
HAL Id: hal-04125130
https://hal.science/hal-04125130

Submitted on 11 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Artifact: implementation of an adaptive flow
management framework for IoT spaces

Houssam Hajj Hassan, Georgios Bouloukakis, Ajay Kattepur, Denis Conan,
Djamel Belaïd

To cite this version:
Houssam Hajj Hassan, Georgios Bouloukakis, Ajay Kattepur, Denis Conan, Djamel Belaïd. Artifact:
implementation of an adaptive flow management framework for IoT spaces. 18th Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), May 2023, Melbourne,
Australia. �10.1109/SEAMS59076.2023.00032�. �hal-04125130�

https://hal.science/hal-04125130
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Artifact: Implementation of an Adaptive Flow
Management Framework for IoT Spaces

Houssam Hajj Hassan*, Georgios Bouloukakis*, Ajay Kattepur†, Denis Conan*, Djamel Belaı̈d*

*SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France
{houssam.hajj hassan, georgios.bouloukakis, denis.conan, djamel.belaid}@telecom-sudparis.eu

†Ericsson AI Research, India, ajay.kattepur@ericsson.com

Abstract—This paper presents the implementation and guide-
line of PlanIoT [1], an adaptive flow management framework for
IoT-enhanced spaces. Such spaces are composed of applications
deployed at the Edge with varying QoS requirements in terms
of response time, timely delivery, throughput, etc. Configuring
the Edge infrastructure requires tuning multiple parameters for
optimal QoS satisfaction of applications. This is a complex task
especially when the system has to be re-adapted (e.g., emergency
situations). The PlanIoT framework manages application data
flows in an adaptive manner. This is achieved via the following
core software components: (i) a queueing network composer;
(ii) an automated planning modeler; and (iii) an AI planner. This
artifact presents implementation details of these components as
well as guidelines for using the PlanIoT framework.

Index Terms—Adaptive Systems, Automated Planning, IoT,
QoS, Smart Spaces

I. INTRODUCTION

As the Internet of Things (IoT) and supporting technologies
become more prevalent, spaces such as building and homes
are becoming more intelligent and connected. Smart spaces
usually include IoT devices that sense and produce data,
applications that receive and process flows of data, a data
exchange system that manages data flows between devices
and applications (e.g., a message broker), and the networking
infrastructure. Applications deployed in such spaces often have
different Quality of Service (QoS) requirements that have to
be met. For instance, a video streaming application requires
a higher throughput than an energy monitoring application.
Finding the optimal settings to satisfy the QoS requirements
of all applications requires applying different configurations
of the IoT system and tuning multiple parameters.

This task becomes even more challenging for Intersecting
Applications receiving the same flows of data but having
different QoS requirements; for example, a video surveillance
and an evacuation planning applications require the same
data flows (images), however, their QoS requirements are
different (high throughput vs. timely delivery). In addition,
smart spaces are usually dynamic requiring adaptation due
to different circumstances (e.g. adding/removing applications,
emergency situations). The PlanIoT framework [1] supports
adaptive data flow management at the Edge by making sure
that the QoS requirements of deployed IoT applications are
satisfied. PlanIoT is based on a dataset-driven methodology
that leverages automated planning to generate configuration
plans for adaptive flow management.

This artifact paper presents implementation details of the
PlanIoT framework [1] and provides installation and us-
age guidelines for end-users. The PlanIoT code is provided
at https://gitlab.com/planiot/planiot-seams2023. The paper is
organized as follows. Section II provides background infor-
mation related to the main concepts used as well as the
PlanIoT approach. Section III presents the implementation of
the main PlanIoT components. Section IV provides installa-
tion guidelines for using the PlanIoT framework. Finally, we
conclude the paper with a brief discussion about future works
in Section V.

II. BACKGROUND

This section presents background information on the key
concepts behind PlanIoT: queueing network modeling (§II-A)
and automated planning (§II-B). We then provide an overview
of the PlanIoT approach (§II-C).

A. Queueing Networks

PlanIoT relies on Open Queueing Networks [2], [3] as the
mathematical foundation for modeling the performance of data
flows in IoT systems. Queueing networks can be automatically
created and simulated using open-source queueing simulators,
such as Java Modelling Tools (JMT) [3], [4]. We develop a
generic QoS Model that represents a publish/subscribe-based
IoT system. In this model, queueing stations are used to
represent applications/devices, the message broker, and the
network infrastructure. The parameters of the model (e.g.,
queues’ service rates, routing strategies) enable simulating
different configurations of an IoT system. For example, the
available networking resources between the message broker
and the IoT applications are used to estimate the service rate
of queueing stations that represent the network infrastructure.
Data flow management techniques such as priorities, drop
rates, and resource allocation policies can also be simulated
using this model. A more detailed description of the QoS
Model can be found in [1].

B. Automated Planning

Automated Planning (AI Planning) deals with the process of
determining the best sequence of actions to achieve a specific
goal or set of goals. PlanIoT uses automated planning as a
decision-making tool for finding the optimal configuration of
an IoT system that best satisfies the QoS requirements of

applications. AI planning is also used to enable re-adaptation
in response to runtime changes in the IoT system. To express
planning models, we use the Planning Domain Definition
Language (PDDL) [5], [6], an action centered language that
provides a standard syntax to describe actions by their param-
eters, preconditions, and effects. PDDL divides the definition
of a planning problem into two parts: the domain and the
problem [7]. The domain file contains a description of the ac-
tions that can be taken by the planner; in our case, the actions
represent configurations of the IoT system. The problem file
includes a description of the initial state of the system, as well
as the desired goal state to be achieved (e.g., to satisfy the QoS
requirements of IoT applications). Algorithms and techniques
such as search-based or reasoning-based planning are used
by the planner to find an optimal plan given the domain and
problem descriptions provided. We provide more details about
the planning process in §III-D.

C. The PlanIoT Approach

PlanIoT [1] uses a dataset that contains performance metrics
of data flowing at the Edge of IoT systems under different
parameters settings. To generate this dataset, the PlanIoT
generic QoS Model is instantiated based on the system spec-
ifications provided by the user. For example, for the same
smart space description, multiple models can be generated
with different configuration parameters (e.g., varying network
resources, prioritization techniques). After simulating these
models, the dataset that captures the performance of the IoT
system under different situations is obtained. This dataset is
further used to generate the domain and problem files used
as input by the AI planner. The planner then provides the
best configuration plans of the IoT system given the domain
and problem file descriptions. At runtime, when changes in
the Edge infrastructure occur (e.g., the IoT system becomes
overloaded), the planner can be triggered to adapt the Edge
infrastructure and provide a (potentially) better configuration
plan of the system.

III. IMPLEMENTATION

Fig. 1 depicts the process for generating configuration plans
that enable the adaptive management of IoT data flows at
the Edge. PlanIoT relies on two main components: (i) the
Queueing Network Composer, which instantiates the generic
QoS Model and composes a queueing network to evaluate the
performance of the IoT system, and (ii) the AI Planner, which
uses the generated dataset to find the optimal configuration
of the IoT system that satisfies the QoS requirements of the
deployed applications. We present next the implementation
details of the components shown in Fig. 1. We start by
describing how the IoT system specification file is defined
(§III-A), then show the process to compose and simulate
the queueing model (§III-B). We show how we generate a
performance metrics dataset (§III-C) from the simulations, and
how the dataset can be used to generate the PDDL domain and
problem files required by the AI planner (§III-D) .

A. IoT System Representation

JSON files are leveraged to define the IoT system spec-
ification representing in a structured way the overall Edge
infrastructure of a smart space. The specification includes in-
formation related to the (i) IoT devices: average message sizes,
data frequency (e.g., messages/sec), the topics they publish to,
etc; (ii) IoT applications: applications deployed, their category,
their topic-based subscription filters; and the (iii) Edge broker:
the available network resources and the system capacity. Note
that multiple IoT system specifications can be defined for
representing multiple situations (e.g., emergency cases).

Listing 1 shows how to define IoT devices in the IoT space
specification file. Each device is a JSON object identified by
a deviceId that contains a publishFrequency integer that
represents the frequency at which the device sends messages
(in messages/second), a messageSize integer that represents
the average size of the messages sent by the device (in bytes),
and a list of topics that the device publishes to. Moreover,
we assume that devices can publish messages based on a
probability distribution (e.g. normal, exponential, etc.).

1{
2 "iotDevices": [
3 {
4 "deviceId": "temp_r324",
5 "deviceName": "temperature_sensor",
6 "publishFrequency":5,
7 "messageSize":200,
8 "publishesTo":["temperature_r324"],
9 "distribution":"exponential"

10 },
11...

Listing 1. IoT Devices definition

Similarly, we define applications deployed in the smart
space as shown in Listing 2. Each application belongs to an
application category and is assigned a priority. Note
that a lower integer represents a higher priority. Applications
can subscribe to one or more topics, which are defined as a
list in the subscribesTo field.

1{
2 "applications": [
3 {
4 "applicationId": "app1",
5 "applicationName": "dashboard",
6 "applicationCategory" :"AN",
7 "priority": 0,
8 "subscribesTo": ["temperature_r324", "smoke_r324"]
9 },

10...

Listing 2. Applications definition

Finally, the IoT system specification includes parameters
related to the network infrastructure and to the Edge broker
(Listing 3). These parameters include the available bandwidth
between the broker and the applications (in Mbps), the band-
width allocation policy used (e.g., max-min [8]), the priority
policy followed (prioritizing applications vs prioritizing top-
ics), the drop rates assigned for every application category (in
percent), and the capacity of the message broker (in messages).

Note that standard ways of representing IoT systems can
be used to define the IoT system specification. Our ongoing
work includes modeling IoT-enhanced spaces using the Next

Fig. 1. Plan generation process

Generation Service Interfaces-Linked Data (NGSI-LD) [9]
standard. These data models can be used to provide the IoT
system specification and subsequently fed as input to the
Queueing Network Composer component described next.

1 "systemBandwidth": 70,
2 "bandwidthPolicy": "default",
3 "priorityPolicy": "apps",
4 "dropRateAN": 0,
5 "dropRateRT": 0,
6 "dropRateTS": 0,
7 "dropRateVS": 0,
8 "brokerCapacity": 10000

Listing 3. IoT system parameters

We use a csv file to define application requirements in
terms of end-to-end response time (in seconds), throughput
(in Kbps), and drop rate (in %), as shown in Table I.

category response time throughput drop rate
analytics 10 0 0.1
realtime 0.4 28.8 0.02
transactional 4 0 0
videostreaming 2 202 0.2

TABLE I
APPLICATION REQUIREMENTS AS A CSV FILE

B. Queueing Network Composition

Once the IoT system specification file is defined, the Queue-
ing Network Composer generates the corresponding queueing
network that evaluates the performance of data flowing be-
tween Edge devices and IoT applications via a message broker.
This is implemented by relying on the JMT open-source
queueing simulator [3], [4]. JMT is a suite of applications
that offer a comprehensive framework for system modelling
and evaluation using analytical/simulation techniques. While
JMT JSIMgraph provides a graphical user interface to design
queueing models, we use JMT’s API to compose and run the
simulations.

The Queueing Network Composer parses the JSON file,
and composes the queueing network by using the JMT API.
This composition is done based on the QoS Model generated
from the IoT system specification. The Queueing Network

Composer first instantiates a JMT Common Model. This
model holds all the elements of the queueing network and
saves them in a jsimg file (more details later). Then, the
addStation function is used to add sources, queues, forks
and joins, and sinks. To create QoS Models that represent
different configurations of an IoT system, we can prioritize
some of the subscription flows. This is done by using the
setStationQueueStrategy method that enables defining
priority queues. After adding all the components, connections
between stations are created by calling the setConnection

method. Data flowing from IoT sources to the data recipi-
ents are configured by setting the appropriate routing strate-
gies using the setRoutingStrategy method. Finally, the
setServiceTimeDistribution method is used to set the
service time of the network queue based on network resources
allocation.

The JMT composed model is provided as an XML-based
file (jsimg file) that contains the topology of the queueing
network and the simulation parameters. Once all the elements
are added to the network, we save the model as a jsimg file by
calling JMT’s XMLWriter. We then call JMT’s dispatcher to
solve the simulation model. The dispatcher runs the simulation
and saves the simulation results in another jsimg file.

C. Dataset Generation

As shown in Listing 4, JMT provides the results of the
simulations in XML files. These files are not straightforward
to use, especially for users who are not familiar with JMT.
Hence, we implement a Dataset Generator that is responsible
for extracting the results of the simulations from JMT’s jsimg
files and creating the dataset needed by PlanIoT. We save the
simulation results as a set of csv files. For each simulation,
we extract results related to the response time, throughput,
and drop rate for each subscription. We save these results
in the format shown in Table II. In addition, we create
a response-times.csv file that holds the value of the
response time for each subscription (mapping a data flow)
under different configurations of the Edge broker, as shown
in Table III. This file is then used to generate the domain and
problem files fed as input for the AI planner (see next section).

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <solutions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

logDecimalSeparator="." logDelimiter="," logPath="your_local
3 _path\JMT\" modelDefinitionPath="." modelName="default.jsimg" solutionMethod="

simulation" xsi:noNamespaceSchemaLocation="SIMmodeloutput.xsd">
4 <measure alfa="0.05" analyzedSamples="8194" class="" discardedSamples="65"

logFile="your_local
5 _path/JMT/networkQueue_Utilization.csv" lowerLimit="0.40003963524075425"

maxSamples="1000000" meanValue="0.42805882812360384" measureType="
Utilization" nodeType="station" precision="0.05" station="outputQueue"
successful="true" upperLimit="0.4560780210064534"/>

6 ...

Listing 4. JMT-generated results file

topic app response time throughput drop rate

topic10 app11 0.6927146474811501 0.003779867027741613 0.0

topic10 app9 0.6996978145171252 0.003779867027741613 0.0

topic11 app12 0.7982395522950397 0.1172509965121246 0.0

topic11 app15 0.799657539567181 0.1172509965121246 0.0

topic11 app8 0.7977678454742368 0.1172509965121246 0.0

topic12 app10 0.7950121622847551 0.003110639907232652 0.0

TABLE II
JMT SIMULATION RESULTS AS A CSV FILE

topic app default prioRT prioVS prioRTVSTSAN dropVS1 dropVS2AN2 ...

topic1 app1 0.899 1.224 1.136 0.036 0.886 0.927 ...

topic10 app11 0.692 0.773 0.854 0.0162 0.684 0.661 ...

topic10 app9 0.699 0.756 0.855 0.015 0.671 0.658 ...

topic11 app12 0.798 0.977 1.084 0.024 0.789 0.776 ...

topic12 app9 0.800 0.882 0.980 0.017 0.802 0.798 ...

topic13 app10 0.792 0.890 0.978 0.0197 0.789 0.795 ...

TABLE III
RESPONSE-TIMES.CSV FILE

D. Automated Planning for IoT Flow Management

PlanIoT uses automated planning to provide an optimal
flow-handling configuration at the Edge broker. For this pur-
pose, we employ PDDL [5], [6] to provide plans that consist of
two descriptions: (i) the domain description that decouples the
parameters of actions from specific objects, initial conditions,
and goals, and (ii) the problem description that instantiates
a grounded problem with objects, initial conditions, goals
and cost functions (metrics). To enable the composition of
concrete domain and problem files, we use templates of
domain and problem files that are instantiated using the
response-times.csv file.

Listing 5 shows how we define the actions in the template
domain file. Each action represents a configuration of the IoT
system that can be chosen by the planner. For example, the
action at Line 1 indicates a configuration of the IoT system
where RT (realtime) applications are prioritized. Similarly,
the action at Line 12 represents a configuration where a
drop rate of 1% is applied to VS (video streaming) flows.
The pre-conditions of these actions include the QoS not
being met and the priorities not set. The effects of these
actions accurately map the required QoS to flows. Note
how the effects of the actions include a string of the form
#configuration_effects#.

The PDDL Modeler component is responsible for in-
stantiating the domain and problem files by replacing the

#configuration_effects# strings by the value of the re-
sponse time for each flow, as shown in Listing 6 (e.g., Lines 9–
14). This is done by parsing the response-times.csv file
and filling in the corresponding value of the response time for
each subscription under the different configurations.
1 (:action prioritize_RT
2 :parameters (?t - topic ?app - application)
3 :precondition (and
4 (priority_not_set ?t ?app)
5)
6 :effect (and
7 priority_not_set ?t ?app))
8 (priority_set ?t ?app)
9 #prioRT_effects#

10)
11)
12 (:action droppingVS1
13 :parameters (?t - topic ?app - application)
14 :precondition (and
15 (baseline ?t ?app)
16)
17 :effect (and
18 (not (baseline ?t ?app))
19 (QoS_achieved ?t ?app)
20 #dropVS1_effects#
21)
22)

Listing 5. PDDL domain file template

1 (:action prioritize_RT
2 :parameters (?t - topic ?app - application)
3 :precondition (and
4 (priority_not_set ?t ?app)
5)
6 :effect (and
7 (not (priority_not_set ?t ?app))
8 (priority_set ?t ?app)
9 (increase (latency topic10 app11) 0.77)

10 (increase (latency topic10 app9) 0.76)
11 (increase (latency topic11 app12) 0.98)
12 (increase (latency topic11 app15) 0.98)
13 (increase (latency topic11 app8) 0.36)
14 (increase (latency topic12 app10) 0.87)
15 ...
16)
17 (:action droppingVS1
18 :parameters (?t - topic ?app - application)
19 :precondition (and
20 (baseline ?t ?app)
21)
22 :effect (and
23 (not (baseline ?t ?app))
24 (QoS_achieved ?t ?app)
25 (increase (latency topic10 app11) 0.68)
26 (increase (latency topic10 app9) 0.67)
27 (increase (latency topic11 app12) 0.79)
28 (increase (latency topic11 app15) 0.79)
29 (increase (latency topic11 app8) 0.79)
30 (increase (latency topic12 app10) 0.8)
31 ...
32)

Listing 6. PDDL domain file instance

In the PDDL problem file template (Listing 7), we instanti-
ate objects (topics and applications) and specify the initial state
of our system. Since the problem file template is instantiated
by the PDDL Modeler, the topics and applications deployed
in the IoT system are not known beforehand. The PDDL
Modeler replaces the strings #topics# and #apps# by the
corresponding topics and applications deployed in the smart
space. The initial state of the system includes initializing the
responsetime function to 0, with each action providing
increments to the responsetime function (Line 10). Our

goal is to transmit all data flows while minimizing the total
time for transmission. This is why the optimization metric
(Line 16) focuses on minimizing the weighted end-to-end
response time of flows. Therefore, the AI planner searches for
the actions that introduce minimum end-to-end response time
for all flows. Note that the metric expression can easily be
manipulated to give higher importance (i.e., weights) to some
flows. An example of an instantiated problem file is provided
in Listing 8.

1 (:define (problem problem_name) (:domain domain_name)
2 (:objects
3 #topics# topic_all - Topic
4 #apps# app_all - Application
5)
6 (:init
7 (baseline topic_all app_all)
8 (priority_not_set topic_all app_all)
9

10 #init_predicates#
11)
12 (:goal (and
13 (QoS_achieved topic_all app_all)
14 (priority_set topic_all app_all)
15))
16 (:metric minimize #metric#
17)

Listing 7. PDDL problem file template

1 (define (problem problem_name) (:domain domain_name)
2 (:objects
3 topic1 topic2 topic3 topic4 topic5 topic6 topic7

topic8 topic9 topic10 ... topic_all - Topic
4 app1 app2 app3 app4 app5 ... app_all - Application
5)
6 (:init
7 (baseline topic_all app_all)
8 (priority_not_set topic_all app_all)
9 (= (latency topic10 app11) 0)

10 (= (latency topic10 app9) 0)
11 (= (latency topic11 app12) 0)
12 (= (latency topic11 app15) 0)
13 ...
14 (:goal (and
15 (QoS_achieved topic_all app_all)
16 (priority_set topic_all app_all)
17))
18
19 (:metric minimize (+ (+ (+ (+
20 (* 1 (latency topic2 app7))
21 (* 1 (latency topic2 app1)))
22 (* 1 (latency topic5 app14)))
23 (* 1 (latency topic25 app7)))
24 (* 1 (latency topic8 app6)))
25 ...
26)

Listing 8. PDDL problem file instance

IV. USING PLANIOT

In this section, we provide details about the installation
process and guidelines to run PlanIoT. The PlanIoT code
and the full list of dependencies, as well as guidelines for
how to use it are also provided in https://gitlab.com/planiot/
planiot-seams2023.

A. Setting up PlanIoT

We recommend using a GNU/Linux system with the X11
system and with Docker1 installed. We provide a Docker

1https://docs.docker.com/get-docker/

container using Ubuntu version 20.04 with the Metric-FF2

version 2.0 planner [10] and JMT3 version 1.2.2 installed. Af-
ter cloning the PlanIoT repository at https://gitlab.com/planiot/
planiot-seams2023, we build and run the Docker container
provided. Instructions for building and running the container
can be found in the repository. After running the container,
we start using PlanIoT. The container includes a planiot

directory containing the following folders:
• Code/PlanIoT-SEAMS2023: contains the code for the

Queueing Network Composer and the Dataset Generator
components.

• Scenarios: contains IoT system specifications, datasets,
and domain and problem templates and files used in the
Experimental Results section of [1].

• Scripts: contains scripts needed to run the Queueing
Network Composer, Dataset Generator, PDDL Modeler, and
the AI Planner.
Fig. 2 shows the workflow to generate plans for man-

aging data flows in IoT-enhanced spaces. To demonstrate
how PlanIoT works, we choose to instantiate the process to
generate an optimal configuration plan for the medium-loaded
system described in [1]. This IoT system is composed of 16
applications that fall into the AN (analytics), RT (realtime),
TS (transactional), and VS (video streaming) categories. The
applications receive data from 30 topics published to the
message broker. We use this example to showcase how to
create the performance metrics dataset (§IV-B) and how to
generate plans for IoT flows configuration using the AI planner
(§IV-C). The example follows the flow 1a → 2 → 3 →
4 → 5 → 6a .

B. Generating Performance Metrics Datasets

The files needed to conduct the experiment are lo-
cated in directory Scenarios/medium-load. Step 1a
entails defining the IoT system specification file follow-
ing the format described in §III-A. The sub-directory
system-specifications contains json files that represent
the IoT system under different configurations, such as applying
priorities to certain application categories (e.g., prioRT.json,
prioAN.json), applying some dropping rates for loss-tolerant
applications (e.g., dropVS1), or applying resource allocation
policies (e.g., maxmin.json). To generate the performance
metrics dataset, we need to run simulations for the default con-
figuration, as well as other (possibly) optimized configurations.
To do this, we run the script run_simulation.sh located in
the Scripts directory. The script calls the Queueing Net-
work Composer to compose and launch the JMT simulation
(Step 2), and calls the Dataset Generator to extract the results
of the simulation and add them to the dataset (Step 3).
The script takes as input the IoT space specification (e.g.,
default.json), the response-times.csv file, the dura-
tion of the simulation (in seconds), and an alias that references
the simulation. We recommend running the simulation for 5

2https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
3https://jmt.sourceforge.net/

Define IoT System
Specification

Generate and Simulate
Queueing Network

Generate Performance
Metrics Dataset

Instantiate PDDL Templates

Run AI Planner

2

Define New
Application Categories

1b 1a

3

4

5

6a 6b

domain file
template

problem file
template

metrics.csv

response-times.csv

Optimal QoS
Configuration

Captured in
Dataset?

problem file instancedomain file instance

Yes No

changes in the
system

Fig. 2. PlanIoT workflow.

minutes to reach a 95% confidence interval. We launch the
script from root directory planiot:
$ pwd
/home/planiot/planiot
$ Scripts/run_simulation.sh \
Scenarios/medium-load/system-specifications/default.json \
Scenarios/medium-load/dataset/response-times.csv \
300 default

The metrics related to response time, throughput, and drop
rates are saved in the dataset directory under the name
metrics_alias.csv, where alias is the alias we chose
for the simulation when running the run_simulation.sh

script. To create the dataset found in the dataset directory,
we have run simulations using all the system specification
configurations contained in the system-specifications

folder.

C. Generating Plans for IoT Flows Configuration

Next, we instantiate the PDDL template domain and prob-
lem files by relying on the dataset created (Step 4). We do
this by running the InstantiatePddlTemplates.py script:
$ python Scripts/InstantiatePddlTemplates.py \
Scenarios/medium-load/dataset/response-times.csv \
Scenarios/medium-load/pddl-templates/domain-template.pddl \
Scenarios/medium-load/pddl-templates/problem-template.pddl

The script creates the domain and problem files needed to run
the planner. The generated files are saved in the pddl-files

directory. Note that the script takes an additional argument
when using templates for overloaded systems (-o) and emer-
gency situations (-e). Such templates contain actions for
increased dropping for loss-tolerant applications. We then use
the generated domain and problem files to run the planner
(Step 5). This can be done by running the run_planner.sh
script that calls the Metric-FF planner:

$ Scripts/run_planner.sh \
Scenarios/medium-load/pddl-files/domain-generated.pddl \
Scenarios/medium-load/pddl-files/problem-generated.pddl \
Scenarios/medium-load/plans/solution.pddl

The script takes as arguments the domain file, the problem
file, and the path of the file where the output of the planner
is stored.

In the case of changes in the IoT system, such as an
emergency situation (Step 6a), runtime adaptation can be
performed by regenerating the domain and problem files
by running the InstantiatePddlTemplates.py with the
corresponding option that corresponds to the change (i.e.,
-e). We can then regenerate an adaptation plan using the
run_planner.sh script.

V. CONCLUSION

This artifact paper presents implementation details and
usage guidelines of the PlanIoT framework [1]. PlanIoT can
be used to (re)adapt data flows of Edge infrastructures in IoT-
enhanced spaces by providing optimal plans for satisfying
QoS requirements of deployed applications. PlanIoT uses a
Queueing Network Composer to generate a dataset that cap-
tures the performance of the IoT system. A set of automated
planning components are then responsible for choosing an
optimal configuration plan for the adaptive management of
IoT flows at the Edge server. This artifact paper presents how
PlanIoT can be used to generate plans for enabling adaptive
IoT systems.

REFERENCES

[1] H. Hajj Hassan, G. Bouloukakis, A. Kattepur, D. Conan, and D. Belaı̈d,
“PlanIoT: A Framework for Adaptive Data Flow Management in IoT-
enhanced Spaces,” in IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2023.

[2] J. Shortle, J. Thompson, D. Gross, and C. Harris, Fundamentals of
queueing theory. John Wiley & Sons, 2018, vol. 399.

[3] M. Bertoli, G. Casale, and G. Serazzi, “Jmt: performance engineering
tools for system modeling,” ACM SIGMETRICS Performance Evaluation
Review, vol. 36, no. 4, pp. 10–15, 2009.

[4] ——, “An overview of the jmt queueing network simulator,” Politecnico
di Milano-DEI, Tech. Rep. TR, vol. 2007, 2007.

[5] M. Fox and D. Long, “PDDL 2.1: An Extension to PDDL for Ex-
pressing Temporal Planning Domains,” Journal of Artificial Intelligence
Research, vol. 20, pp. 61–124, 2003.

[6] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice. Elsevier, 2004.

[7] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, “An introduc-
tion to the planning domain definition language,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 13, no. 2, pp. 1–187,
2019.

[8] D. Pan and Y. Yang, “Max-min fair bandwidth allocation algorithms for
packet switches,” in 2007 IEEE International Parallel and Distributed
Processing Symposium, 2007, pp. 1–10.

[9] “Context Information Management (CIM) NGSI-LD API V1.4.2.”
[10] J. Hoffmann, “Extending ff to numerical state variables,” in ECAI, vol. 2.

Citeseer, 2002, pp. 571–575.

