝑐0

𝑡𝑜𝑝𝑖𝑐𝑗

𝑡𝑜𝑝𝑖𝑐𝑘

𝑣𝑖𝑟𝑡. 𝑠𝑒𝑛𝑠𝑜𝑟𝑖

𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑗

𝑎𝑝𝑝𝑗
QoS Model

𝑡𝑜𝑝𝑖𝑐𝑗

𝑡𝑜𝑝𝑖𝑐ℎ

message broker

A IoT Data Exchange

B

Fig. 3: IoT Data Exchange Model
C. IoT-aware Queueing Composition

The generic model defined in §IV-B provides all the basic
elements to compose a queueing network, as well as the
necessary configuration parameters used by application de-
signers (network policies, priorities, etc.) to parameterize the
composed queueing network. For each situation s ∈ S and
configuration parameters p ∈ P , the function f(s, p) instan-
tiates the QoS model to compose the queueing network rep-



IoT-enhanced Environment Properties QoS Requirements
categories # apps # subs. bandwidth resp. time throughput drop rate

AN 6 21

650 MB /s

best effort best effort best effort
RT 9 17 <400 ms ≥384 KB / s 0%
TS 6 12 <4 s - 0%
ST 9 10 <2 s ≥384 KB / s <2%

Total 30 60 650 MB/s

TABLE II: Experimental Setup
resenting the environment under situation s and configuration
parameters p. Depending on the IoT environment and deployed
devices/applications, EDICT provides the basic queueing net-
work, defined as a default network, which models the default
performance of the IoT data exchange system. Then, EDICT
offers different configuration parameters (priorities, dropping,
network policies) to model the system’s performance.

To enable such dynamic queueing network composition,
we leverage the JMT simulator [12]. JMT is an open-source
suite of applications that offer a comprehensive framework for
system modelling with analytical and simulation techniques,
and performance evaluation. While JMT JSIMgraph provides
a graphical user interface to design queueing models, we use
JMT’s API to dynamically compose and run the simulations.
As depicted in Fig. 1, we design a Queueing Composer that
instantiates the corresponding JMT queueing representation
of an IoT environment’s situation and parameterization. The
composer takes as input (i) the NGSI-LD instance of an IoT-
enhanced environment (see §IV-A), and (ii) the generic QoS
model (see §IV-B). Through calls to the JMT Library, the
composer then creates and simulates the queueing network that
represents the IoT-enhanced environment. The dataset gener-
ated by EDICT can be leveraged by automated approaches for
system tuning. For example, the PlanIoT [13] framework relies
on performance metrics datasets to automatically manage IoT
data flows using AI planning. Details about the queueing
network composition process are presented in [11].

V. EDICT EVALUATION

This section presents the evaluation of EDICT by (i) demon-
strating how IoT designers can generate a dataset that cap-
tures Edge interactions in IoT-enhanced environments to au-
tomatically tune their systems (§V-A), and (ii) showing how
EDICT’s QoS prediction component enables rapid adaptation
when changes happen to the Edge infrastructure (§V-B).
Implementation details related to the EDICT prototype can
be found in [11]. The EDICT code is publicly available on
https://github.com/SAMSGBLab/edict.

A. Design-time System Tuning
We demonstrate the utility of EDICT by simulating IoT

interactions in a smart office building. Table II presents
details related to the IoT system deployed. We rely on the
work presented in [15] to set the values for the message
sizes and publishing frequencies for the devices. We use an
ETSI standard [16] to compose the QoS requirements for the
application categories. However, IoT designers can use other
existing standards or define their own requirements.

Using the setup displayed in Table II and the NGSI-LD
model presented in §IV-A, we create the corresponding NGSI-
LD instance of the smart building and feed it to EDICT to

generate the performance metrics dataset that captures the
Edge interactions in the IoT system. The simulation results
show an 82% utilization of the system. Fig. 4 shows the
average end-to-end latency for each application category for
some of the configurations applied to the system: (i) the default
configuration, where all network resources are used to transmit
all data without setting any priorities or drop rates, (ii) using
the max-min network allocation policy [14], (iii) prioritizing
time-sensitive applications based on the QoS requirements
(RT applications), and (iv) setting a dropping rate of 2%
for loss-tolerant applications based on the QoS requirements
(AN and ST applications). Running simulations with multiple
configuration parameters allows IoT designers to know which
configuration is best suited for their needs. For instance, based
on the results of Fig. 4, IoT designers can consider that they
have to prioritize flows belonging to RT applications (prioritize
RT) to satisfy all applications’ QoS requirements. The dataset
generated by EDICT can be used by automated system tuning
approaches to save IoT designers the tedious effort needed to
manually test different configurations after deployment.

Fig. 4: End-to-End Latency per Application Category

B. Enabling Rapid Runtime Adaptation

To enable runtime adaptation in smart environments, IoT
designers need to know the performance of their systems
on-the-fly when changes in the Edge infrastructure occur.
EDICT simulations can take up to 5 minutes to converge;
this time is too long to perform rapid performance analysis
and runtime adaptation. EDICT supports runtime adaptation
through an ML-based QoS prediction component that quickly
provides insights into the performance of the IoT system when
subscriptions or configuration parameters change.

We validate EDICT’s QoS prediction mechanism by (i) con-
sidering a changing number of subscriptions, and (ii) consid-
ering changing configuration parameters. In this section, we
consider the following configurations: prioritizing one of the
four application categories, prioritizing applications based on
their QoS requirements (giving the highest priority to RT, ST,
TS, and then AN in this order), and applying a drop rate of
2% for loss-tolerant applications (AN and ST). For a congested
system, we apply more aggressive drop rates (5% and 10%).
For the sake of comparison, we test four QoS prediction
models that EDICT uses to support rapid runtime adaptation:
(i) the KNN algorithm, (ii) the Linear Regression algorithm,



Prediction when adding subscriptions Prediction when reconfiguring
Dataset size KNN LR DT DW KNN LR DT DW
220 0.035 0.036 0.031 0.035 0.0203 0.021 0.022 0.024
440 0.069 0.191 0.072 0.205 0.235 0.195 0.233 0.162
660 0.101 0.648 0.110 0.706 0.090 0.27 0.066 0.118
880 0.199 2.882 0.193 3.165 0.247 3.973 0.062 1.424
1100 0.195 3.487 0.204 3.875 0.346 7.975 0.202 3.027

TABLE III: Comparison of RMSE (sec) of QoS prediction
(iii) Decision Trees, and (iv) AWS’s DataWig library [17],
which is a deep learning-based framework to impute missing
values in datasets. We compare the RMSE (Root Mean Square
Error) and the prediction time needed for the four models.

We start first by evaluating EDICT’s predictions when new
subscriptions are added. We consider different dataset sizes
that have an increasing number of subscriptions. For each
dataset, the number of samples is equal to the number of
subscriptions times the number of configurations. For example,
when simulating a system with 20 subscriptions under 11
configurations, the number of samples is 220. We test EDICT’s
prediction mechanism on 5 datasets. For each iteration, we
train the models on the dataset generated by EDICT, and
then use the models to predict the end-to-end latency for
new subscriptions that are added to the IoT system. We
validate the predicted values by using EDICT to simulate the
IoT system with the new subscriptions. Table III shows the
RMSE for the four ML models. We notice that KNN (0.195s)
and Decision Trees (0.204s) have the best performance even
when the size of the dataset increases (1100). In contrast,
the RMSE of the Linear Regression model (3.487s) and
DataWig (3.875s) increases significantly as the dataset size
increases (1100). This is caused by the non-linear nature of
queueing delays that cannot be captured by these models.
In terms of prediction time, Decision Trees achieve the best
performance: they can predict metrics for new subscriptions
in less than 4ms. The linear regression model also has a low
prediction time of 20ms—albeit with a much higher error.
Even though KNN’s prediction time is significantly lower than
DataWig’s for small datasets, both models tend to have a
similar prediction time of 2s when the dataset size increases.

Next, we test how well the four models perform when
predicting the performance of the IoT system under new
configuration parameters. Similarly to the approach above, we
test EDICT’s predictions on 5 datasets. However, instead of
using the models to predict the metrics values when we add
new subscriptions, we test how well the models can predict
the metrics values for existing subscriptions under different
configuration parameters (e.g., applying different drop rates).
This task is challenging since the models have to predict values
for configurations not seen during training. Again, as Table III
shows, KNN (0.346s) and Decision Trees (0.202s) perform
better than DataWig (3.027s) and the Linear Regression model
(7.975s). We notice that the execution time for predicting
metrics under new configurations is higher than that for
predicting new subscriptions for all models. Decision Trees
can predict metrics in 18ms and a Linear Regression model
takes about 10ms. KNN and DataWig have a much higher
prediction time above 3s. This is due to the lazy nature of
KNN and the fact that DataWig relies on complex neural

networks that have a higher prediction time than other models.

VI. CONCLUSION AND FUTURE WORK

This paper presents EDICT, a simulation tool for evaluating
the performance of Edge interactions in smart environments.
EDICT leverages the NGSI-LD information model to represent
data exchange in smart environments. We also present a
generic QoS model that can be instantiated to create queue-
ing networks that represent the smart environment instances.
These queueing networks are simulated to provide a metrics
dataset that evaluates the performance of data exchange for
multiple situations and configuration parameters of an IoT-
enhanced environment. The output dataset can be integrated
into an automated system tuning approach by IoT systems
designers. To support runtime adaptation, EDICT provides
a QoS prediction mechanism that allows designers to get
the performance of their systems on-the-fly when changes in
subscriptions or configurations occur. Our future work includes
adding performance metrics such as the energy consumption
of devices. We shall also extend EDICT to support more
input types (e.g., RDF), and investigate more QoS prediction
techniques to allow faster and more accurate predictions.

REFERENCES

[1] K. Mehdi et al., “Cupcarbon: A multi-agent and discrete event wireless
sensor network design and simulation tool,” in SIMUtools, Mar. 2014.

[2] S. Han et al., “DPWSim: A simulation toolkit for IoT applications using
devices profile for web services,” in WFIoT, 2014, pp. 544–547.

[3] G. Riley et al., “The ns-3 network simulator,” in Modeling and tools
for network simulation. Springer, 2010, pp. 15–34.

[4] D. Gross et al., Fundamentals of queueing theory, 4th Ed. John Wiley
& Sons, 2008.

[5] “Context Information Management (CIM) NGSI-LD API V1.4.2,”
https://www.etsi.org/deliver/etsi\ gs/CIM/001\ 099/009/01.04.02\ 60/
gs\ cim009v010402p.pdf, 04 2021.

[6] G. Bouloukakis et al., “PrioDeX: a Data Exchange Middleware for
Efficient Event Prioritization in SDN-based IoT systems,” ACM TIOT,
2021.

[7] H. Gupta et al., “iFogSim: A toolkit for modeling and simulation of
resource management techniques in the Internet of Things, Edge and Fog
computing environments,” Software: Practice and Experience, vol. 47,
no. 9, pp. 1275–1296, 2017.

[8] X. Zeng et al., “IOTSim: A simulator for analysing IoT applications,”
Elsevier Journal of Systems Architecture, vol. 72, pp. 93–107, 2017.

[9] M. Salama et al., “IoTNetSim: A modelling and simulation platform for
end-to-end IoT services and networking,” in UCC, 2019, pp. 251–261.

[10] D. Jha et al., “IoTSim-Edge: a simulation framework for modeling
the behavior of Internet of Things and edge computing environments,”
Software: Practice and Experience, vol. 50, no. 6, pp. 844–867, 2020.

[11] H. Hajj Hassan et al., “EDICT: Simulation of Edge Interactions across
IoT-enhanced Environments,” Télécom SudParis, Tech. Rep., 2023.
[Online]. Available: https://hal.science/hal-04078497

[12] M. Bertoli et al., “JMT: performance engineering tools for system
modeling,” ACM SIGMETRICS Performance Evaluation Review, vol. 36,
no. 4, pp. 10–15, 2009.

[13] H. Hajj Hassan et al., “PlanIoT: A Framework for Adaptive Data Flow
Management in IoT-enhanced Spaces,” in SEAMS, 2023.

[14] D. Pan et al., “Max-Min Fair Bandwidth Allocation Algorithms for
Packet Switches,” in IPDPS, 2007, pp. 1–10.

[15] R. Kumar et al., “IoT Network Traffic Classification Using Machine
Learning Algorithms: An Experimental Analysis,” IEEE IoT Journal,
vol. 9, no. 2, 2022.

[16] ETSI, “Digital cellular telecommunications system (Phase 2+) (GSM);
Universal Mobile Telecommunications System (UMTS); LTE; Services
and service capabilities,” 3GPP TS 22.105 V15.0.0, Jul. 2018.

[17] F. Biessmann et al., “DataWig: Missing Value Imputation for Tables.”
J. Mach. Learn. Res., vol. 20, no. 175, 2019.


