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Abstract

This paper presents an information-theoretical
model of syntactic generalization. We study
syntactic generalization from the perspective of
the capacity to disentangle semantic and struc-
tural information, emulating the human capac-
ity to assign a grammaticality judgment to se-
mantically nonsensical sentences. In order to
isolate the structure, we propose to represent
the probability distribution behind a corpus as
the product of the probability of a semantic con-
text and the probability of a structure, the latter
being independent of the former. We further
elaborate the notion of abstraction as a relax-
ation of the property of independence. It is
based on the measure of structural and contex-
tual information for a given representation. We
test abstraction as an optimization objective on
the task of inducing syntactic categories from
natural language data and show that it signif-
icantly outperforms alternative methods. Fur-
thermore, we find that when syntax-unaware
optimization objectives succeed in the task,
their success is mainly due to an implicit dis-
entanglement process rather than to the model
structure. On the other hand, syntactic cate-
gories can be deduced in a principled way from
the independence between structure and con-
text.

1 Introduction

In the context of both human learning and statistical
machine learning, what distinguishes generaliza-
tion from memorization is the process of deliber-
ately ignoring a part of the input information. In
machine learning, the generalization will be guided
towards some specific direction by the learning hy-
pothesis: the model structure and the choice of reg-
ularization impacts the nature of the information
loss. We can talk about syntactic generalization
from textual data when the information pertaining
to sentence structure tend to be preserved by the
model and the information pertaining to other as-
pects of the text tend to be ignored.

Syntactic generalization is of great interest be-
cause the human capacity to assign an abstract
structure to utterances is a prerequisite to creatively
combine constituents and understand novel sen-
tences (Frege, 1892). Knowledge of syntax can
boost the robustness of NLP applications with re-
spect to unseen data, in particular when there is a
distribution shift (He et al., 2020; Wu et al., 2019).
In a broader perspective, understanding syntactic
generalization informs the discussion on the learn-
ability of syntax from unlabelled text without any
built-in grammatical knowledge or inductive bias
(Gold, 1967; Clark and Lappin, 2010; Bailly and
Gábor, 2020). Finally, studying syntactic gener-
alization in large language models (LLMs) sheds
light on whether and to what extent these models
emulate human functioning with respect to linguis-
tic competence.

The prevailing formalization of syntax is by
means of algebraic compositional rules operating
on a finite set of discrete categories (parts of
speech). Language models can acquire syntactic
knowledge when they are given specific super-
vision or bias (Dyer et al., 2016; Shen et al.,
2020; Sartran et al., 2022). Whether unsupervised
settings can lead to syntactic generalization and
under which conditions is still unknown. Current
LLMs use distributed representations that cannot
be unequivocally mapped to a set of categories,
let alone syntactically meaningful categories. The
question whether their representations encode
syntactic information and how to uncover it is
actively investigated today (Hu et al., 2020; Marvin
and Linzen, 2018). The majority of works in
the topic of syntactic generalization in language
models adopt an empirical approach, such as
probing or analysis of a model with a comparison
to actual or expected human performance on
linguistically motivated tasks. In contrast, we
present a theoretical approach to formalize syn-
tactic generalization in an information theoretical



framework.

Statistical learning can be formulated as the min-
imization of KL-divergence - a measure of infor-
mation loss - subject to constraints. The constraints
on model expressivity ensure that generalization
takes place by eliminating the information result-
ing from sampling noise. We claim that the train-
ing objective of maximum likelihood estimation
by nature does not incentivize models to syntactic
generalization. In the case of syntactic generaliza-
tion, the information loss needs to be directed to
non-structural information, which is only remotely
related to the elimination of sampling noise.
First, a corpus is not randomly sampled from the
set of grammatical sentences. Word co-occurrences
in a corpus are indeed influenced by different fac-
tors such as semantics and pragmatics. The pro-
cess of abstracting away from these factors is ar-
guably different from the concept of generalization
in machine learning, as the acquisition of syntactic
knowledge always involves a shift of distribution
(Hupkes et al., 2022). Second, the target of gen-
eralization is the capacity to recognize the set of
grammatical sentences: well-formedness is inher-
ently a binary notion rather than a probabilistic one.
These considerations motivate our proposition to
decompose a corpus distribution as a factor of se-
mantic/pragmatic context and a factor of structure
representing well-formedness. In what follows,
we reinterpret syntactic generalization based on
the separation of structural and semantic informa-
tion, and we show that our approach outperforms
concurrent methods on unsupervised POS induc-
tion. We also define the notion of abstraction, an
optimization objective specifically conceived for
disentangling semantic information and syntactic
well-formedness.

1.1 Related work
Generative linguists agree on the nativist argument
that learners cannot converge on the same syntax
unless some of their linguistic knowledge is innate
(Baker, 1979; Chomsky, 1965, 1975), which makes
the complete unsupervised learning of syntax im-
possible. Therefore, theoretical linguistics demon-
strated little interest in machine learning and the
interaction between the two fields is limited (Lap-
pin and Shieber, 2007; Linzen and Baroni, 2021).1

1The nativist claim has however been subjected to criticism
from other fields of research (Hsu and Chater (2010); Yang
and Piantadosi (2022).

With the recent advent of large language models
(Devlin et al., 2019; Peters et al., 2018; Radford
et al., 2019) it has become relevant to test their lin-
guistic competence (Linzen et al., 2016; Belinkov
and Glass, 2019; Baroni, 2019). Researchers in
NLP thus turned to linguistic theory to create prob-
ing tasks (Alain and Bengio, 2017; Giulianelli et al.,
2018) or test sets targeted at specific linguistic
knowledge (Linzen et al., 2016). Linguistic chal-
lenges like long-distance agreement (Linzen et al.,
2016), hierarchical syntax (Lin et al., 2019; Dyer
et al., 2016; Conneau et al., 2018; Hupkes et al.,
2018), parts of speech (Saphra and Lopez, 2018;
Kim and Smolensky, 2021), or morphology (Be-
linkov et al., 2017; Peters et al., 2018) have been
applied to probe the latest language models with
contrasting results. Recently, probing classifiers
have also been subjected to methodological criti-
cism. Models can succeed on some test tasks by
learning shallow heuristics (McCoy et al., 2019;
Poliak et al., 2018). It was also argued that the
presence of sufficient information to learn a given
task does not entail alone that models rely on it
Ravichander et al. (2021); Hewitt and Liang (2019);
Xu et al. (2020).
On rarer occasions, studies aimed to test the ca-
pacity of language models to predict grammatical-
ity judgments. Out of distribution testing system-
atically shows that the performance drops when
the test data contains natural or artificial exam-
ples which are deliberately different from the train-
ing examples (Lake and Baroni, 2017; Marvin and
Linzen, 2018; Chowdhury and Zamparelli, 2018;
van Schijndel et al., 2019; Maudslay and Cotterell,
2021).

Another branch of model analysis and interpre-
tation studies are concerned with the nature of the
generalization that takes place, with a particular
accent on the notion of compositionality (Loula
et al., 2018; Baroni, 2019; Valvoda et al., 2022).
Among others, Fodor and Lepore (2002) and Kottur
et al. (2017) claim that syntactic compositionality
(Chomsky, 1957, 1965) is a prerequisite to learn
to generalize to complex unseen input. In empir-
ical studies, Gulordava et al. (2018) and Lakretz
et al. (2019) report a lack of compositionality in
the models they analyse, despite their impressive
performance. In contrast, Bastings et al. (2018)
and Valvoda et al. (2022) find that some composi-
tional relations can be learned by neural sequence-
to-sequence models. Chaabouni et al. (2020) argue



that there is no correlation between the composi-
tionality of an emergent language and its ability to
generalize.

The problem of conflation between semantic and
syntactic information in language models has been
identified (Maudslay and Cotterell, 2021) as a fac-
tor hindering syntactic generalization. A new line
of research is concerned with disentangling syn-
tactic and semantic information in representations
(Felhi et al., 2020; Huang et al., 2021) by adver-
sarial training or syntactic supervision. In order
to incite syntactic generalization in models, Shen
et al. (2020) and (Dyer et al., 2016) propose to in-
tegrate explicit syntactic information for language
modelling. Hu et al. (2020) show that there is a
trade-off between the general language modelling
objective and syntax-specific performance.

Some recent work relies on information theory to
improve our understanding of the syntactic knowl-
edge in LMs. Pimentel et al. (2020) reformulates
probing as approximating mutual information be-
tween a linguistic property and a contextual rep-
resentation. Subsequently, Pimentel and Cotterell
(2021) introduced Bayesian Mutual Information,
a definition that allows information gain through
processing. Voita and Titov (2020) use Minimum
Description Length to measure regularity in LM
representations with respect to the labels to be pre-
dicted in a linguistic probe. Our work builds on
the propositions formulated in Bailly and Gábor
(2020) who address the problem of the learnability
of grammar by separating syntactic and semantic
information in a corpus.

2 Syntactic Representation

2.1 Autonomy of Syntax

The concept of generalization we introduce is based
on the autonomy of syntax (Chomsky, 1957, 1982;
Adger, 2018) reinterpreted in terms of statistical
independence. In the process of linguistic gen-
eralization, learners need to abstract away from
semantic, pragmatic and idiosyncratic lexical in-
formation in the input they are exposed to. With a
string prediction task and likelihood maximization
as a training objective, models have no incentive to
abstract away from these features. One can expect
a statistical learner to ignore sampling noise, but
the above features are relevant to learn the distri-
bution behind a corpus. This insight motivates our
proposition of statistical abstraction, a training ob-
jective that focuses on certain aspects of the input

while deliberately ignoring others.
We want our learner to concentrate on the struc-

ture and ignore the factors we call context, i.e. all
the aspects that are unrelated to well-formedness.
We do so by creating two representations of the
input: one of them structured, the other having
structural information removed but co-occurrence
relations conserved.

Let us consider a small artificial example for
illustration. Our observation is a corpus with the
two sentences below:

cats eat mice
men build houses

A valid syntactic generalization would recognize
the sentence

cats build mice

as grammatical. In order to do so, we consider

p(cats eat mice)

as a factor of the probability of the co-occurrence
of its words in the same context :

p({cats, eat, mice})
and a factor of the probability of the words to ap-
pear in a given structure :

p(cats eat mice|{cats, eat, mice})
A syntactic representation with a desirable degree
of generalization would identify the distributional
classes {cats, men}, {build, eat}, {mice, houses}.

This set of distributional classes can be seen
as a function f that associates a word (e.g cats)
with its class ({cats, men}). Our goal is to study
the properties of such a function so that it can be
considered as achieving syntactic generalization,
for instance:

p(cats eat mice|{cats, eat, mice})
can be deduced from

p(f(cats) f(eat) f(mice)|{f(cats), f(eat), f(mice)})

2.2 Properties of a Syntactic Partition
We define the probability distribution that predicts
the grammaticality of sequences, learned from ob-
servation. In order to do so, we first define a par-
tition of words into abstract categories. This map-
ping, together with the category sequences found
in the corpus, will allow us to induce the grammar.

Behind the corpus data there is a probability dis-
tribution p(w1w2 . . . wn). This distribution can be
written as a product of two factors. First, the un-
structured data, i.e. the probability of the elements



of the vocabulary to occur in the same sequence
without considering their order. Second, the proba-
bility of these elements to be observed in a particu-
lar structure. The contextual information is related
to the former, and the structural information to the
latter.

Let us see a probabilistic interpretation. Let
A be the vocabulary, one defines the set A+ =
A∗\ε where ε is the empty sequence. w =
w1 . . . wn ∈ An a sequence (of words) of length n
and p({w1, . . . , wn}) the probability of observing
these elements in the same sequence, in any order.
A trivial decomposition of p(w1w2w3) would be

p({w1, w2, w3})p(w1w2w3|{w1, w2, w3})
However, we want structural information to be inde-
pendent of the context. The decomposition above
does not suppose the autonomy of structure. We
propose to transform the above distribution with
a mapping f , which will induce a partition over
the elements of the vocabulary. In what follows,
we examine which properties of this mapping will
ensure that the categories of the resulting parti-
tion do not contain contextual information, while
still preserving the information necessary to predict
grammaticality.

w = w1 . . . wn ∈ An

|w| = length of w

f(w) = f(w1) . . . f(wn)

f [w] = {w′ ∈ A+ | f(w′) = f(w)}

for σ ∈ Sn, σ(w) = wσ(1) . . . wσ(n)

⟨⟨W ⟩⟩ = ∪σ∈Sn,w∈W {σ(w)}

µ(w) = card({σ ∈ Sn | w = σ(w)})

Table 1: Notations

Let A be the vocabulary, one defines the set
A+ = A∗\ε where ε is the empty sequence.

Let f(w) denote the sequence of categories re-
sulting from the mapping of a word sequence, and
f [w] the set of sequences that map to f(w). W
denotes a set of sequences w. In the case of a
singleton we will denote ⟨⟨w⟩⟩ = ⟨⟨{w}⟩⟩. The con-
textual information will be modeled through the
probability p(⟨⟨w⟩⟩), where one can see the object
⟨⟨w⟩⟩ as a bag of words, from which the information
of the structure (order) has been erased.
A syntactically relevant representation needs to

meet two criteria: it has to allow to recover the
structure, i.e. the ordering of the bag of words,
and it needs to be independent of contextual in-
formation. The first criterion is defined below as
factorization, the second as minimality.

Factorization. One will say that a mapping f
factorises a distribution p if the order of a bag-
of-words {wi} drawn from p can be entirely de-
duced from the knowledge of the corresponding
categories.
Definition 1. Let p be a distribution over A+, and
f : A 7→ B be a mapping. The distribution p is
factorised by f if there exists a mapping λf (⟨⟨w⟩⟩)
such that ∀w ∈ A+

p(w | ⟨⟨w⟩⟩) = λf (⟨⟨w⟩⟩) p(f [w] | ⟨⟨f [w]⟩⟩)

in that case, one has λf (⟨⟨w⟩⟩) = µ(w)
µ(f(w)) .

In the case where f factorises p, one will say that
context and structure are independent conditionally
to f .

Independence. As the property of factorization
does not guarantee the complete independence of
structure and context (for instance the identity al-
ways factorises p), we need to limit the information
carried by f to its minimal value in order to reach
this independence. From f [w] one can deduce, at
the minimum, the length of w. The purpose of min-
imality is to ensure that knowing f [w] provides no
further information for finding w:
Definition 2. Let p be a distribution over A+ and
let f : A 7→ B be a mapping. We will say that f is
(information)-minimal for p if

∀w ∈ A+, p(w | f [w]) = p(w | A|w|)

We will say that context and structure are
independent in p if there exists an information-
minimal factorization of p.

2.3 Induced grammar
From a probability distribution p and a mapping
f , it is possible to induce a syntax based on the
observed patterns: a sequence is structurally correct
if its pattern corresponds to an observed pattern.
Definition 3. Let p be a distribution over A+ and
let f : A 7→ B be a mapping. One denotes the
syntax induced by p and f by

w ∈ G(p, f) ⇔ p(f [w]) > 0

One has for instance G(p, id) = supp(p): this
representation is a memorization with no general-
ization.



Minimal syntax. A syntax induced by minimal
factorization of p will be called minimal syntax.
The set of all minimal syntaxes will be denoted
G∗(p).

It can be shown that the intersection of all mini-
mal syntaxes of p is a minimal syntax of p:

G∗(p) = ∩f∈G∗(p)G(p, f) ∈ G∗(p)

Hence, if the independence between context and
structure holds, there exists a canonical way to
define the set of well-structured sequences which
is different from the support of p.

Example 1. Let us consider the first example
above: let p be the distribution defined by

p(cats eat mice) = 1
2

p(men build houses) = 1
2

then the mapping f defined by

f(cats) = f(men) = b0
f(eat) = f(build) = b1

f(mice) = f(houses) = b2

is a minimal factorization of p. The minimal syntax
G∗(p) is the set

cats eat mice cats eat houses
cats build mice cats build houses
men eat mice men eat houses

men build mice men build houses

3 Geometry of Information

Using information theoretical tools, we transform
the criteria above into metrics and define an infor-
mation space which allows to track the amount of
contextual and structural information in a partition,
as well as the direction of generalization during a
training process.

The concept of minimal factorization provides
the formal definition of minimal syntax; however,
the conditions of factorization (Definition 1) and
minimality (Definition 2) are restrictive. In natu-
ral language corpora, a perfect independence be-
tween semantic context and grammaticality cannot
be expected. Syntax and semantics do interface in
natural language, semantic acceptability interacts
with grammaticality and depending on how one
deals with this interface, either the assumption of
perfect independence or the precise retrieval of the
distribution underlying the corpus may not be met.
This motivates our methodology for relaxing both
conditions in a way that gives an equivalent but

quantifiable formulation for each criterion in terms
of information. We thus provide a method to mea-
sure the amount of structural information present
in a partition, hence relaxing the factorization crite-
rion. We also define contextual information, which
relaxes the minimality requirement.

3.1 Structural information

Let

H(p ∥ q) = −
∑

w∈A+

p(w) log(q(w))

be the cross entropy of the distribution q with re-
spect to the distribution p.

For a distribution p over A+, we will consider
the distance (in terms of cross-entropy) between p
and the class of factorised distributions.

Definition 4. Let p be a distribution over A+ and
let f be a mapping. One denotes:

Ff = {q | q is factorised by f}
and one defines the projection of p conditionally to
f by

p|f = arg min
q∈Ff

H(p ∥ q)

The structural information of f with respect to p
is given by

is(p ∥ f) = H(p ∥ p|z)−H(p ∥ p|f )

where z is the null mapping.

The set Ff represents the set of distributions for
which the knowledge of f is sufficient to recover
the order of a sequence. The structural information
is minimal for z, and maximal for the identity (see
Appendix):

is(p ∥ z) = 0 ≤ is(p ∥ f) ≤ is(p ∥ id)

The link between structural information and fac-
torization is given by:

Lemma 1. Let p be a distribution over A+ and let
f : A 7→ B be a mapping. One has

is(p ∥ f) is maximal ⇔ f factorises p

3.2 Contextual information

An optimal syntactic representation is one that ful-
fills the independence requirement: the probability
of a sequence of categories does not provide in-
formation about which actual words are likely to



appear in the sentence. The contextual informa-
tion will measure the amount of lexical or semantic
information that is present in a representation.

Let
H(p) = H(p ∥ p)

be the Shannon entropy. Let p be a distribution
over A+ and let f : A 7→ B be a mapping. One
will denote p ◦ f−1 the distribution on B+ induced
by f . One has p ◦ f−1(f(w)) = p(f [w]).
Definition 5. The contextual information of f with
respect to p is given by

ic(p ∥ f) = H(p ◦ f−1)−H(p ◦ z−1)

where z is the null mapping.
From standard properties of Shannon entropy,

ic(p ∥ f) is minimal for z, and maximal for the
identity (see Appendix):

ic(p ∥ z) = 0 ≤ ic(p ∥ f) ≤ ic(p ∥ id)

The maximum value of ic(p ∥ f) is reached for
H(p ◦ f−1) = H(p).

The link between contextual information and
information-minimality is given by:
Lemma 2.

ic(p ∥ f) = 0 ⇔ f is minimal for p

3.3 Representation of a mapping in the
information space

Let us now consider how to represent geomtrically
the two types of information in a partition. For a
given distribution p, any mapping f will be repre-
sented in R2 by its coordinates

xf = is(p ∥ f), yf = ic(p ∥ f)

Example 2. Let us consider the same distribu-
tion as in Example 1. Fig. 1 represents all pos-
sible mappings g by the point with coordinates
(is(p ∥ g), ic(p ∥ g)).

Details are in the Appendix. One can check
that the minimal factorization is in (1, 0), and the
second closest mapping to a minimal factorization
is {cats,mice,men, houses}{eat, build}.

4 Abstraction

Abstraction relaxes the definition of a minimal fac-
torization of p in terms of a solution to an optimiza-
tion problem. For a given probability distribution
p and a mapping f , the abstraction measures the
distance between f and the position of a minimal
factorization of p in the information space:
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Figure 1: Information space: normalised representation
of partitions for the distribution p in Example 1.

Definition 6. Let p be a distribution over A+ and
let f : A 7→ B be a mapping. Let d be a distance
on R2. Let tf = (is(p ∥ f), ic(p ∥ f)) and t∗ =
(is(p ∥ id), 0)). The abstraction (w.r.t. d) is defined
as

αd(p ∥ f) = e−d(tf ,t
∗)

One has αd(p ∥ f) ≤ 1, with the maximum
value reached iff f is a minimal factorization of p.
For a mapping f , maximizing abstraction can be
considered as a relaxation of the property of being
a minimal factorization.

4.1 Minimal Syntax Identification
We prove here that abstraction can be used to iden-
tify the set of minimal syntaxes of p from a sample.

Consistency of the plug-in estimator of abstrac-
tion. In the case where the set of of possible se-
quences is infinite, it is not possible to ensure a
convergence rate of the abstraction (cf.(Antos and
Kontoyiannis, 2001)). Nevertheless, it is possible
to show the following consistency result:

Proposition 1. Let p be a distribution over A+, and
let d be a distance on R2. Let p̂N be the empirical
distribution derived from an i.i.d. sample of size N
drawn from p.

The plug-in estimator for the abstraction
αd(p||f) is consistent:

αd(p̂N ∥ f) N→∞−→ αd(p ∥ f) a.s.

As a consequence, when the vocabulary A is
finite, abstraction can be used to isolate the set of
minimal factorizations of p.



Corollary 1. Let p be a distribution over A+, with
|A| < ∞. Let d be a distance measure on R2. Let
p̂N be the empirical distribution derived from an
i.i.d. sample of size N drawn from p.

Then one has:

lim
N→∞

P [G(p, f∗
d (p̂N )) ∈ G∗(p)] = 1

where f∗
d (p̂N ) maximizes abstraction for p̂N .

5 Experiments

We test abstraction as an optimization objective for
learning syntactic representations, when the repre-
sentation takes the form of a mapping into discrete
syntactic categories. The results are evaluated on
an unsupervised POS induction task. While our
understanding of a syntactic category may not per-
fectly overlap with actual parts of speech (the latter
being defined on the basis of a mixture of crite-
ria instead of pure syntax, and are usually more
coarse-grained than real distributional categories),
this task will allow a good comparison with con-
current models on a gold standard.

In NLP, part-of-speech categories are usually a
part of a probabilistic model; typically a parameter
which will be tuned during learning. For instance,
if the model is an HMM, its hidden states corre-
spond to POS categories. If the model is a PCFG,
categories will correspond to non-terminals. We
call this approach - when POS categories are de-
duced from a given model structure as a parameter
- the model-specific approach. In the experiments,
we compare the model-specific approach with our
hypothesis: that POS categories can be deduced
from the independence of structure and context.
We consider the task of unsupervised POS induc-
tion, and compare the accuracy of the abstraction
maximization criterion with model-specific cross-
entropy minimization.

The corpus we use comes from Wikipedia in
simplified English, contains 430k sentences, 8M
tokens, and was POS tagged by the Stanford POS
tagger (Toutanova et al., 2003). To create the target
partition, words (a vocabulary of 6044 elements)
were assigned to their most frequent POS. There
are 36 POS categories.

5.1 The target partition in the information
space

We created (Fig. 2) the information space for the
Wikipedia corpus with the coordinates indicating
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Figure 2: Information space for the Wikipedia corpus.
Neighbourhood of the target partition, with and without
changing the number of categories.

structural and contextual information. We repre-
sented the target partition (36 categories, correct
mapping), and located randomly generated modifi-
cations of this partition obtained by changing 1) the
assignment of words to the target POS categories
(in red) and 2) the number of categories between
2 and 2000 (partitions with > 36 categories are in
yellow, partitions with < 36 categories in green)
by merging or splitting existing categories. First,
it can be observed that any random modification
of the target partition (whether it increases or de-
creases the information) comes at the expense of
the abstraction objective. This distinctive position
of the syntactic partition could not be visualized
in one dimension, suggesting the relevance of the
coordinates in the information space in identifying
it.

Second, with a strict constraint on the number
of categories, the representation of the noisy target
(in red) indicates a negative correlation between
contextual information and structural information:
a trade-off induced by the limitation of information
capacity. The choice of normalised d||2 distance
for abstraction is driven by the shape of random
partitions in the information space (in blue).

5.2 POS induction

We compare abstraction and likelihood maximiza-
tion as training objectives for unsupervised POS
induction. The most efficient POS induction meth-
ods at present are mainly – if not exclusively –



based on models derived from HMM (Brown et al.,
1992; Merialdo, 1994; Lin et al., 2015; Stratos et al.,
2016; Tran et al., 2016; He et al., 2018). We ex-
periment with different variations of the model
by Brown et al. (1992), because the method is
purely distributional, involves discrete embeddings
and is still competitive (cf. (Stratos et al., 2016;
Christodoulopoulos et al., 2010)).

As we cannot perform a brute-force search for
the best possible partitions for our criteria, we re-
placed it by a local measure of the performance :
for every single word, provided that all other words
are correctly classified, we checked whether the
criterion would attribute the correct POS category.
Accuracy indicates the rate of correctly classified
words.

Tested models We will call plain model the gen-
eral form of a distribution p factorised by a map-
ping f :

p(f [w])p(⟨⟨w⟩⟩ | ⟨⟨f [w]⟩⟩) µ(w)

µ(f(w))

We can add model-specific constraints:
(MK): Markov constraint for

p(f [w]) = p(f(w1))
n∏

i=2

p(f(wi) | f(wi−1))

(CI): contextual independence constraint for

p(⟨⟨w⟩⟩ | ⟨⟨f [w]⟩⟩) =
n∏

i=1

p(wi | f(wi))
µ(f(w))

µ(w)

We will consider the normalised α||2 abstraction
maximization objective, and the likelihood maxi-
mization objective (with a constraint on the number
of categories) for the plain model alone, with con-
textual independence (CI) constraint, with Markov
(MK) constraint, or with both constraints (MK) +
(CI) (Brown clustering criterion).

The results are shown in Figure 3. They indi-
cate that the abstraction criterion significantly out-
performs likelihood maximization for any model
considered. This reinforces our hypothesis that
syntactic categories emerge naturally from the cri-
terion of independence between structure and con-
text, without any assumption about the structure of
the model.

The second important finding concerns the phe-
nomenon we call implicit disentanglement. By
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Figure 3: Unsupervised POS induction: abstraction vs
likelihood maximization

definition, if we estimate the parameters of a distri-
bution q|f with likelihood maximization, we max-
imize structural information (i.e. the partition f
tends towards the right-most solutions in the infor-
mation space). However, contextual information
will still be present. Syntactic generalization may
occur when the encoding capacity of the model
is bounded (e.g. by limiting the number of cate-
gories), inducing a trade-off between structural and
contextual information.
A way to estimate the role of implicit disentangle-
ment is to consider the confusion matrix of cor-
rectly classified or misclassified words for abstrac-
tion maximization classifier (a) and a likelihood
maximization classifier (b), and decompose (b) into
a convex combination of (a) and an independent
classification process (c).

With the confusion matrix for Brown clustering
criterion:

M =

( b b

a 0.202 0.049
a 0.212 0.537

)
one obtains that a proportion F = 0.667 of the
correct classification of (b) is imputable to (a), and
at most 33.3% of correct classification by (b) can
be considered as independent from implicit disen-
tanglement. This factor F is known in literature as
certainty factor (see (Tan et al., 2002), Appendix
for details)

The accuracy of maximum likelihood with the
plain model (no constraint) is a good example of



implicit disentanglement : it can only be the result
of the limitation on the number of categories. The
hatched part in Figure 3 represents the fraction of
correct classification due to implicit disentangle-
ment in max-likelihood classifiers.
These results indicate that the impact of model
structure in the ability to infer syntactic categories
(and, more broadly, in syntactic generalization ca-
pacity) is over-estimated: parameter tuning seems
far less efficient than the application of the princi-
ple of independence between context and structure.

6 Conclusion

As to our current knowledge, language models do
not have a convincing performance on modelling
grammaticality: despite their impressive results on
downstream tasks, they are not good at syntactic
generalization unless syntactic knowledge is some-
how injected in the system. Moreover, there is a
trade-off in large LMs between syntactic general-
ization and language modelling performance.

We suggest a measurable interpretation of syn-
tactic generalization and show results that align
with the observations reported by many authors:
training on a natural language corpus (e.g. using
language models) results in memorization of se-
mantics and entanglement with syntactic informa-
tion. This motivates our proposition of abstraction,
a new training objective for syntactic generaliza-
tion without supervision. We prove the statistical
consistency of abstraction in the task of grammar
identification. Empirical results on an unsupervised
POS induction task show that abstraction consider-
ably outperforms concurrent models trained with
a likelihood estimation objective, without making
any assumptions about the structure of the model.

7 Limitations

The contribution of this paper is mainly theoretical.
Like most of the POS identification algorithms, the
optimization of a criterion among the space of all
partitions requires the use of heuristics, and finding
the optimum is never guaranteed. Additional work
is required before a generalization model that is
efficient in practice can be obtained.

8 Acknowledgement

We would like to thank Guillaume Wisniewski and
the anonymous reviewers for their valuable com-
ments.

References
David Adger. 2018. The autonomy of syntax. In Nor-

bert Hornstein, Howard Lasnik, Pritty Patel-Grosz,
and Charles Yang, editors, Syntactic Structures after
60 Years: The Impact of the Chomskyan Revolution
in Linguistics, pages 153–176. De Gruyter Mouton.

Guillaume Alain and Yoshua Bengio. 2017. Under-
standing intermediate layers using linear classifier
probes. ArXiv, abs/1610.01644.

András Antos and Ioannis Kontoyiannis. 2001. Conver-
gence properties of functional estimates for discrete
distributions. Random Structures & Algorithms,
19(3-4):163–193.

Raphaël Bailly and Kata Gábor. 2020. Emergence of
syntax needs minimal supervision. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, Online. Association for
Computational Linguistics.

C. L. Baker. 1979. Syntactic theory and the projection
problem. Linguistic Inquiry, 10:533–581.

Marco Baroni. 2019. Linguistic generalization and
compositionality in modern artificial neural networks.
CoRR, abs/1904.00157.

Jasmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: SCAN both left and right.
In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 47–55, Brussels, Belgium.
Association for Computational Linguistics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do neural
machine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, pages
861–872.

Yonatan Belinkov and James R. Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-
ouza, Jenifer C. Lai, and Robert L. Mercer. 1992.
Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467–480.

Rahma Chaabouni, Eugene Kharitonov, Diane Boucha-
court, Emmanuel Dupoux, and Marco Baroni. 2020.
Compositionality and generalization in emergent lan-
guages. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 4427–4442, Online. Association for Computa-
tional Linguistics.

Noam Chomsky. 1957. Syntactic Structures. Mouton,
Berlin, Germany.

https://doi.org/https://doi.org/10.1002/rsa.10019
https://doi.org/https://doi.org/10.1002/rsa.10019
https://doi.org/https://doi.org/10.1002/rsa.10019
https://doi.org/10.18653/v1/2020.acl-main.46
https://doi.org/10.18653/v1/2020.acl-main.46
https://doi.org/10.18653/v1/W18-5407
https://doi.org/10.18653/v1/W18-5407
https://aclanthology.org/J92-4003
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407


Noam Chomsky. 1965. Aspects of the Theory of
Syntax. Cambridge, MA: MIT Press.

Noam Chomsky. 1975. Reflections on language. New
York: Pantheon Books.

Noam Chomsky. 1982. Some concepts and
consequences of the theory of government and
binding. MIT Press, Cambridge, Mass.

Shammur Absar Chowdhury and Roberto Zamparelli.
2018. RNN simulations of grammaticality judgments
on long-distance dependencies. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 133–144.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsuper-
vised POS induction: How far have we come? In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
575–584, Cambridge, MA. Association for Compu-
tational Linguistics.

Alexander Clark and Shalom Lappin. 2010. Unsuper-
vised learning and grammar induction. In Handbook
of Computational Linguistics and Natural Language
Processing. Wiley-Blackwell, Oxford.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Prob-
ing sentence embeddings for linguistic properties.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, pages
2126–2136.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

G. Felhi, Joseph Le Roux, and Djamé Seddah.
2020. Disentangling semantics in language through
vaes and a certain architectural choice. ArXiv,
abs/2012.13031.

Jerry A. Fodor and Ernest Lepore. 2002.
Compositionality Papers. Oxford University
Press UK.

Gottlob Frege. 1892. Über Sinn und Bedeitung.
Zeitschrift für Philosophie und philosophische
Kritik, 100:25–50.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Un-
der the hood: Using diagnostic classifiers to investi-
gate and improve how language models track agree-
ment information. In EMNLP Workshop Blackbox
NLP: Analyzing and Interpreting Neural Networks
for NLP, pages 240–248.

E. Mark Gold. 1967. Language identification in the
limit. Information and control, 10:5:447–474.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Color-
less green recurrent networks dream hierarchically.
In North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1195–1205.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2018. Unsupervised learning of syn-
tactic structure with invertible neural projections. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1292–1302, Brussels, Belgium. Association for Com-
putational Linguistics.

Q. He, H. Wang, and Y. Zhang. 2020. Enhancing gener-
alization in natural language inference by syntax. In
Findings of EMNLP.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing.

A. S. Hsu and N. Chater. 2010. The logical problem
of language acquisition: a probabilistic perspective.
Cogn. Sci., 34(6):972–1016.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment of
syntactic generalization in neural language models.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1725–1744, Online. Association for Computational
Linguistics.

James Y. Huang, Kuan-Hao Huang, and Kai-Wei
Chang. 2021. Disentangling semantics and syntax
in sentence embeddings with pre-trained language
models. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1372–1379, Online. Association
for Computational Linguistics.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers,
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris-
tos Christodoulopoulos, Karim Lasri, Naomi Saphra,
Arabella Sinclair, Dennis Ulmer, Florian Schottmann,
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha,
Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan
Cotterell, and Zhijing Jin. 2022. State-of-the-art gen-
eralisation research in NLP: a taxonomy and review.

https://aclanthology.org/D10-1056
https://aclanthology.org/D10-1056
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D18-1160
https://doi.org/10.18653/v1/D18-1160
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2021.naacl-main.108
https://doi.org/10.18653/v1/2021.naacl-main.108
https://doi.org/10.18653/v1/2021.naacl-main.108
https://doi.org/10.48550/ARXIV.2210.03050
https://doi.org/10.48550/ARXIV.2210.03050


Dieuwke Hupkes, Sara Veldhoen, and Willem H.
Zuidema. 2018. Visualisation and ’diagnostic clas-
sifiers’ reveal how recurrent and recursive neural
networks process hierarchical structure. Journal of
Artificial Intelligence Research, 61:907—-926.

Najoung Kim and Paul Smolensky. 2021. Testing
for grammatical category abstraction in neural lan-
guage models. In Proceedings of The Society for
Computation in Linguistics (SCiL).

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Ba-
tra. 2017. Natural language does not emerge ‘natu-
rally’ in multi-agent dialog. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2962–2967, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Brenden M. Lake and Marco Baroni. 2017. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In
34th International Conference on Machine Learning.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco Ba-
roni. 2019. The emergence of number and syntax
units in LSTM language models. In Proceedings of
the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 11–20, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Shalom Lappin and Stuart Shieber. 2007. Machine
learning theory and practice as a source of insight into
universal grammar. Journal of Linguistics, 43:393–
427.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori
Levin. 2015. Unsupervised POS induction with word
embeddings. In Proceedings of the 2015 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1311–1316, Denver, Colorado.
Association for Computational Linguistics.

Yongjie Lin, Yi Chern Tan, and Robert Frank.
2019. Open sesame: Getting inside BERT’s
linguistic knowledge. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 241–
253, Florence, Italy. Association for Computational
Linguistics.

Tal Linzen and Marco Baroni. 2021. Syntactic structure
from deep learning. Annual Review of Linguistics,
7:195–212.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

João Loula, Marco Baroni, and Brenden Lake.
2018. Rearranging the familiar: Testing compo-
sitional generalization in recurrent networks. In
EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 108–
114.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Rowan Hall Maudslay and Ryan Cotterell. 2021. Do
syntactic probes probe syntax? Experiments with
Jabberwocky Probing. In NAACL-HLT.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3428–3448.

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Tiago Pimentel and Ryan Cotterell. 2021. A bayesian
framework for information-theoretic probing. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguis-
tic structure. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 4609–4622, Online. Association
for Computational Linguistics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Durme. 2018. Hy-
pothesis only baselines in natural language inference.
In Proceedings of the Seventh Joint Conference on
Lexical and Computational Semantics, pages 180–
191.

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

Abhilasha Ravichander, Yonatan Belinkov, and Ed-
uard Hovy. 2021. Probing the probing paradigm:
Does probing accuracy entail task relevance? In

https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.3115/v1/N15-1144
https://doi.org/10.3115/v1/N15-1144
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://aclanthology.org/J94-2001
https://aclanthology.org/J94-2001
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.18653/v1/2021.eacl-main.295


Proceedings of the 16th Conference of the European
Chapter of the Association for Computational
Linguistics: Main Volume, pages 3363–3377, On-
line. Association for Computational Linguistics.

Naomi Saphra and Adam Lopez. 2018. Language mod-
els learn POS first. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 328–
330, Brussels, Belgium. Association for Computa-
tional Linguistics.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
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Appendix – Proofs and complements

Let p be a probability distribution, and f a mapping.
One will denote p◦f−1 the probability distribution
induced by f .

Remark 1. One has

⟨⟨σ(w)⟩⟩ = ⟨⟨w⟩⟩

⟨⟨f [σ(w])⟩⟩ = ⟨⟨f [w]⟩⟩

f(σ(w)) = σ(f(w))

p(f [w]) = p ◦ f−1(f(w))

p(⟨⟨f [w]⟩⟩) = p ◦ f−1(⟨⟨f(w)⟩⟩)

Remark 2. One has

p(⟨⟨w⟩⟩) = 1

µ(w)

∑
σ∈Sn

p(σ(w))

Remark 3. One has

p(⟨⟨f [w]⟩⟩) = 1

µ(f(w))

∑
σ∈Sn

p(f [σ(w)])

Proof. By Remark 2 applied to p ◦ f−1 and Re-
mark 1.

Remark 4. One has

⟨⟨⟨⟨w⟩⟩⟩⟩ = ⟨⟨w⟩⟩

f [f [w]] = f [w]

⟨⟨σ(w)⟩⟩ = ⟨⟨w⟩⟩

⟨⟨f [σ(w)]⟩⟩ = ⟨⟨f [w]⟩⟩

Proof. The second equality comes from

f−1 ◦ f ◦ f−1 ◦ f = f−1 ◦ f

Lemma 3. Let p be a distribution over A+, and
f : A 7→ B be a mapping. One supposes that there
exists a mapping λf (⟨⟨w⟩⟩) such that ∀w ∈ A+

p(w | ⟨⟨w⟩⟩) = λf (⟨⟨w⟩⟩) p(f [w] | ⟨⟨f [w]⟩⟩)

then one has λf (⟨⟨w⟩⟩) = µ(w)
µ(f(w)) .

Proof. One has

∑
σ∈Sn

p(σ(w) | ⟨⟨σ(w)⟩⟩)

=
∑
σ∈Sn

λf (⟨⟨σ(w⟩⟩)) p(f [σ(w)] | ⟨⟨f [σ(w)]⟩⟩)

=
λf (⟨⟨(w⟩⟩)
p(⟨⟨f [w]⟩⟩)

∑
σ∈Sn

p(f [σ(w)])

= λf (⟨⟨(w⟩⟩)µ(f(w))

from Remark 1 and Remark 3. With the fact that

p(σ(w)) = p(⟨⟨w⟩⟩)p(σ(w) | ⟨⟨σ(w)⟩⟩)

one has

p(⟨⟨w⟩⟩) = p(⟨⟨w⟩⟩)
µ(w)

∑
σ∈Sn

p(σ(w) | ⟨⟨σ(w)⟩⟩)

=
p(⟨⟨w⟩⟩)λf (⟨⟨(w⟩⟩)µ(f(w))

µ(w)

hence the result.

Corollary 2. Let p be a distribution and f be a
mapping. Then f factorises p iff

p(w) = p(⟨⟨w⟩⟩(f [w] | ⟨⟨f [w]⟩⟩) µ(w)

µ(f(w))

Lemma 4. Let p be a distribution and f a mapping.
Then one has

∀w ∈ A+, p(w | f [w]) = p(w | A|w|) ⇔

∀w ∈ A+, p(f [w]) =

{
p(A|w|) or
0

Proof. Suppose the left hand side of the equiva-
lence, then, for any w ∈ A+, either p(f [w]) = 0
or there exists w′ ∈ f [w] such that p(w′) > 0 then
p(f [w]) = p(f [w′]) = p(A|w|).

On the other way, either p(w) = 0 (and the
equality holds) or p(w) > 0 implying p(f [w]) >
0 hence p(f [w]) = p(A|w|) implying in turn
p(w | f [w]) = p(w | A|w|).



Computing Example 1. Let w1 be the sentence
"cats eat rats" and let w2 be the sentence "men
build houses". one has

⟨⟨w1⟩⟩ = {cats eat mice, cats mice eat,
. . . ,mice eat cats}

⟨⟨w2⟩⟩ = {men build houses,
men houses build,
. . . , houses build men}

f(w1) = b0b1b2
f(w2) = b0b1b2
f [w1] = {cats eat mice, cats build mice,

. . . ,men eat mice,
men build mice}

⟨⟨f [w1]⟩⟩ = {cats eat mice, cats build mice,
. . . , build mice men,
men houses eat}

One has
p|f (w1) =

p(⟨⟨w1⟩⟩)p(f [w1] | ⟨⟨(f [w1]⟩⟩)
µ(w1)

µ(f [w1])
=

1

2
· 1 · 1

1

hence f factorises p. One has

p(w1 | f [w1]) =
1
2

1
= p(w1 | A3)

hence f is information-minimal for p.
The Lemma 5 gives a formula for the projection

p|f of p conditionally to f .

Lemma 5. Let p be a probability distribution, and
let f be a mapping. Let us define π(p, f) by

π(p, f)(w) = p(⟨⟨w⟩⟩)p(f [w] | ⟨⟨f [w]⟩⟩) µ(w)

µ(f(w))

then one has
p|f = π(p, f)

One needs a few steps in order to prove
Lemma 5.

Lemma 6. Let p be a distribution over A+ and
f : A 7→ B be a mapping. Then

1. π(p, f)(⟨⟨w⟩⟩) = p(⟨⟨w⟩⟩)

2. π(p, f)(f [w]) = p(f [w])

Proof. 1: one has

π(p, f)(⟨⟨w⟩⟩) = 1

µ(w)

∑
σ∈Sn

π(p, f)(σ(w))

with

π(p, f)(σ(w)) =
p(⟨⟨w⟩⟩)p(f [σ(w)])

p(⟨⟨f [w]⟩⟩)
µ(w)

µ(f(w))

and ∑
σ∈Sn

p(f [σ(w)])

p(⟨⟨f [w]⟩⟩)µ(f(w))
= 1

hence the result.
2: one has

π(p, f)(f [w])

= p(⟨⟨f [w]⟩⟩)p(f [f [w]] | ⟨⟨f [f [w]]⟩⟩)µ(f(w))

µ(f(w))

= p(⟨⟨f [w]⟩⟩)p(f [w] | ⟨⟨f [w]⟩⟩)µ(f(w))

µ(f(w))

= p(f [w])

Corollary 3. Let p be a distribution over A+ and
f : A 7→ B be a mapping. Then

1. π(p, f) is a probability distribution.

2. π(π(p, f), f) = π(p, f).

Proof. (1): The ⟨⟨w⟩⟩ form a partition of A+ hence

π(p, f)(A+) =
∑
⟨⟨w⟩⟩

π(p, f)(⟨⟨w⟩⟩)

=
∑
⟨⟨w⟩⟩

p(⟨⟨w⟩⟩) = 1

(2): Since π(p, f) is only computed from
p(⟨⟨w⟩⟩) and p(f [w]), with the Lemma 6 one has
the conclusion.

Remark 5. In particular, one can give another def-
inition of the set

Ff = {q | q is factorised by f}
as

Ff = {π(q, f) | q is a distribution}
Lemma 7. Let p and q be two probability distribu-
tions over A+, and let f : A 7→ B be a mapping.
Then one has:

H(p||π(q, f)) ≥ H(p||π(p, f))

with equality iff π(q, f) = π(p, f).



Proof. The inequality is equivalent to∑
w∈A+

p(w)

(
log(

q(⟨⟨w⟩⟩)
p(⟨⟨w⟩⟩)

)

+ log(
q(f [w])p(⟨⟨f [w]⟩⟩)
p(f [w])q(⟨⟨f [w]⟩⟩)

)

)
≤ 0

By Jensen’s inequality and concavity of the log,
and summing over ⟨⟨w⟩⟩ one has∑

w∈A+

p(w)

(
log(

q(⟨⟨w⟩⟩)
p(⟨⟨w⟩⟩)

)

)
=

∑
⟨⟨w⟩⟩

p(⟨⟨w⟩⟩)
(
log(

q(⟨⟨w⟩⟩)
p(⟨⟨w⟩⟩)

)

)
≤ 0

with equality iff ∀w, q(⟨⟨w⟩⟩) = p(⟨⟨w⟩⟩).
By summing over ⟨⟨f [w]⟩⟩, one has∑

f [w]

q(f [w])p(⟨⟨f [w]⟩⟩)
q(⟨⟨f [w]⟩⟩)

=

∑
⟨⟨f [w]⟩⟩

q(⟨⟨f [w]⟩⟩)p(⟨⟨f [w]⟩⟩)
q(⟨⟨f [w]⟩⟩)

= 1

and by Jensen’s inequality and concavity of the log,
and summing over f [w] one has∑

w∈A+

p(w)

(
log(

q(f [w])p(⟨⟨f [w]⟩⟩)
p(f [w])q(⟨⟨f [w]⟩⟩)

)

)
=

∑
f [w]

p(f [w])

(
log(

q(f [w])p(⟨⟨f [w]⟩⟩)
p(f [w])q(⟨⟨f [w]⟩⟩)

)

)
≤ 0

with equality iff ∀w, q(f [w] | ⟨⟨f [w]⟩⟩) =
p(f [w] | ⟨⟨f [w]⟩⟩).

Because the value of π(p, f) only depends on
p(⟨⟨w⟩⟩) and p(f [w] | ⟨⟨f [w]⟩⟩), the equality holds
in the statement iff π(q, f) = π(p, f).

Proof of Lemma 5. One applies Remark 5 and
Lemma 7, and one gets the result.

Separating structure from data.
Our goal is to isolate structural information
form contextual information for an observation
(a1, . . . , an).

For any permutation σ ∈ Sn, the tuple

(aσ(1), . . . , aσ(n)) = (a′1, . . . , a
′
n)

satisfies a relation

(a1, . . . , an) = (a′σ−1(1), . . . , a
′
σ−1(n))

which will be denoted σ−1.

Definition 7. For an observation X =
(a1, . . . , an), and a permutation σ ∈ Sn, let
us denote

σ(X) = (aσ(1), . . . , aσ(n))

For any probability distribution p over A+, one
will define

p2(X = (a1, . . . , an), Y = σ) =
1

n!
p(σ(X))

Lemma 8. One has

p(w) =
∑
σ∈Sn

p2(X = σ−1(w), Y = σ)

p(⟨⟨w⟩⟩) = |w|! p2(X = w)

µ(w)

where |w| is the length of w.

Proof. The first statement is just straightforward
from the definition of p2. In particular, one has

p(w) = |w|! p2(Y = id,X = w)

One has

p(⟨⟨w⟩⟩) = 1

µ(w)

∑
σ∈Sn

p(σ(w))

=
1

µ(w)

∑
σ∈Sn,ρ∈Sn

p2(X = ρ−1(σ(w)), Y = ρ)

=

∑
σ∈Sn

p2(X = σ(w))

µ(w)

and, with the fact that

∀σ ∈ Sn, p2(X = w) = p2(X = σ(w))

one has the result.

Definition 8. Let us define

p2|f (X = w, Y = σ) =

p2(X = w)p2(Y = σ|f(X) = f(w))

Lemma 9. One has

1. p2|f = p|f 2

2. H(p2||p|f 2) = Hp2(Y |f(X)) +Hp2(X)

3. H(p||p|f ) = H(p2||p2|f )−Ep(log(|w|!))



Proof. 1. One has

p|f 2(X = w, Y = σ) =
1

n!
p|f (σ(w))

=
1

n!

p|f (⟨⟨σ(w)⟩⟩)p|f (f [σ(w)])

p|f (⟨⟨f [σ(w)]⟩⟩)
µ(σ(w))

µ(f(σ(w)))

with, by Lemma 6 and Lemma 8,

p|f (⟨⟨σ(w)⟩⟩) = p(⟨⟨w⟩⟩) = n!
p2(X = w)

µ(w)

and
p|f (f [σ(w)]) = p(f [σ(w)])

= n!p2(f(X) = f(w), Y = σ)

and
p|f (⟨⟨f [σ(w)]⟩⟩) = p(⟨⟨f [w]⟩⟩)

= n!
p2(f(X) = f(w))

µ(f(w)

and one has the result.
The second statement is an application of the

definition of p2|f together with statement 1.
The third statement comes from the fact that

p(w) =
∑
σ∈Sn

p2(X = σ−1(w), Y = σ)

p|f (w) = |w|!p|f 2(X = σ−1(w), Y = σ)

one has

H(p||p|f ) = −
∑
w

p(w) log(p(|f (w))

= −
∑
w,σ

p2(X = σ−1(w), Y = σ)

log(|w|!p|f 2(X = σ−1(w), Y = σ))

= H(p2||p2|f )−Ep(log(|w|!))

Lemma 10. Let p be a probability distribution, and
let f and g be two mappings. One has

is(p, g ◦ f) ≤ is(p, f)

Proof. From Lemma 9, one has

is(p||f) = Hp2(Y |z(X))−Hp2(Y |f(X))

and one has

Hp2(Y |f(X)) ≤ Hp2(Y |g ◦ f(X))

hence
is(p||f) ≥ is(p||g ◦ f)

Lemma 11. Let p be a probability distribution, and
let f and g be two mappings. One has

is(p, g ◦ f) ≤ is(p, f)

Proof. With the fact that

Hp(f(w)) ≥ Hp(g ◦ f(w))

one has the result.

Details of Example 2 . The two sentences are
strictly equivalent, thus we will only compute the
values for, say, u = cats eat mice .

One has p(⟨⟨u⟩⟩) = p({cats, eat,mice} = 1
2 .

Let z : A 7→ {a} be a null mapping. By
Lemma 5, one has

p|z(u) = p(⟨⟨u⟩⟩) p(z[u])

p(⟨⟨z[u]⟩⟩)
µ(u)

µ(z(u))

with p(z[u]) = p(aaa) = 1 and p(⟨⟨z[u]⟩⟩) =
p({a, a, a}) = 1, µ(u) = 1 and µ(aaa) = 6, one
has p|z(u) = 1

12 and finally

H(p ∥ p|z) = log(12)

One has also p ◦ z−1(aaa) = 1 thus

H(p ◦ z−1) = 0

One has p|id(u) = 1
2 thus

H(p ∥ p|id) = log(2), is(p ∥ id) = log(6)

and p ◦ id−1 = p thus

H(p ◦ z−1) = log(2), ic(p ∥ id) = log(2)

Let g be the mapping

a = {cats, mice, men, houses}, b = {eat, build}

then one has

p|g(u) = p(⟨⟨u⟩⟩) p(g[u])

p(⟨⟨g[u]⟩⟩)
µ(u)

µ(g(u))

with p(g[u]) = p(aba) = 1, p(⟨⟨g[u]⟩⟩) =
p({a, b, a}) = 1, µ(u) = 1 and µ(g(u)) =
µ(aba) = 2 one has p|g(u) = 1

4 and

H(p ∥ p|g) = log(4), is(p ∥ g) = log(3)

One has p ◦ g−1(aba) = 1, thus

H(p ◦ g−1) = 0, ic(p ∥ g) = 0



Let h be the mapping

c = {cats, eat, mice}, d = {men, build, houses}

then one has

p|h(u) = p(⟨⟨u⟩⟩) p(h[u])

p(⟨⟨h[u]⟩⟩)
µ(u)

µ(h(u))

with p(h[u]) = p(ccc) = 1
2 , p(⟨⟨h[u]⟩⟩) =

p({c, c, c}) = 1
2 , µ(u) = 1 and µ(h(u)) =

µ(ccc) = 6 one has p|h(u) = 1
12 and

H(p ∥ p|h) = log(12), is(p ∥ h) = 0

One has p ◦ h−1(ccc) = 1
2 , thus

H(p ◦ h−1) = log(2), ic(p ∥ h) = log(2)

One can check that the gain of information from
z to g is purely structural, while the gain from z to
h is purely contextual.

Proof of Proposition 1. From Lemma 9, one has

is(p||f) = Hp2(Y |z(X))−Hp2(Y |f(X))

hence is is a sum of entropies, as well as ic.
The Corollary 1 in (Antos and Kontoyiannis,

2001) states that for a countable support target dis-
tribution p with entropy H and its M.L.E. pn with
entropy Ĥn, the plugin estimator satisfies

lim
n→∞

Ĥn = H a.s.

and this directly implies the conclusion.

Lemma 12. Let p be a probability distribution,
having a minimal factorization f . Then the inter-
section of all minimal syntaxes of p is a minimal
syntax of p:

G∗(p) = ∩f∈G∗(p)G(p, f) ∈ G∗(p)

Proof. Let f be an optimal factorizations of p. The
property

∀w ∈ supp(p), p(w | f [w]) = p(w | A|w|)

means that there is only one observed pattern of
categories of length |w|, say b1 . . . bn.

For any (i, n) ∈ N2, let us define the subset

A(i,n) = {a ∈ A | ∃w ∈ An, p(w) > 0, wi = a}

Each subset A(i,n) is entirely inside a class of
the partition induced by f – otherwise there would
be at least two patterns for sequences of size n.

One builds a partition m of A by merging the
subsets A(i,n) with non-empty intersection. Any
class of m is entirely included in a class induced
by f .

The mapping m is minimal by construction, and
it is a refinement of f : G(p, f) ⊆ G(p, f), and, by
Lemma 10, m factorises p.

Implicit disentanglement. We consider the fol-
lowing matrix of confusion

M =

( b b

a 0.202 0.049
a 0.212 0.537

)
with the equivalence matrix (representing the fact
that classifiers (b) = (a))

M⇔ =

( a a

a 0.251 0
a 0 0.749

)
and a matrix of an independent classifier (c) with
probability µ of success is

M⊥⊥ =

( c c

a 0.251(1− µ) 0.251µ
a 0.749(1− µ) 0.749µ

)
and we write M as a convex combination of M⇔
and M⊥⊥:

M = λM⇔ + (1− λ)M⊥⊥

This gives

λ = 0.522, µ = 0.408

which leads to the interpretations:

• an independent process of POS identification
involving HMM constraints has a 40% suc-
cess rate.

• the rate of correct classification by (b) is
0.586, decomposed in 0.195 of success from
an independent process, and 0.391 due to im-
plicit disentanglement.

• 66.7% of the overall success rate can be im-
puted to implicit disentanglement.

The fraction of success due to implicit disentan-
glement is exactly the certainty factor F = 0.667



(see (Tan et al., 2002)) which represents a convex
decomposition of M

M = F.M⇒ + (1− F ).M⊥⊥

with:

M⇒ =

(
0.251 0.0
0.163 0.586

)
M⊥⊥ =

(
0.104 0.147
0.310 0.439

)
where M⇒ represents a complete implication and
M⊥⊥ represents a complete independence, both
with same marginals as M . (see (Tan et al., 2002)
for a definition in the context of association rules)


