
HAL Id: hal-04125131
https://hal.science/hal-04125131

Submitted on 11 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PlanIoT: a framework for adaptive data flow
management in IoT-enhanced spaces

Houssam Hajj Hassan, Georgios Bouloukakis, Ajay Kattepur, Denis Conan,
Djamel Belaïd

To cite this version:
Houssam Hajj Hassan, Georgios Bouloukakis, Ajay Kattepur, Denis Conan, Djamel Belaïd. PlanIoT: a
framework for adaptive data flow management in IoT-enhanced spaces. 18th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), May 2023, Melbourbe, Australia.
�10.1109/SEAMS59076.2023.00029�. �hal-04125131�

https://hal.science/hal-04125131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

PlanIoT: A Framework for Adaptive Data Flow
Management in IoT-enhanced Spaces

Houssam Hajj Hassan*, Georgios Bouloukakis*, Ajay Kattepur†, Denis Conan*, Djamel Belaı̈d*

*SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France
{houssam.hajj hassan, georgios.bouloukakis, denis.conan, djamel.belaid}@telecom-sudparis.eu

†Ericsson AI Research, India, ajay.kattepur@ericsson.com

Abstract—This paper presents PlanIoT, a middleware ap-
proach for enabling adaptive data flow management in IoT-
enhanced spaces (e.g., buildings) using automated planning
methodologies. Today’s sensorized spaces deploy applications
falling to diverse categories such as analytics, real-time, trans-
actional, video streaming and emergency response. Depending
on the category, applications have different QoS requirements
related to timely delivery, networking resources, accuracy, etc.
Typically, state-of-the-art data exchange systems introduce poli-
cies for bandwidth allocation or prioritization for specific data
types and applications (e.g., camera data). PlanIoT introduces
a generic QoS model to evaluate the performance of data
flowing in Edge infrastructures and generates their performance
metrics dataset. Such a dataset is used as input to automated
planning representations to intelligently satisfy QoS requirements
of deployed applications. The experimental results show that
PlanIoT improves the end-to-end response time of time-sensitive
flows by more than 50%, especially with an overloaded Edge
infrastructure. We also show the adaptivity of our approach by
considering emergency cases that require Edge infrastructure
reconfiguration.

Index Terms—Adaptive Systems, Automated Planning, IoT,
QoS, Smart Spaces.

I. INTRODUCTION

With the advent of Internet of Things (IoT) devices and
supporting technologies, spaces (e.g., buildings, homes) are
becoming smarter and interconnected. Edge-based infrastruc-
tures of today’s sensorized buildings include IoT devices to
sense physical phenomena or receive actuation commands;
software components to process raw data and provide seman-
tically enriched data; message brokers to exchange data; Edge
servers as hosting nodes; and the networking infrastructure.
IoT applications operating over such infrastructures provide
services (e.g., building utility optimization, air/noise monitor-
ing, enforcing emergency & rescue procedures) to improve
people’s daily activities, life quality, and public safety.

The developed applications are often composed from dif-
ferent Quality of Service (QoS) requirements (response time,
accuracy, allowed loss rates, etc.) to support application types
such as: (i) IoT analytics (AN) based on sensor readings
for behavior analysis; (ii) real-time (RT) for data acquisition
within a limited latency bound; (iii) transactional (TS) for re-
quest-response related applications; (iv) video streaming (VS)
for bandwidth and data-intensive applications; (v) emergency
response (EM) for handling critical situations as soon as pos-
sible. IoT-enhanced spaces usually deploy applications falling

to all categories: for instance, an occupancy application that
indicates whether certain building zones are highly occupied
or not; a real-time self-driving robot delivering mails in a
university campus; transactional office-related digital services;
a video streaming camera surveillance system in workplaces;
and an evacuation planning application for buildings.

Serving applications falling to these types may require a
tsunami of data that keeps growing. For instance, an occupancy
monitoring application deployed in a large university campus
(with over 200 buildings) must process WIFI connectivity
data in the order of millions each day [1]. In addition,
bandwidth and data-intensive applications such as EM and VS
affect the performance of all applications. Furthermore, smart
space administrators wish to leverage IoT sources to build
multi-purpose applications spanning the above categories. For
example, images captured from a camera can be used as input
to both an application that creates evacuation plans (EM), and
to an application for detecting parking violations (VS) [2], [3].
We define such applications as Intersecting IoT Applications.

Deploying applications (including intersecting ones) falling
to AN, RT, TS, VS and EM categories requires to address
the following research questions: (R1) How can different
categories of IoT applications be expressed with different QoS
requirements? (R2) How does an Edge infrastructure of a
smart space have to manage data flows sent to IoT applica-
tions? (R3) What if several identical flows must be delivered
to intersecting applications that belong to all categories?
State-of-the-art messaging systems for smart spaces focus on
ensuring application portability [4]–[6], resolving conflicts [7],
or message prioritization [8], [9]. While middleware-based
approaches provide solutions for manipulating data at both the
middleware and network layers [10]–[12], they provide sup-
port for application-specific data (e.g., VS) and requirements.

This paper introduces PlanIoT, a framework-based solution
that enables adaptive data flow management at the middleware-
layer using automated planning methodologies [13]. PlanIoT
enables defining application categories using technical spec-
ifications such as 3GPP [14]–[16]. A generic QoS model
evaluates the performance of data flows (exchanged between
applications and devices) using different IoT devices, appli-
cations and QoS configurations (network resource allocation,
priority policies, etc.). PlanIoT composes multiple instances
of these QoS models to provide a dataset with metrics related
to the applications’ QoS requirements (i.e., response times,

Emergency
(EM)

evacuation
resp. time <= 400 ms

dropping = 0%

Analytics
(AN)

energy management

best effort

Transactional
(TS)

room reservation
resp. time <= 4 s
dropping = 0%

req

req

req

Video Streaming
 (VS)

video surveillance
resp. time <= 2 s
dropping <= 2% req

Edge
Broker

Fig. 1: Smart building scenario

throughput). This dataset is then used to create multiple
instances of domain models and problem specifications that are
finally given as input to an AI planner. The planner achieves
the following goals: (i) identify adaptive plans to satisfy QoS
requirements of IoT applications; and (ii) plan the delivery of
identical flows to intersecting applications regardless of their
application category. The main contributions of this paper are:

– A middleware-based approach that categorizes applica-
tions based on QoS requirements to provide adaptive flow
management by relying on QoS modeling and automated
planning methodologies (§II).

– A generic QoS model that evaluates the performance of
Edge infrastructures using different (and possibly opti-
mized) QoS configurations that capture different smart
space situations (§III).

– Generating plans for the adaptive management of data
flows to satisfy QoS requirements of (possibly intersect-
ing) applications (§IV).

§V shows how PlanIoT improves the Edge infrastructure’s
performance and enables runtime adaptation. §VI compares
PlanIoT against related works and §VII concludes this paper.

II. THE PLANIOT APPROACH

A. Motivating Scenario

We consider the case of a smart office building, as depicted
in Fig. 1, that might be equipped with IoT devices such as
smoke detectors, temperature sensors, smart plugs, to name a
few. An Edge-based IoT platform can be leveraged to forward
data from devices to the corresponding IoT applications and
services. For instance, an evacuation planning application (EM
category) can be triggered during an emergency case (fire,
earthquake, etc.) to create evacuation plans in a building using
data from CCTV cameras and other devices (e.g., smoke, tem-
perature sensors etc.). At the same time, a video surveillance
application (VS category) used by security officers receives
CCTV camera data and shows video footage of different
locations within the building. Note that the EM application
requires camera data to be received as soon as possible
(i.e., a transmission time less than 400 ms), whereas the VS
application tolerates a higher latency of around 2 seconds.
Finally, under normal situations, building occupants may use a
reservation application that displays the occupancy of meeting
rooms and enables their reservation.

Respecting QoS requirements of all applications deployed
in IoT-enhanced spaces is not a trivial task, especially for
intersecting applications (e.g., evacuation planning vs. video
surveillance) over a constrained infrastructure. We can ob-
serve that applications in such spaces receive heterogeneous
data in terms of size, format, urgency and frequency. For
instance, a CCTV camera provides multiple data frames per
second, usually of considerable size (e.g., 20 KB), whereas
a temperature sensor only sends a few bits of data every
several seconds. In addition, applications are highly diverse in
terms of QoS requirements and data recipients under different
circumstances. For instance, during an emergency case, the
evacuation planning application holds a higher importance
than the video surveillance application due to the safety risks
that a potential fire/earthquake may present. In such a case,
it is critical to guarantee the timely and reliable delivery of
data to the evacuation planning application, and at the same
time manage the infrastructure so that the QoS requirements of
the video surveillance application are not violated. The main
challenge here lies in treating the same data observations
coming from the same device, differently, depending on the
nature of the receiving application. This task becomes more
complex when we consider constrained resources at the Edge.

Existing IoT platforms use all networking resources avail-
able to forward the data to IoT applications. Other approaches,
such as [8], [9], [17], [18], deal with emergency or real-time
applications but are specific to a certain type of applications.
Thus, generic and dynamic solutions are required to manage
data flows at the Edge.

B. PlanIoT Overview

We now provide an overview of the PlanIoT framework.
As shown in Fig. 2, this consists of three main components:
(i) Edge Infrastructure; (ii) Design Time Synthesis; and
(iii) Runtime Automated Planning. IoT applications and
devices deployed in a smart space are part of the Edge Infras-
tructure and they exchange data via a publish/subscribe broker
deployed at the Edge. Here, the main challenge is to enable
adaptive management of data flowing to IoT applications for
satisfying their (possibly diverse) QoS requirements. This is
even more challenging when intersecting IoT applications
belonging to different categories consume common data flows.
To enable adaptive flow management, the Design Time Synthe-
sis component provides (at design-time) a dataset that captures
the performance of data flows in an IoT space for different
space characteristics and (possibly dynamic) situations. This
dataset is then used by the Runtime Automated Planning com-
ponent to perform runtime flow adaptation via the generation
of plans that are applied to the Edge Infrastructure component.
A detailed description of each PlanIoT core component is
provided below.

1) Edge Infrastructure: As already pointed out, the Edge
infrastructure consists of IoT devices and applications that
interact with each other via an adaptive Edge broker (single
node or a cluster of distributed broker nodes). IoT devices act
as publishers and produce data encapsulated into messages that

App 1

PlanIoT

IoT Space
Specification

"smoke"

"intrusion

detection"

"occu
pancy"

App 6

App
14

Applications
QoS

Requirements

IoT System
Specification

Optimized QoS Model

Performance
Metrics
Dataset

Data Flow
Assignment

Flows
Management

Network
Resource
Allocation

AI Planner Optimized
QoS

Configuration

Edge
Broker

QoS Model 1

Default QoS Model

QoS Model 2

QoS Model N

System-Specific
QoS

Configuration
AN

RT

TS

VS

App
22

Domain File
Instance

Generic QoS
Configuration

Generic
Smart Space

Modeling

Space-Specific
Modeling

Problem File
Instance

"s
m

ok
e"

"smoke"

"smoke"

Design Time SynthesisEdge Infrastructure Runtime Automated Planning

Runtime adaptation

represents

used for

Fig. 2: The PlanIoT Architecture

are tagged with a topic for routing. IoT Applications subscribe
to receive the produced data using topic-based subscription
filters. We group applications based on their category. We
also define intersecting applications as the set of applications
subscribing to receive data with the same topic (e.g., “smoke”
data in Fig. 2) regardless of their (possibly) heterogeneous QoS
requirements (see §III). To manage data flows such that QoS
requirements of all subscribing IoT applications are satisfied,
PlanIoT uses the following components. The Data Flow
Assignment component maps each subscription to a flow and
labels it with the corresponding topic, subscribing application,
and application category. The Flows Management component
configures data flows (e.g., via prioritization) based on the
optimal QoS configuration received from the automated plan-
ning component (see § III-A). Finally, the Network Resource
Allocation component enables the optimal network allocation
policy depending on application categories.

2) Design Time Synthesis: PlanIoT uses the performance
metrics dataset generated at design time to perform runtime
adaptations. In particular, as depicted in Fig. 2, the IoT
space specification and Application QoS requirements sub-
components are used to compose the IoT system specification
that represents the overall Edge infrastructure of a smart space
in a structured way1. The specification includes information
related to the (i) IoT devices: average message sizes, frequency
(e.g., periodic, event-driven) as well as the space properties
(e.g., temperature of a room); (ii) IoT applications: number
of applications deployed, their category, their topic-based sub-
scription filters, and their QoS requirements; and the (iii) Edge
broker: the available network resources and the system capac-
ity. Note that multiple IoT system specifications can be defined
for representing multiple situations (e.g., emergency cases).

We rely on existing standards (e.g., 3GPP, ETSI) to define
abstract QoS requirements of applications based on the four
defined categories (i.e., AN, RT, TS, VS). Such requirements
have to be respected for the well-functioning of IoT applica-
tions (e.g., response times) under normal conditions. However,
using the PlanIoT framework, IoT designers can further define
abstract QoS requirements depending on the deployed IoT ap-
plications of a space (e.g., applications for emergency response
cases). The IoT system specification is used to automatically

1Note that, standard ways of IoT space representation such as Ontologies
can be leveraged. However, this is out of the scope of this paper.

create QoS Models (see §III) that evaluate the performance
of data flowing between Edge devices and applications. We
define default QoS models to evaluate the performance of data
exchanged using basic messaging systems (e.g., existing IoT
platforms), as well as optimized QoS models that consider
different QoS configurations (prioritization of applications,
dropping of messages) of state-of-the-art IoT platforms that
can possibly improve the performance. A dataset is then
generated, which contains metrics (e.g., response times) for
the performance of data flows in the Edge infrastructure under
the different QoS configurations and smart space parameters
(e.g., overloaded Edge infrastructure). More details about the
dataset are provided in §III.

3) Runtime Automated Planning: We leverage the perfor-
mance metrics dataset - which includes multiple and poten-
tially unexpected states of the Edge infrastructure - as input
to an AI Planner (see §IV) that generates plans to dynamically
manage data flows. The AI planner takes as input a domain
file with actions corresponding to the possible QoS models,
and a problem file describing the Edge infrastructure of the
smart space (see §III-C and §IV), as well as the desired goal
state (e.g., satisfy QoS requirements of RT). The AI planner
uses heuristics and search algorithms to search for actions
reaching the goal state (see §III-C). We create templates of
domain and problem files that can be instantiated at runtime to
generate instances of domain and problem files. Such instances
represent a specific configuration of the Edge infrastructure
and can be used for re-adaptation purposes at runtime.

III. IOT FLOW HANDLING PROBLEM

This section presents the formal model of the PlanIoT
framework. First, we provide an overview of our QoS model
that evaluates the performance of data flowing in Edge in-
frastructures of IoT-enhanced spaces. We then introduce the
challenges involved in managing QoS of data flows in Edge
infrastructures. Finally, the planning methodology of PlanIoT
is formally presented. Refer to Table I for notations used
throughout this section.

A. PlanIoT Formal Model

In PlanIoT, data flows are exchanged between IoT devices
and applications by following the publish/subscribe interaction
paradigm. As depicted in Fig. 3, each IoT device di ∈ D
(e.g., smoke detector) acts as a publisher publishing data to

d0

d1

di

μin

G/G/1

Qin

forkt1

forktj

r1
r2

rj

rk

ω1

ω2
ωk

ωj

μnet
joint1

jointj

a1.cat = AN
a1.topics = {t1, t2}

a2.cat = RT
a2.topics = {t1, tj}

ai.cat = VS
ai.topics = {tj}

ai

a2

a1T→F

Forking
Model

y1

y2
yk

yj

Prioritization
Model
F←Y

Dropping
Model
F←Ω

Message broker

Qnet

Fig. 3: The PlanIoT QoS Model

one or more topics tj ∈ T (e.g., ”smoke”) through a message
broker (defined as b). Topic messages are characterized by
their message size Gtj and the rate λtj at which they are
produced. λtj may generate messages based on a probability
distribution (e.g., Exponential, Deterministic) or by relying on
real-world traces of existing smart spaces (see §V). We define
a topic as a tuple tj = (Gtj , λtj).

Each application can take the role of a subscriber by
subscribing to one or more topics. Let ai ∈ A be the
applications table with attributes {cat, qos, topics}, where cat
corresponds to the application’s category (AN, RT, TS, VS,
EM), qos to the application’s QoS requirements, and topics
to the set of topics Tai that the application has subscribed
to. We refer to each ai’s attribute (e.g., cat) as ai.cat. Let
AAN = {ai ∈ A : ai.cat = AN} be the set of applications
classified to the analytics category; ART , ATS , AVS , and
AEM are defined similarly. Each application’s QoS require-
ments are defined as a tuple ai.qos = (δmax, θmin, ωmax),
where δmax is the maximum tolerated response time, θmin is
the minimum required throughput, and ωmax is the maximum
allowed data drop rate. Let qosAN , qosRT , qosTS , qosVS ,
and qosEM be the QoS requirements for the corresponding
application categories with specific values for the δ, θ and ω
parameters (example in §V).

Applications indirectly subscribe to topics by specifying
subscription filters. We define a subscription as the tuple
rj = (ai, tj) ∈ R, where application ai subscribes to the
topic tj . Multiple applications may subscribe to receive data
matching the same topic filter. However, their QoS require-
ments are different and thus, their data flows must accordingly
be managed by PlanIoT. Let ∩Atj

i ∈ A be the ith set of
intersecting applications that have subscribed to the same
topic tj ; e.g., the video surveillance (VS) and evacuation
planning (EM) applications (§II-A) where their subscriptions
intersect and their category is different. For each subscription
rj , we define a data flow fi ∈ F matching rj starting from
the broker towards an application ak, such that rj = (ak, tj).
Let FAN ⊆ F be the set of flows sent to analytics applications
AAN ; FRT , FTS , FV S , and FEM are defined similarly. Note
that intersecting applications ∩Atj

i have a set of identical
flows F(∩Atj

i), i.e., flows filtered based on tj .
By taking into consideration applications and their cat-

egories, PlanIoT enables data management at the level of
a flow (a topic that matches a subscription of an appli-
cation) by allocating network resources, assigning priori-
ties and drop rates (only to loss-tolerant applications or
categories) at the publish/subscribe overlay. We denote by

Notation Description
di ∈ D; ai ∈ A IoT devices; IoT applications
tj ∈ T ; Tai

topics; set of ai topics

∩A
tj
i intersecting applications

Gtj
; λtj

topic message size; publication rate

rj ; fi ∈ F; F(∩A
tj
i) subscription; data flow; identical flows

y ∈ Y; ω ∈ Ω priority; dropping rate
δmax; θmin; ωmax max resp. time; min throughput; max drop rate

µnet ; µai
net. queue service rate; app. queue service rate

∆fi
; Θfi

; Ωfi
response time of flow; throughput of flow; dropping of flow

TABLE I: Notations of the parameters in the PlanIoT model

Y = {yAN , yRT , yTS , yVS , yEM } the set of priority classes;
and Ω = {ωAN , ωRT , ωTS , ωVS , ωEM } the set of dropping
rates that can be assigned to data flows. Note that for two
identical flows f1 and f2, matching subscriptions r1 = (a1, tj)
and r2 = (a2, tj), we can assign two different priority classes
y1 and y2 (or dropping rates Ω1, Ω2) depending on the
applications’ categories, i.e. a1.cat and a2.cat.

B. QoS Model

To evaluate the performance of (possibly identical) data
flows (F) in Edge infrastructures, we design a QoS model
using Queueing Networks [19], [20]. As depicted in Fig. 3,
an input queue Qin (of G/G/1 type2) accepts publications
based on topics from the devices D. Its service time represents
the subscription matching process that is applied to identify
data recipients based on the available subscriptions rj . To
optimize the end-to-end performance of the data flows in
Edge infrastructures, our QoS model introduces the following
configurations: (1) Forking Model: for every topic tj , one fork
forktj duplicates data towards every subscribed application and
creates the corresponding flows F(ai, tj). This step results in
the creation of PlanIoT’s data flows (F), including the identi-
cal ones; (2) Prioritization Model: sets priorities to topics,
however, PlanIoT assigns priorities to data flows including
the identical ones. To achieve this, it takes into consideration
each application’s category to assign priorities in a QoS-aware
manner (see §III-C); and (3) Dropping Model: assigns drop
rates for each flow fi for data to be dropped.

To model the networking infrastructure between the Edge
broker and the applications A, a multiclass queue Qnet is used.
The service rate µnet of Qnet represents the available network
resources. Let WDX be the available networking resources
between the PlanIoT data exchange system and all applications
A. Then, µnet is calculated based on WDX and the message
size of the corresponding flow that is classified to a topic (Gtj).
Qnet also acts as a priority queue and prioritizes data flows
based on their assigned priorities. Let KQin and KQnet be
the queues’ maximum capacity that represents the broker’s b
overall capacity. Although in this work we model a single
broker, this can be easily extended for distributed network of
brokers by relying on related existing QoS models [21].

At the IoT application side, each ai is modelled as a
queue qai that receives flows from the network queue Qnet

according to ai’s subscriptions; its service rate µai represents

2A G/G/1 queue denotes a single-server FIFO queue with general distribu-
tions of inter-arrival and service times.

the processing time of the application. A topic join jointj
is

used for every topic fork forktj that receives data flows and
converts them back to topics. This guarantees that the queueing
network remains balanced by joining the jobs split by the
forks. Note that the networking infrastructure between IoT
devices and the Edge broker is not modeled using queueing
networks (i.e., negligible response time for the IoT devices
to broker links). This is because IoT devices are usually
legacy and thus, management of data flows is not possible.
Finally, there are no message losses at the network layer due
to network constraints and re-transmissions (message dropping
is considered at the application-layer only).

Using PlanIoT’s QoS model, the following performance
metrics can be calculated. Let ∆fi be the end-to-end response
time of flow fi, which represents the time to deliver a message
of a data flow fi to the subscribed application ai. Let ∆FAN

be the average end-to-end response time of flows FAN ; ∆FRT
,

∆FTS
, ∆FV S

, and ∆FEM
are defined similarly. In a similar

way, we define ΘFAN
, ΘFRT

, ΘFTS
, ΘFV S

, and ΘFEM
to be

the delivery success rates for the corresponding application
categories.
Dataset Generation. We leverage PlanIoT’s QoS model to
derive metrics that evaluate the performance of data flows
in Edge infrastructures without, or with one or more con-
figuration models (Forking Model, Prioritization Model, and
Dropping Model shown in Fig. 3). Such a QoS model is
automatically composed by PlanIoT using the IoT system
specification as input (see Fig. 2). First, it generates metrics for
a default configuration (i.e., without using our configuration
models) where we use all networking resources WDX to
transmit data to the applications without taking into account
their QoS requirements. For this configuration, all topics have
equal priorities and the data drop rates are null. The resulting
metrics are calculated per topic. Then, PlanIoT generates
metrics using the Forking Model. This repeats the default
configuration; however, performance metrics are generated
per data flow. Next, it uses both the Forking Model and the
Prioritization Model to assign different priorities to data flows.
For each flow fi, we select a priority y ∈ {0, 1, 2, 3, 4} based
on the flow’s application category (i.e., yAN). For example,
possible assignments of priorities can be: Y = {0, 1, 1, 1, 1}
or Y = {4, 0, 3, 2, 1}. Similarly, using the Dropping Model,
different data drop rates are assigned to different flows. Note
that the drop rates assigned to flows are lower than the
tolerated drop rates specified in the QoS requirements of the
application receiving the flow (i.e., for fi ∈ FAN , we assign
a drop rate ωfi ≤ ωAN).

PlanIoT automatically generates per-flow-fi end-to-end met-
rics (from publishers to applications) for response times,
throughput, and losses. We group the metrics in a CSV file
where each row is a tuple rowfi = (∆fi ,Θfi ,Ωfi).

C. Automated Planning

While current messaging systems [8], [9], [22] propose
advanced techniques for network resource allocation or pri-
oritization/dropping, there exist a few issues:

(1) All flows fi belonging to a topic tj are treated in a
homogeneous fashion, irrespective of the application category
or recipient application that can be intersecting. This allocation
can cause deteriorated service in the case of certain types of
applications such as AEM , especially in emergency scenarios.
(2) The priorities Y are specified in a static manner at design
time rather than dynamically set using the application level
QoS requirements. In contrast, through PlanIoT, the priorities
are composed with dropping rates at design time. Introduction
of new requirements at runtime are mapped to application
categories to ensure appropriate QoS for high priority services.

For each application with ai.qos = (δmax, θmin, ωmax),
PlanIoT provides an optimal QoS configuration such that:
∆fi <= δmax, Θfi >= θmin, and Ωfi <= ωmax. This
task becomes challenging to solve for identical flows of
intersecting applications. For two applications a1 and a2
belonging to the same set of intersecting applications ∩Atj

i and
where a1.qos ̸= a2.qos, PlanIoT provides a QoS configuration
that satisfies both a1.qos and a2.qos. This is possible through
the PlanIoT configuration models (shown in Fig. 3).

Setting these configurations of an increasing number of
application categories, devices, topics, priorities and drop rates
is non-trivial. A messaging system must handle the scale of
flows and the increasing combinatorial state space search.
PlanIoT uses AI planning to find an optimal configuration
of smart-space Edge infrastructures via design time/runtime
adaptations, by considering application requirements. AI Plan-
ning [13], [23] begins with the definition of domains, problems
and goals that are to be achieved, which are formally defined.

Definition 1: Planning Domain. A planning domain is a
state transition system Σ = (S,A, γ, C), where:

– S is a finite set of states of the system. These refer to the
states of the system under consideration, for instance, if
the PlanIoT framework is meeting the QoS requirements
or is under violation.

– A is a set of actions that may be performed by an agent
(e.g., a data exchange system, that may be performed by
the PlanIoT middleware).

– γ : S ×A → S is the state transition function. If γ(s, α)
is defined then action α is applicable to state s, with
γ(s, α) being the predicted outcome.

– C : S × A → [0,∞) is a cost function with the same
domain as γ. It can represent a cost function minimizing
monetary cost, latency or other parameters.

This model does not include the concept of time or concurrent
actions. There is also determinism in the outcome of state s
when an action α is performed.

Definition 2: Planning Problem. A planning problem is a
triple P = (Σ, s0, G) where Σ is a state-transition domain, s0
is the initial state, and G is a set of ground literal goals.
The goal state G is typically the desired state of the system,
for instance meeting all QoS constraints.

Definition 3: Plan. A plan is a finite set of actions:

π = ⟨α1, α2, . . . , αn⟩ (1)

where the plan’s length |π| is n. A plan π is applicable to
a state s0 ∈ S if there are states s1, s2, . . . , sn such that
γ(si−1, αi) = si for i = 1, . . . , n. In this case, γ(s0, απ) = sn
(with απ being the last action in plan π). A solution for P is
a plan π′ such that γ(s0, α1) . . . γ(sm, α′

π) satisfies G.
To illustrate the automation of configuration settings in

Fig. 3, we propose a planning problem. The initial state
s0 in the system includes various flows fi ∈ F mapped
to applications ai ∈ A regardless of the application
categories. The initial state s0 also has priority setting
Y = {yAN , yRT , yTS , yVS , yEM } = {0, 0, 0, 0, 0} and drop rate
setting Ω = {ωAN , ωRT , ωTS , ωVS , ωEM } = {0, 0, 0, 0, 0}.
The goal state G is mapped to one where the QoS requirements
for all flows fi ∈ F are met (∆fi <= δmax, Θfi >= θmin, and
Ωfi <= ωmax). The planner generates a plan π = ⟨α1, α2, α3⟩
to transition from the initial configuration s0 to goal configu-
ration G. The first action step α1 is to convert flows of topics
to flows of subscriptions (Forking Model). The second action
step α2 sets the appropriate Y = {yAN , yRT , yTS , yVS , yEM }
(Prioritization Model). The last action α3 sets the appropriate
dropping rate Ω = {ωAN , ωRT , ωTS , ωVS , ωEM } (Dropping
Model). Based on the plan output, the following actions could
be applied to fi:

[1] fi 7→ rj
[2] fi 7→ Y = {yAN , yRT , yTS , yVS , yEM }
[3] fi 7→ Ω = {ωAN , ωRT , ωTS , ωVS , ωEM }

(2)

The plan π ensures that the higher priority intersecting ap-
plications receive more of the resources, specially in case of
resource contention. Techniques used to generate plans from
the initial state to the goal state include: (i) graph based
search techniques, (ii) state-transition systems, (iii) constraint
solvers that make use of symbolic predicates, constraints
and effects, (iv) heuristic approximations such as removing
negative predicates. Comparison of scale, benchmarking and
speed of AI planning solvers has been evaluated within the In-
ternational Planning Competition held bi-anually since 20003.
The planners (classical, temporal, uncertainity tracks) have
been compared based on scale of problems, heuristic planning
accuracy and time taken to solve benchmark problems.

IV. QOS-AWARE PLANNING OF IOT FLOWS

Our approach is based on using AI planning to provide an
optimal flow-handling configuration. For this purpose we em-
ploy the Planning Domain Definition Language (PDDL) [13],
[24], which is an action centered language that provides
a standard syntax to describe actions by their parameters,
preconditions, and effects. A plan consists of two descriptions:
(i) the domain description that decouples the parameters of
actions from specific objects, initial conditions, and goals, and
(ii) the problem description that instantiates a grounded prob-
lem with objects, initial conditions, goals and cost functions
(metrics). The same domain description may be paired with
multiple problem instances, with varying grounded objects,
initial conditions, goals, and cost functions.

3https://www.icaps-conference.org/competitions/

We start by writing the domain definition where we specify
the type of objects (Listing 1 Line 1): Topic (e.g., ”smoke”,
”occupancy”) and Application (e.g., fire detection applica-
tion, occupancy management application). The domain defini-
tion file also includes the predicates that specify the state of
the incoming flows of data (Listing 1 Lines 3–6). We consider
that a flow (a tuple of topic and application pairs) can
be under one of the four following states: (i) default: with
default queue configuration output, (ii) QoS achieved: con-
figured to achieve desired QoS, (iii) priority not set: pri-
orities of flows have not been set, or (iv) priority set: flow
priorities set. We further include a function responsetime

that is used to track the end-to-end response time changes per
flow. This function is used as an optimization constraint.

Listing 1: PDDL Domain Model Template
1 (:types Topic Application - object))
2 (:predicates
3 (default ?t - Topic ?app - Application)
4 (QoS_achieved ?t - Topic ?app - Application)
5 (priority_not_set ?t - Topic ?app - Application)
6 (priority_set ?t - Topic ?app - Application))
7 (:functions
8 (responsetime ?topic ?app) - number))
9 (:action no_change

10 :parameters (?t - topic ?app - application)
11 :precondition (and (default ?t ?app))
12 :effect (and (not (default ?t ?app))
13 (QoS_achieved?t ?app) #default_effects#))
14 (:action prioritize_RT_VS_TS_AN
15 :parameters (?t - topic ?app - application)
16 :precondition (and (priority_not_set ?t ?app))
17 :effect (and (not (priority_not_set ?t ?app))
18 (priority_set ?t ?app) #prioritize_RTVSTSAN#))
19 (:action droppingVS1
20 :parameters (?t - topic ?app - application)
21 :precondition (and (default ?t ?app))
22 :effect (and (not (default ?t ?app))
23 (QoS_achieved ?t ?app) #droppingVS1_effects#))

We further define the actions that can be taken by the AI
planner (Listing 1 Lines 9–23). These include an action

to run the default configuration, another to prioritize flows
based on applications (ART , AVS , ATS , AAN) and one to
drop messages. Note that Listing 1 contains only a subset of
the action description with parameters, pre-conditions, post-
conditions, and timing constraints. The pre-conditions of these
actions include the QoS not being met and the priorities not
set. The effects of these actions accurately map the required
QoS to flows. These effects are in the form of (increase

(responsetime topic i app j) v), where v represents
the value of the end-to-end response time for the flow under
the corresponding QoS model.

The planner searches through the combination of default,
priority and dropping actions to compose the optimal out-
put for the combination of flows (using graph, heuristic
or constraint search [13]). Note that searching through this
configuration of flows involves a large search space and is
non-trivial; generating an optimal plan requires accurate inputs
from the queuing model, domain modeling involving pre-
conditions/effects and efficient solvers to handle large combi-
natorial state spaces. Using PDDL and associated solvers such
as Metric-FF [25], PlanIoT is able to perform efficient search
across various filtering, priority and dropping combinations.

In the PDDL problem file, we instantiate objects (topics and
applications) and specify the initial state of our system. Ini-
tially, all flows of data are configured with the default queueing
network model settings (Listing 2 Lines 1–3). Our goal is to
transmit all flows of data while minimizing the total time for
transmission (Listing 2 Lines 4–7). The responsetime func-
tion is initialized to 0 with each action providing increments
to the responsetime function. The AI planner will choose
the actions that introduce minimum end-to-end response time
for all flows. The goal states for each of the flows include
appropriate priority setting and QoS management. The opti-
mization metric focuses on minimizing the weighted end-to-
end response time of flows. Note that this is a distinguishing
feature of the planner: weights can be provided to prioritize
particular flows, which are not straightforward to express
within the max-min policy [22] or static priority approaches.
Through the use of the metric minimize expression in
Listing 2 line 6, numeric PDDL solvers (such as Metric-FF
[25]) can produce plans that minimize the specified metrics,
using techniques such as gradient descent.

Listing 2: PDDL Problem Model Template
1 (:init (default topic_all app_all)
2 (priority_not_set topic_all app_all)
3 (= (responsetime topic_i app_j) 0))
4 (:goal (and (QoS_achieved topic_all app_all)
5 (priority_set topic_all app_all)))
6 (:metric minimize (* 1 (responsetime topic10 app11))
7 (* 1 (responsetime topic11 app8)))

A part of an example output using PDDL planners such as
Metric-FF [25] is provided below:

1 : ff: found legal plan as follows
2 step 0: DROPPINGVS1 TOPIC_ALL APP_ALL
3 1: PRIORITIZE_RT_VS_TS_AN TOPIC_ALL APP_ALL

The plan includes setting a specific drop rate for VS flows
and appropriate prioritization. Under conditions where there
is excessive contention for resources, the plan can drop low
priority messages to achieve required QoS for higher priority
flows. Note that while we have specified a single grounded
problem file for solutions, the novel advantage of including
AI planners is to dynamically adapt the system to changes.
Here, the PDDL domain file in Listing 1 remains static (with
fluent grounding), while the PDDL problem file (Listing 2)
is dynamically instantiated with new flows, initialization or
requirements. This adaptation ensures that the planning system
can generate new plans, without the need for re-modelling the
system or individual flows.
Design time adaptations. PlanIoT is a generic and extensible
framework for handling data flows in smart spaces. To demon-
strate the design-time adaptivity of PlanIoT, we show the steps
to be performed for adding a new application category. We
consider that a new application category - emergency response
(EM) - has been defined by the smart space administrators, to
respond to fire/accident emergencies. To define EM applica-
tions in the PlanIoT framework, we perform the following
process: (1) we introduce the new application category and its
requirements in the IoT system specification file as follows:

1 { "applicationCategory": "EM",
2 "qos_responseTime": 0.25,
3 "qos_throughput": 400,
4 "qos_dropRate": 0 }

(2) we generate the corresponding dataset for an emergency
scenario using PlanIoT; (3) we instantiate the domain and
problem files from the templates corresponding to an emer-
gency situation. These templates contain actions that are only
used in such situations. For example, because there is an
emergency scenario, we introduce an action for dropping a
higher percentage (20%) of AN and VS flows:

1 (:action droppingVS20AN20
2 :parameters (?t - topic ?app - application)
3 :precondition (and (default ?t ?app))
4 :effect (and (not (default ?t ?app))
5 (QoS_achieved ?t ?app) #dropVS20AN20_effects#))

Note that the template contains several actions with varying
dropping percentages; the planner will then choose the action
that satisfies the QoS requirements of the applications; (4) in
case of an emergency situtation, we run the AI planner at
runtime and generate the optimal QoS model for the broker.

V. EXPERIMENTAL RESULTS

We first evaluate the performance of PlanIoT against a
default approach that represents basic IoT platforms, and
compare the PlanIoT approach with existing state-of-the-art
solutions that deal with the IoT flow handling problem. We
then assess the scalability of PlanIoT using a realistic smart-
spaces dataset under an increasing number of subscriptions
that eventually overload the PlanIoT broker. Finally, we show
how PlanIoT enables edge infrastructure reconfiguration in the
event of an emergency. The PlanIoT code to compose queueing
networks, datasets and the plans for an Edge infrastructure is
provided at https://gitlab.com/planiot/planiot-seams2023.

A. Experimental Setup

We rely on the JMT (Java Modelling Tools) simulator [20],
[26] to create the queueing network presented in Fig. 3. We
create a JAVA-based parser that reads our JSON IoT system
representation and automatically generates the corresponding
QoS model as JMT queueing networks. We run simulations
for different QoS models by changing the Prioritization Model
and Dropping Model presented in §III. We then extract the
results of the simulations from the JMT XML files and
create a dataset of performance metrics consisting of CSV
files, as described in §III-B. Planning techniques are used
to find the optimal QoS configuration of PlanIoT. We use
PDDL [24] to write the domain and problem files used as
an input to the Metric-FF planner [25]. As explained in §IV,
we rely on template domain and problem files that we then
instantiate by reading from the performance metrics dataset
and plugging in the needed values for the PDDL actions. To
generate numeric plans, we make use of the Metric-FF [25]
solver that is extended to handle multiple fluents, constants,
actions and numeric expressions. Metric-FF is an extension
of the fast-forward planning system that supports reasoning
with Numerics. As specified in [27], Metric-FF passes most

PlanIoT System Properties QoS Requirements
|T | |R| Σλtj

(MB/s) WDX (MB/s) δmax θmin ωmax

AN 15 21 18.5

230

best effort best effort best effort
RT 18 21 31.5 <400 ms 384 KB/s 0%
TS 11 18 16 <4 s - 0%
VS 16 20 55.4 <2 s 384 KB/s <2%

Total 30 80 121.4 230

TABLE II: Experimental setup
benchmarks and is able to solve problems at scale within a
few seconds. This may be improved via factored planning
approaches, as well.

B. Evaluation of the PlanIoT approach

We evaluate the PlanIoT approach using the setup presented
in Table II. We consider a medium-loaded PlanIoT broker that
accepts publications to 30 topics that provide a load of 121.4
Mb/s. We assume that the bandwidth between devices and the
broker is large and sufficient to transmit all data, and hence
the transmission delay is negligible. We also consider that the
broker has a high processing power that does not introduce
significant processing delay. Topic data is generated based on
exponential and deterministic distributions with a rate of λtj .
16 applications subscribe to PlanIoT to receive data matching
the 30 topics, with a total number of 80 subscriptions (|R|).
Table II also shows the QoS requirements per application
category. We create these requirements by relying on the ETSI
TS 1212 105 V15.0.0 standard [28].

We start first by validating our approach by comparing
PlanIoT with an approach that represents basic IoT plat-
forms. Recall from §III-B that the default QoS model uses
all network resources WDX to transmit data flows from the
message broker to the subscribers regardless of the application
categories. In order to satisfy the QoS requirements of all
applications, PlanIoT assigns the following priority classes
to the application categories: yAN = 3, yRT = 0, yTS = 2,
yVS = 1. In addition, a data drop rate of 1% is applied to VS
flows. The priorities and drop rates are decided by relying on
the generated dataset and the applications’ QoS requirements,
as described in §IV. Fig. 4 shows the average end-to-end
response time per application category for the default approach
vs. the PlanIoT approach. We can see that PlanIoT manages
to significantly reduce the end-to-end response time ∆FRT

for RT applications from 0.8 seconds to 0.4 seconds as to
satisfy the QoS requirements for RT applications. There is
also an improvement for ∆FV S

for VS applications. These
improvements come at the expense of having higher end-to-
end response times for AN (1.2 seconds) and TS (0.8 seconds)
applications. However, because ∆FAN

and ∆FTS
stay under

the limits of the QoS requirements, we deem this increase
in response time acceptable. To highlight how PlanIoT deals
with intersecting applications (defined in §III-A), we plot
in Fig. 5 the end-to-end response time per topic (for topics
shared by multiple application categories) for both the default
model and PlanIoT. We observe that under the default QoS
model, for the same topic, the end-to-end response time is the
same for all subscribers regardless of their application category
and their QoS requirements. However, this is different with
PlanIoT, as Fig. 5 clearly shows. PlanIoT manages to take into
account the different application categories. Therefore, for the

same topic, we achieve to have different values for the end-
to-end response time, depending on the requirements of the
subscribing application. For instance, for topic17, ∆FRT

is 0.4
seconds, ∆FV S

is 0.7 seconds, and ∆FTS
is 1.2 seconds. This

shows the effectiveness of assigning priorities per subscription
that PlanIoT adopts. Note that PlanIoT is flexible enough to
introduce trade-off constraints for balancing resources between
all application categories, depending on the QoS requirements
defined.

AN RT TS VS
Application category

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
sp

on
se

 ti
m

e
(s

ec
)

default
PlanIoT
max-min
prioritize Topics

Fig. 4: Comparison of the average end-to-end response time
between PlanIoT and existing approaches

0.0
0.5
1.0
1.5 Default

1 2 4 5 9 12 14 16 19 21 22 23 26 7 8 11 15 17 20 25 28 30 10 13 29 24

Topic id

0.0
0.5
1.0
1.5
2.0
2.5 PlanIoT

AN
RT
TS
VS

Re
sp

on
se

 ti
m

e
(s

ec
)

Fig. 5: Response time per topic - Default vs. PlanIoT

C. Comparing PlanIoT with existing solutions

We now compare the PlanIoT approach with two existing
state-of-the-art solutions that deal with the flow handling
problem, using the same setup of §V-B. We consider the max-
min fairness policy [22] used to allocate network resources to
the four application categories. The max-min algorithm pro-
vides fairness among application categories especially in the
presence of network-intensive applications. We also compare
our solution with works similar to [9] that prioritize topics
belonging to particular applications only. Again, as Fig. 4
shows, we can see that for the application categories with the
stricter QoS requirements (RT and VS), PlanIoT has the lowest
end-to-end response time among other approaches. Because
PlanIoT intelligently assigns priorities and dropping rates per
flow (as opposed to topics) according to the QoS requirements,
we notice that even though the end-to-end response time for
AN and TS applications is higher than other approaches,
the QoS requirements are still satisfied. Notice how when
priorities are applied to topics only, the response time for the
four application categories is close. This is because if two
or more intersecting applications (from different categories)
subscribe to the same topic, they will receive data at the

tj topic id |di| app. categories
amazon_echo_controller 1 13 RT, TS
building_management_system 2 300 AN, RT, TS
energy_management 3 200 AN, RT, TS
fire_detection 4 100 AN, RT
intrusion_detection 5 50 AN, RT, VS
occupancy_management 6 16 AN, RT, TS, VS
printing 7 20 AN, TS
smart_things_controller 8 12 RT, TS
video_surveillance 9 15 AN, RT, VS

TABLE III: Experimental setup using real traces

subscriptions 20 40 60 80 100
Default 100% 75% 71.67% 35% 35%
Topic priorities 100% 82.5% 66.67% 35% 48%
Max-min [22] 100% 75% 71.65% 35% 35%
PlanIoT 100% 100% 100% 100% 100%

TABLE IV: Percentage of QoS requirements satisfied
same time. However, when we prioritize subscriptions, we
manage to have a different response time for each application,
according to its QoS requirements. With the same available
resources, PlanIoT manages to satisfy the QoS requirements
of all applications, whereas existing solutions fail to satisfy
the requirements for RT applications.

D. Scaling up PlanIoT in a smart space

We evaluate the scalability of PlanIoT by testing it under a
realistic smart space setup where we increase the number of
subscriptions from 20 to 100 to saturate the PlanIoT broker.
We rely on the works presented in [29], [30] to create a setup
that depicts IoT devices and applications in a smart office
building similar to the one presented in Fig. 1. The setup
parameters are presented in Table III. We plot in Fig. 6 the
variation in the end-to-end response time for each application
category as the number of subscriptions increase. The shaded
red region in these graphs shows where the utilization of the
system is higher than 100%, i.e. the network resources needed
to transmit all the flows from the broker to the applications
are higher than the total network resources available.

Again, we notice that, by intelligently assigning priorities
to application categories and applying drop rates to flows,
PlanIoT manages to satisfy the QoS requirements of all appli-
cations. In addition, our approach also provides a significantly
better performance in terms of the end-to-end response time
than other approaches for RT, TS, and VS applications. For RT
applications, even with a low-loaded system, the requirements
of applications are only satisfied using the PlanIoT approach,
which keeps ∆FRT

under the 400 ms limit. For TS and VS
applications, other approaches fail to satisfy the requirements
as soon as the system becomes overloaded. On the other hand,
PlanIoT manages to keep ∆FTS

and ∆FV S
under the require-

ments’ limits. Fig. 7 shows the variation of the throughput
as the number of subscriptions increase. We notice that the
throughput for PlanIoT is slightly lower than other approaches,
especially as the system gets more saturated. This is because
of the drop rates Ω that we assign in order to keep the system
robust and deliver the most time-sensitive data in a timely
manner. However, the throughput for all application categories
is higher than the QoS requirements. Table IV presents the

percentages of applications that have their QoS requirements
satisfied as the number of subscriptions increases. The PlanIoT
approach manages to always satisfy the QoS requirements of
all applications, even with limited resources.

0
5

10
15 ANdefault

PlanIoT
maxmin
topic priorities
max. resp. time
overloaded

0
5

10 RT

0

10

20 TS

20 40 60 80 100
Number of subscriptions

0
2
4
6 VS

Re
sp

on
se

 ti
m

e
(s

ec
)

Fig. 6: Response time vs. number of subscriptions

0

10

20 AN

0

10

20 RT

0

10

20 TS

20 40 60 80 100
Number of subscriptions

0

10

20 VSdefault
PlanIoT
maxmin
topic priorities
overloaded

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 7: Throughput vs. number of subscriptions

E. Adding a new application category: Emergency Response

To demonstrate the runtime adaptivity of PlanIoT, we now
consider that a fire occurs in the realistic smart space scenario
presented in §V-D, where we add 10 subscriptions to the
overloaded PlanIoT broker with 80 subscriptions to account
for EM applications. Firefighters that come to extinguish the
fire will bring devices that may connect to the building’s
IoT platform and receive data flowing in the building’s Edge
infrastructure to have a better situational awareness of what
is happening in the building. This implies that (i) we now
have more publishers and subscribers connected to PlanIoT,
and hence more (possibly identical) data flows, and (ii) we
have to introduce a new application category (i.e., EM) that
has the highest priority among all other applications. The goal
here is to (i) satisfy the QoS requirements of EM applications,
(ii) keep the PlanIoT broker robust, and (iii) try to satisfy the
QoS requirements of the most important applications (RT). We

consider that the user has been proactive and has taken into
account the emergency case when generating the performance
metrics dataset at design-time, as described in § IV.

Fig. 8 shows that PlanIoT manages to have the lowest end-
to-end response time for EM applications (0.2 seconds) in an
emergency situation, while at the same time keeping a low
end-to-end response time of 0.42 seconds for RT applications.
The scatter plot on the right of Fig. 8 shows that for the
same topic, we achieve to have the lowest end-to-end response
times for subscribers that are EM and RT applications. This
shows how in critical situations, PlanIoT manages to treat data
flows depending on their QoS requirements, therefore making
better use of the available resources to guarantee the timely
delivery of the most important data. Nonetheless, notice how
the response time for other application categories is high (e.g.,
6 seconds for VS). Although PlanIoT fails to manage to have
all QoS requirements satisfies, it succeeds in providing a robust
performance for the most critical applications.

0.20 0.42

Fig. 8: Average response times in an emergency scenario

VI. RELATED WORK

This section provides an overview of works related to
supporting QoS-aware data exchange in smart environments,
middleware for IoT and automated planning applications.
IoT-enhanced Spaces. Research related to IoT-enhanced
spaces focuses on the heterogeneity of data, avoiding conflict
when exchanging data, portability for application deployment
across spaces, and prioritizing mission-critical applications.
Semantic Web approaches such as Brick [4], present a uni-
form schema for representing metadata in smart buildings.
sTube+ [31] is concerned with the communication between
IoT devices deployed in a smart environment and the Cloud
via a layered architecture. RemedIoT [7] is a dynamic and
context-based mediator for IoT event services that deals with
the detection and resolution of conflicts when exchanging
data. PrioDeX [8], [9] proposes a middleware architecture for
smart buildings that enables timely and reliable delivery of
the most critical data to relevant data recipients despite chal-
lenging network conditions. Unlike these works, the PlanIoT
framework considers the diverse requirements and categories
of applications that are deployed in IoT-enhanced spaces.
QoS-aware Systems. To enable efficient data exchange in
smart environments, existing solutions manipulate data at both
the middleware and network layers. Early middleware-based
solutions such as ControlWare [32] support prioritization or

bandwidth allocation based on the available system capacity,
data relevance and importance. In [33], a policy-based ap-
proach is proposed to manage the QoS related to Internet
traffic between tenants in smart buildings. Other solutions
assign priorities based on the validity span of data and
subscriptions [10] or based on delay and reliability require-
ments [11]. With the advent of novel networking technologies
(e.g. OpenFlow [34]), advanced capabilities are provided to
system designers to customize the underlying network in-
frastructure. SDN-based approaches have been leveraged for
priority assignment and bandwidth allocation such as in [35]
and [11] that use buffer sharing and prioritization in SDN
switches. More recently, machine learning-based solutions [36]
are being used to deal with QoS issues. However, such works
focus only on the network aspect of QoS and fail to consider
the multiple categories of QoS requirements.
Automated Planning. AI Planning is a model-based tech-
nology devoted to decision making, which can be used in
a variety of application domains [37]. Roboplanner [38] is
a framework that allows monitoring, state tracking and re-
planning/configuration of robotic plans using planning tech-
niques. In other application domains, such as [39] and [40],
AI planning is adopted to design a Web services composition
system. In [41], a MAPE-K loop is introduced that makes
use of planning for IoT orchestrations. In [42], Hierarchical
Task Networks are used to plan composition of IoT services
to meet goal requirements. However, in these related studies,
there is no use of explicit data flows, network congestion and
scalability effects. To the best of our knowledge, this is the
first work that applies AI planning to a middleware system for
handling data flows in IoT-enhanced spaces.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces PlanIoT, a framework for QoS-aware
delivery of IoT data flows using automated planning. We
propose a generic QoS model to generate a dataset of per-
formance metrics under different configurations. Automated
planning techniques are used to optimally configure the Edge
infrastructure of smart spaces. Experimental results show
that PlanIoT improves the end-to-end response time of time-
sensitive applications by more than 50%, and manages to han-
dle diverse applications by assigning priorities and dropping
rates based on their QoS requirements. We also demonstrate
how PlanIoT can be used for Edge infrastructure re-adaptation
by considering an emergency situation.

Our future work includes monitoring the Edge infrastructure
for collecting real performance metrics that can be used by
the AI planner. We shall also investigate machine learning
techniques to predict the performance of the IoT system in un-
expected situations. We intend to extend the approach to take
into consideration multiple IoT platforms that may exist in a
smart community for instance. This presents the challenges of
having to handle different data flows among many distributed
message brokers, especially when we consider applications
that share the same data flows.

REFERENCES

[1] Y. Lin, D. Jiang, R. Yus, G. Bouloukakis, A. Chio, S. Mehrotra, and
N. Venkatasubramanian, “Locater: Cleaning Wifi Connectivity Datasets
for Semantic Localization,” Proc. VLDB Endow., vol. 14, no. 3, pp.
329–341, Nov. 2020.

[2] S. Chaturvedi, S. Tyagi, and Y. Simmhan, “Cost-Effective Sharing of
Streaming Dataflows for IoT Applications,” IEEE Transactions on Cloud
Computing, vol. 9, no. 4, pp. 1391–1407, 2021.

[3] Q. H. Cao, I. Khan, R. Farahbakhsh, G. Madhusudan, G. M. Lee, and
N. Crespi, “A trust model for data sharing in smart cities,” in 2016 IEEE
International Conference on Communications (ICC), 2016, pp. 1–7.

[4] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Jo-
hansen, J. Koh, J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta,
M. Kjærgaard, M. Srivastava, and K. Whitehouse, “Brick: Towards a
Unified Metadata Schema For Buildings,” in ACM BuildSys’16, 2016,
pp. 41–50.

[5] R. Yus, G. Bouloukakis, S. Mehrotra, and N. Venkatasubramanian,
“Abstracting interactions with iot devices towards a semantic vision of
smart spaces,” in 6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation (Buildsys), New
York, USA, 2019.

[6] ——, “The semiotic ecosystem: A semantic bridge between iot devices
and smart spaces,” ACM Transactions on Internet Technology – TOIT,
2022.

[7] R. Liu, Z. Wang, L. Garcia, and M. Srivastava, “RemedioT: Remedial
Actions for Internet-of-Things Conflicts,” in ACM BuildSys’19, 2019,
pp. 101–110.

[8] G. Bouloukakis, K. Benson, L. Scalzotto, P. Bellavista, C. Grant,
V. Issarny, S. Mehrotra, I. Moscholios, and N. Venkatasubramanian, “Pri-
oDeX: a Data Exchange Middleware for Efficient Event Prioritization
in SDN-based IoT systems,” ACM Trans. Internet Things, 2021.

[9] K. Benson, G. Bouloukakis, C. Grant, V. Issarny, S. Mehrotra,
I. Moscholios, and N. Venkatasubramanian, “FireDeX: a Prioritized
IoT Data Exchange Middleware for Emergency Response,” in ACM/I-
FIP/USENIX Middleware’2018, 2018, pp. 279–292.

[10] M. Saghian and R. Ravanmehr, “Publish/Subscribe Middleware for
Resource Discovery in MANET,” in IEEE/ACM CCGrid’2015, 2015,
pp. 1205–1208.

[11] Y. Wang, Y. Zhang, and J. Chen, “Pursuing Differentiated Services in
a SDN-Based IoT-Oriented Pub/Sub System,” in IEEE ICWS’2017, jun
2017, pp. 906–909.

[12] S. Khare, H. Sun, K. Zhang, J. Gascon-Samson, A. Gokhale, X. Kout-
soukos, and H. Abdelaziz, “Scalable edge computing for low latency
data dissemination in topic-based publish/subscribe,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC), 2018, pp. 214–227.

[13] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice. Elsevier, 2004.

[14] 3GPP, Technical Specification Group Services and System Aspects,
“Service requirements for cyber-physical control applications in vertical
domains,” 3GPP TS 22.104 (V17.2.0), Dec. 2019.

[15] ——, “Study on Communication for Automation in Vertical Domains
(CAV),” 3GPP TR 22.804 (V16.2.0), Dec. 2018.

[16] ——, “System architecture for the 5G System (5GS),” 3GPP TS 23.501
(V16.6.0), Oct. 2020.

[17] K. F. Firdaus, S. A. Wibowo, and K. Anwar, “Multiple access technique
for iot networks serving prioritized emergency applications,” in 2019
IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019,
pp. 1–5.

[18] D. Calvaresi, M. Marinoni, A. Sturm, M. Schumacher, and G. Buttazzo,
“The challenge of real-time multi-agent systems for enabling iot and
cps,” in Proc. of the International Conference on Web Intelligence, ser.
WI ’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 356–364.

[19] D. Gross, J. Shortle, J. Thompson, and C. Harris, Fundamentals of
queueing theory. John Wiley & Sons, 4th edition, 2008.

[20] M. Bertoli, G. Casale, and G. Serazzi, “Jmt: performance engineering
tools for system modeling,” ACM SIGMETRICS Performance Evaluation
Review, vol. 36, no. 4, pp. 10–15, 2009.

[21] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in wide
scale publish—subscribe systems,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1591–1616, 2014.

[22] D. Pan and Y. Yang, “Max-min fair bandwidth allocation algorithms for
packet switches,” in 2007 IEEE International Parallel and Distributed
Processing Symposium, 2007, pp. 1–10.

[23] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting.
Cambridge University Press, 2016.

[24] M. Fox and D. Long, “PDDL 2.1: An Extension to PDDL for Ex-
pressing Temporal Planning Domains,” Journal of Artificial Intelligence
Research, vol. 20, pp. 61–124, 2003.

[25] J. Hoffmann, “Extending ff to numerical state variables,” in ECAI, vol. 2.
Citeseer, 2002, pp. 571–575.

[26] M. Bertoli, G. Casale, and G. Serazzi, “An overview of the jmt queueing
network simulator,” Politecnico di Milano-DEI, Tech. Rep. TR, vol. 2007,
2007.

[27] A. Gerevini, A. Saetti, and I. Serina, “Planning with numerical ex-
pressions in lpg,” in Proceedings of the 16th European Conference
on Artificial Intelligence, ser. ECAI’04. NLD: IOS Press, 2004, p.
667–671.

[28] European Telecommunications Standards Institute, “Digital cellular
telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); LTE; Services and service ca-
pabilities,” 3GPP TS 22.105 V15.0.0, Jul. 2018.

[29] R. Kumar, M. Swarnkar, G. Singal, and N. Kumar, “Iot network
traffic classification using machine learning algorithms: An experimental
analysis,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 989–1008,
2022.

[30] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and classify-
ing iot traffic in smart cities and campuses,” in 2017 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2017, pp. 559–564.

[31] C. Hu, W. Bao, D. Wang, Y. Qian, M. Zheng, and S. Wang, “STube+:
An IoT Communication Sharing Architecture for Smart After-Sales
Maintenance in Buildings,” ACM Trans. Sen. Netw., vol. 14, no. 3–4,
Nov. 2018.

[32] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic, “ControlWare: a
middleware architecture for feedback control of software performance,”
in IEEE ICDCS’2002, 2002, pp. 301–310.

[33] F. Martinelli, C. Michailidou, P. Mori, and A. Saracino, “Managing qos
in smart buildings through software defined network and usage control,”
in 2019 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2019, pp. 626–632.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[35] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, and W. Seah, “Modelling
Software-Defined Networking: Switch Design with Finite Buffer and
Priority Queueing,” in IEEE LCN’2017, 2017, pp. 567–570.

[36] G. White, A. Palade, C. Cabrera, and S. Clarke, “Iotpredict: Collabora-
tive qos prediction in iot,” in 2018 IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2018, pp. 1–10.

[37] A. Gerevini and I. Serina, “LPG: A Planner Based on Local Search
for Planning Graphs with Action Costs,” in Proceedings of the 6th
International Conference on Artificial Intelligence Planning Systems,
Apr. 2002, pp. 13–22.

[38] A. Kattepur and B. Purushothaman, “RoboPlanner: A Pragmatic Task
Planning Framework for Autonomous Robots,” Cognitive Computation
and Systems, vol. 2, Feb. 2020.

[39] S. Qi, X. Tang, and D. Chen, “An Automated Web Services Composition
System Based on Service Classification and AI Planning,” in IEEE
CGC’2012, 2012, pp. 537–540.

[40] G. Zou, Y. Chen, Y. Yang, R. Huang, and Y. Xu, “AI planning
and combinatorial optimization for web service composition in cloud
computing,” in Proc. of the Annual International Conference on Cloud
Computing and Virtualization, 2010, p. 28.

[41] U. Bellur, N. Narendra, and S. Mohalik, “AUSOM: Autonomic Service-
Oriented Middleware for IoT-Based Systems,” in IEEE SERVICES’2017,
2017, pp. 102–105.

[42] J. Bidot, C. Goumopoulos, and I. Calemis, “Using ai planning and late
binding for managing service workflows in intelligent environments,” in
IEEE PerCom’2011, 2011, pp. 156–163.

