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Abstract. The production of useful and high-quality nuclear data requires measurements with high precision
and extensive information on uncertainties and possible correlations. Analytical treatment of uncertainty prop-
agation can become very tedious when dealing with a high number of parameters. Even worse, the production
of a covariance matrix, usually needed in the evaluation process, will require lenghty and error-prone formulas.
To work around these issues, we propose using random sampling techniques in the data analysis to obtain final
values, uncertainties and covariances and for analyzing the sensitivity of the results to key parameters. We
demonstrate this by one full analysis, one partial analysis and an analysis of the sensitivity to branching ratios
in the case of (n,n’γ) cross section measurements.

1 Context

We present this paper in the context of the improvement of
the evaluated nuclear data for application. This is done in
order to perform better numerical simulations to optimize
and predict performances, reactor control parameters and
radiation safety related quantities. These databases still
present large uncertainties, preventing calculations from
reaching the required precision. Their improvement re-
quires new measurements and better theoretical descrip-
tions of involved reactions. Our primary work is focused
on the measurement of (n, xnγ) cross-section [1–3] How-
ever, the general idea presented in this paper can be applied
in many other contexts.

2 Motivation

When performing data analysis of experiments, many ex-
ternal parameters (detector efficiencies, distance of flight,
...) are involved, in order to process the raw data. Further-
more, all the steps of the data treatment (event selection,
calibration, ...) may introduce uncertainties and correla-
tions.

The usual method for combining and computing un-
certainties is to use analytical developments based on the
perturbation theory (e.g. u2

f (x) =
(
∂ f
∂x

)2
× ux

2). This method
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works well for simple cases, but with multiple parameters
and sources of uncertainty, deriving the final total com-
bined uncertainty can be long and complex. Furthermore,
it strictly applies only to small deviations from the central
values, which is not always the case. Implementing the
formula into the analysis code becomes a tedious process
where mistakes can appear, and the final uncertainty value
will be wrong.

Finally, this method makes it difficult to calculate co-
variances, and the inclusion of some unusual form of un-
certainty (asymmetric, non-Gaussian) is not directly pos-
sible.

3 The Monte Carlo method

To workaround all the issues presented above, we offer
one possible solution: using random sampling (i.e. Monte
Carlo) methods to obtain final values with their uncertain-
ties and covariances.

The general principle is the following : Each parame-
ter is randomly sampled according to its probability den-
sity function, all the parameters are used to compute one
realization of the value of interest. This is done many
times, as each computed value is stored in a stack. When
all the iterations have been performed, the average value,
standard deviation and (when applicable) covariance ma-
trix are calculated from the stacked values. We note that
this method allows us to turn off and on specific sources of
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uncertainty, by including or not the related parameters in
the calculations. This makes the study of sensitivity easy,
and a good way to check consistency.

The treatment of all sources of uncertainty is the same,
without differentiation between the ones that come from
systematic or statistical sources, as long as their probabil-
ity distribution is well-defined. In fact, in this treatment,
one should prefer the Type A vs. Type B split (rather than
statistical, systematic) recommended by the Guide to the
expression of uncertainty in measurement [4]. Particu-
lar attention should be given to choosing the probability
density functions of the parameters variables. This being
done, the reprocessing of data at each iteration with new
parameter realizations will ensure that uncertainty from
the analyzed data will be taken into account. The abil-
ity to examine the final distribution of results (and not just
the central value and standard deviation)is a great bene-
fit to check the consistency of all results given the chosen
inputs.

Special attention needs to be applied to the conver-
gence of the series. In order to produce accurate and stable
final values, enough iterations are needed. The tricky part
being that it is not evident a priori how many iterations is
enough. One has to check the convergence of the result by
inspection.

Thankfully, with modern computing infrastructures,
large storage spaces and many computing units are easily
available. This allows, within a reasonable time and use of
computing resources, to perform a very large number of
iterations.

4 Full Monte Carlo Analysis

The first example of applying such a technique we are pre-
senting is the full Monte Carlo analysis. In this exam-
ple, for each iteration, we will start the whole analysis
pipeline (event selection, data projection, histogram fit-
ting, ...) from scratch, with all external parameters (de-
tector efficiency, target mass, ...) randomly sampled. The
analysis is then conducted (automatically) to the end and
produces one set of values (in our example, (n, n’γ) cross-
sections for several neutron energies) which is added to
the stack. As the spectra are re-extracted and fitted at each
iteration, the procedure uncertainty, as well as uncertain-
ties coming from the data analysis, are automatically taken
into account.

When the sufficient number of iterations for conver-
gence has been achieved (in our case, 30 is enough to reach
the limit uncertainty), we use the numpy package [5] for
Python [6] to compute, from all the values, the central val-
ues, standard deviations and covariance matrices.

Figure 1 shows an example : it is the
184W(n, n’γ111 keV ) cross-section obtained with a full
Monte Carlo analysis [7]. Each gray line in the plot
represents the result of one iteration, the black points, line
and error bars are the final values.

Figure 1. 184W(n, n’γ111 keV ) cross-section obtained with full
Monte Carlo analysis. Each gray line in the plot represents the
result of one iteration, the black points, line and error bars are the
final values.

5 Random sampling applied on
intermediate results

In the cases of data that have already been analyzed (using
a deterministic method), one can pick up the intermediate
result files and, by applying random sampling methods,
replay the last steps of the analysis many times. This is
a great way to access covariance when the initial analy-
sis did not. A similar method has been applied before in
reference [8].

We applied this to 238U(n, n’γ) data [9] and the Monte-
Carlo method reproduces the central value from the ana-
lytical method with a very good agreement– figure 2. The
obtained uncertainties are slightly different (but still well
compatible with each other). In particular, the uncertain-
ties obtained with the Monte Carlo method present more
structure than those with the analytical method. This type
of structure, which is related to the input data, is not ac-
counted for by the analytical method.

6 Monte Carlo method for sensitivity
analysis

In addition to analyzing data using the random sampling
method, the Monte Carlo method can be used to study the
sensitivity to parameters. By varying a parameter through
random sampling, the variation in the final results provides
a sensitivity coefficient from the mean values and standard
deviations of the parameter and final result.

We used this method to study the sensitivity of cal-
culated (n, n’γ) cross-sections to transitions branching ra-
tios. For this purpose, we performed, for each transition in
the level scheme, one hundred calculations using TALYS-
1.8 [10], where the intensity of the transition is varied
around its reference value [11].

After all calculations are finished, the results are
loaded into a Python [6] numpy array [5] and the module is
used to calculate the relative standard deviation expected
on a calculated cross-section per relative standard devia-
tion (i.e. uncertainty) on a specific γ transition branching
ratio in the level scheme.

The resulting sensitivity matrix shows that some tran-
sitions have a sensitivity of as high as 40 % to other tran-
sitions’ branching ratios, as seen in figure 3. See another
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Figure 2. Cross-section for the 238U(n, n’γ653 keV) reaction [9]
obtained with the analytical method (yellow) and the Monte-
Carlo processing of intermediate data (black).

contribution in this conference for more details on the in-
terpretation of the matrix [13].

7 Conclusion

We gave three examples of how random sampling can be
used for data analysis or to study the sensitivity of calcu-
lations to parameters. It is a convenient solution to pro-
duce accurate uncertainty and covariance matrix without
lengthy and error-prone uncertainty propagation. It is also
a good tool to test, using calculations, the sensitivity of
a value to external parameters. We believe it’s a power-
ful technique that can be adapted in many situations and
provide useful results.
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