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Introduction

Time-frequency representations such as the spectrogram
or short-time Fourier transform seem to be well suited
to the task of removing certain components with approx-
imately disjoint support in the time-frequency domain.
For example, one might be interested in suppressing a
certain instrument’s contribution from a music signal.
Such approaches are used in Computational Auditory
Scene Analysis by the name of Time-Frequency masks.
However, the trivial approach of just deleting the cor-
responding component in the time-frequency represen-
tation leads to artifacts such as “ghost-tones”, musical
noise and “phasing effects”. We compare different
approaches to tackle this problem: To gain some insight
in the nature of the problem, we consider the optimal
separating mask for known signal components. A soft-
thresholding procedure is applied and compared to a
model promoting sparsity in the representation. The
latter can lead to favorable results by yielding a feasible
approximation of the optimal mask. The results are pre-
sented visually and acoustically during the presentation.

Time-frequency representations

Time-frequency analysis aims at providing simultaneous
information on a signal’s time- and frequency-content. In
order to clarify this idea, time-frequency representations
are often compared to a music-score, which, in fact, very
efficiently conveys the information which frequency, or
rather pitch, should sound at which instant. For the
mathematical understanding, however, this comparison
may be misleading, as, according to Heisenberg’s uncer-
tainty principle, an exact separation of signal components
in the time-frequency domain ia not possible. In particu-
lar, when it comes to removing certain components from
a signal’s time-frequency representation, it is usually not
easy to delete the components’ contribution to the time-
frequency coefficients, for several reasons. First of all, no
window function can be band limited and have a compact
support at the same time. This statement is equivalent
to saying that no ideal low-pass FIR filter can exist.
Secondly, the phase information of the time-frequency
representation seems to be of fundamental importance,
yet is not fully understood, also see [8] in this volume.
We next proceed to define the basic mathematical no-
tions.
Given a discrete sequence of real or complex numbers,
x[n], n ∈ Z, as well as a, usually compactly supported,
window function ϕ[n], n ∈ Z, the short-time Fourier
transform (or STFT) of x[n] is given, for k ∈ Z and

ω ∈ [−0.5, 0.5] by

Vϕx(k, ω) =
∞
∑

n=−∞

x[n]ϕ[n − k]e−2πiωn. (1)

Now, in practice, a subsampled version of (1) will
usually be applied. Also, since the window ϕ has finite
length l, we deal with a finite number of frequency
bins. Hence, the result of the sampled STFT, also
called Gabor transform, [6], is a matrix of size N ×
M , where N is the number of time shifts by a time-
constant, or hop-size, a considered. M is the number of
frequency bins, hence the length of the FFT, given by
l/b, b being the frequency-shift constant. Under certain
conditions, usually fulfilled in practice, Gabor theory
yields a convenient reconstruction method by using either
a dual window in the synthesis step or a tight window for
both analysis and synthesis, see [4] for the corresponding
formulas. Writing ϕ̃ for the dual window, we obtain the
following perfect reconstruction formula:

x[n] =

N
∑

k=1

M
∑

m=1

Vϕx(ka,mb)ϕ̃[n − ka]e
2πinm

M . (2)

In fact, the Gabor transform is commonly used in acous-
tics, but often in a disguised form, called sliding window
transform, which, in fact, equals the classical Gabor
transform up to a phase factor, see [4]. In applications,
the obtained coefficients are usually modified before
reconstruction, yielding an output of the form:

Gx[n] =

N
∑

k=1

M
∑

m=1

m(m, k)Vϕx(ka,mb)ϕ̃[n − ka]e
2πinm

M ,

(3)

where m denotes the mask which is applied to the
coefficients.
From a mathematical point of view, this approach
generates the interesting situation, that we reconstruct
a signal from coefficients which are not the canonical
coefficients of any existing original signal. Figure 1
illustrates this effect. It is easily seen that even in
this fairly simple synthesized example, the separation
of signal (chirp) and noise is not as easy as it might
seem at first sight. The next section shows how optimal
reconstruction is obtained in this situation.

The optimal mask

When trying to design an appropriate mask for signal
separation, we have to keep in mind that phase plays a
central role in the interpretation of (sampled) short-time
Fourier transforms. In particular, if we know the signals
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Figure 1: Gabor coefficients of a synthesized signal (chirp
+ noise). It can be seen that the reconstruction introduces
smearing due to the spread of the window’s FFT

at hand, we may calculate an optimal, though highly
signal dependent mask as follows. Let us assume that we
know (a good estimate of) our noise signal n, the signal
of interest is denoted by x and x̂ = x + n is the observed
signal. Then, if we use, whenever |Vϕx̂(ka,mb)|2 > 0 for
all k,m

mopt(k,m) =
Vϕx(ka,mb) · Vϕx̂(ka,mb)

|Vϕx̂(ka,mb)|2
, (4)

we obtain, by a straight-forward multiplication

Vϕx(ka,mb) = mopt(m, k) · Vϕx̂(ka,mb). (5)

Obviously, this observation is of minor practical interest,
as the signal x may not be observed directly. However,
we may take a look at the behavior of mopt in order to
gain a better understanding of the process of masking in
the time-frequency domain.
We consider the synthesized signal from Figure 1 again,
this time calculating the optimal mask according to
(4) and we look at the inverse effect, see Figure 2.
Cutting out the chirp according to the mask depicted
in Figure 1, the “common” approach to masking out
components, we look at the Gabor coefficient of the
resulting reconstruction, second display. The third
display, then, shows the modulus of the optimal mask
and the Gabor coefficients of the resulting signal, pure
noise, can be seen in the last display. Interestingly,
if the specific realization of the noise changes, the
resulting noise-signal still does not reveal the original
(chirp) signal, as opposed to the result from applying
a “common” masking procedure.1

As stated above, using an “optimal” mask, can
hardly be an approach of practical interest. However,
it seems reasonable to reconsider the classical approach
of changing only the modulus of the Gabor coefficients
without touching the phase. As a starting point, we
suggest extensive studies on the combination and sep-
aration of simple signals in order to achieve a better

1Audio examples will be provided during the presentation.
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Figure 2: Gabor coefficients of a synthesized signal (chirp
+ noise), top left, of a signal obtained from commonly used
masking as in Figure 1, top right, (modulus of) optimal mask,
bottom left, and Gabor coefficients of resulting signal, bottom
right.

understanding of masking of time-frequency components.
It is interesting to note, that the coefficients obtained
by optimal masking according to (4) yield the Gabor
coefficients of some signal.2

Soft thresholding

For denoising, i.e. the separation of noise and signal
components, in the frequency domain, various models
based on a statistical approach have been suggested,
compare [7]. Here, by using an estimate of the power
spectrum Sn(k,m) of the noise for each frequency bin
k and every time-point m, different soft-thresholding
procedures are realized. For simplicity of notation, let
us write, Vϕx̂(k,m) = Vϕx̂(ka,mb). A suppression rule
based on a “pseudo-Wiener” noise reduction is given by:

Vϕx(k,m) = ρ(k,m) · Vϕx̂(k,m), (6)

where

ρ(k,m) =

{

|Vϕx̂(k,m)|2−Sn(k,m)
|Vϕx̂(k,m)|2 , |Vϕx̂(k,m)|2 > Sn(k,m)

0 else

(7)

Variants of the above formula exist, leading, e.g., to
the power subtraction method, if

√

ρ(k,m) is used in
place of ρ(k,m). We display the result of denoising
according to (6) and (7) in Figure 3. In this experi-
ment, we consider a music signal (piano, bass, drums),
synthetically corrupted by Gaussian white noise. We
estimate the average noise level Sn from the Gabor
coefficients of n and ρ(k,m) is then obtained directly
from the Gabor coefficients of the noisy signal. The
first display of Figure 3 shows the Gabor coefficients of

2As mentioned before, this is by no means obvious for a general
mask applied to Gabor coefficients, as the coefficients have to
satisfy a reproducing kernel equation, see [5] for details.



the noisy signal (redundancy is 4), while the coefficients
selected by the thresholding procedure can be seen in
the second display. The last display points out once
more, that the Gabor coefficients of the reconstructed
signal are not equal to the masked coefficients. It
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Figure 3: Denoising by soft thresholding.

is also obvious and well-known, that one of the most
common problems related to thresholding methods is the
regular occurrence of artifacts, most notably, of musical
noise, which arises from the randomness inherent in the
estimation of the signal power spectrum used. Several
advanced suppression rules have been suggested to tackle
this problem, see [10, 7] and references therein.

Sparse representations

We next suggest a novel approach to the separation
of various signal components in the time-frequency do-
main. Partly, the problems arise from the fact that
coefficients belonging to a particular, possibly isolated
or well-concentrated signal component is smeared as a
consequence of the analysis window’s properties. in this
way, components which are expected to be separated in
time-frequency may have essentially over-lapping Gabor
coefficients.
On the other hand, if we are convinced, that the
signal components of interest have a sparse, at least
approximative, representation in the atomic systems we
use, then we may avoid the problem by looking for
relevant coefficients only. A sparse approximation has
a small number of nonzero elements, while still giving a
satisfying representation and reconstruction of a signal or
a certain signal component. One way to enforce sparsity
is to choose an expansion of x such that as many co-
efficients as possible are zero. Mathematically, however,

minimization of an ℓ1-constraint on the coefficients yields
explicit solutions and fast algorithms as well as similar
solutions.3 In the present situation, we are going to
minimize the following expression:

∆(x) = ‖
∑

k,m

ck,mϕ̃km − x̂‖2
2 + µ‖c‖ℓ1 (8)

where ϕ̃km = ϕ̃[n − ka]e
2πinm

M and ‖c‖ℓ1 =
∑

k,m |ck,m|

is the ℓ1-norm of the coefficient sequence. The solution
can be found by an iterative algorithm called Landweber
iterations [2]. We next present the results of two exper-
iments. First, we consider a synthetic signal comprised
of two sinusoids with frequencies 1300Hz and 1400Hz,
given a sampling rate of 8192. We use a Gaussian
window of 400 samples length and calculate the Gabor
coefficients, shown in the first display of Figure 4. The
second display, then, shows the coefficients resulting from
ℓ1-penalization on the expansion coefficients according
to (8). It is immediately obvious, that the algorithm
visually separates the two signal components. Note that
reconstruction from these coefficients is possible, but not
perfect, as may be seen in Figure 5. In fact, we face a
trade-off between accuracy of reconstruction and sparsity
of representation, which is reflected in the choice of µ
in (8). However, the sparse representation allows the
separation of signal components by designing a mask that
suppresses undesired signal components more easily than
the usual, more redundant representation.
For comparison, we also apply the Landweber iteration
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Figure 4: Gabor coefficients and sparse representation of
two close sinusoids

algorithm to the audio signal considered in the previous
section. The results are displayed in Figure 6. Quite
obviously, we encounter problems similar to those re-
sulting from soft-thresholding. However, in the present
approach, we have not made any a priori assumptions
about the signal, in particular, about the statistical
properties of the noise. We point out, that sparsity
approaches bear the potential of more sophisticated

3Note, that it has been proved that certain situations ℓ1-
minimization in fact yields the optimally sparse solution, see [1].
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Figure 5: Original signal (dotted) and reconstruction from
sparse coefficients

penalization terms leading to results better adapted to
the signals at hand, compare [9]. Also note that the
resulting coefficients heavily depend on the choice of µ,
which is usually a difficult task.
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Figure 6: Denoising by sparsity approach.

Summary and Outlook

We summarized and compared various approaches to the
problem of separating possibly over-lapping components
in the time-frequency domain. While (soft) thresholding
is a commonly used approach to tackle this task, we
also mentioned signal separation by means of a sparsity
approach. We believe, that the latter bears the potential
to perform better than thresholding procedures in certain
situations. Note that so far we have not performed
any (pre-)denoising on the signal. Also, in order to

achieve favorable performance, the procedure has to be
further refined. An additional problem connected to
sparsity methods is the slow convergence of the iterative
algorithms involved. Alleviations have been suggested,
see, e.g. [3]. We also suggested to look at the optimal
mask for separation of signal components, in order to gain
insight in the nature of masking procedures in the time-
frequency domain. We pointed out that, in contrast to
common practice, approaches involving complex-valued
masks may be well worth considering.
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