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Introduction

Numerous authors have dedicated significant time and effort to investigating the theory of sums and products that involve trigonometric and special functions throughout many years of research. Several investigations in this field were carried out by; Almodovar et. al [START_REF] Almodovar | Infinite Products Arising in Paperfolding[END_REF], where the infinite products arising in paperfolding was published. In the work of krysicki [START_REF] Krysicki | On some new properties of the beta distribution[END_REF] new properties of the beta distribution was studied. In the work by Kaluszka et. al [START_REF] Kaluszka | On decompositions of some random variables[END_REF] the decompositions of some random variables was published. In the work by Vignat et. al [START_REF] Vignat | Finite generating functions for the sum-of-digits sequence[END_REF], finite generating functions for the sum-of-digits sequence was studied.

Work involving the sum of the Hurwitz-lerch zeta function is available in the work by Lerch [5], where original work by Lerch introduced the Lerch function. The study of finite sums involving the Hurwitz-Lerch zeta function was published in the work by Choi et. al [START_REF] Choi | Two-variable Gaussian hypergeometric series and finite sums of certain polylogarithmic functions[END_REF]. In the book by Prudnikov et. al [START_REF] Prudnikov | Integrals and series[END_REF], a section on the Hurwitz-Lerch zeta function and its properties are tabled. in the work by Gorenflo et. al [START_REF] Gorenflo | Computation of the Hurwitz-Lerch Zeta function and its derivative[END_REF], the computational aspects of the hurwitz-Lerch zeta function and its derivative are discussed. The work by Kilbas et. al [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF], includes a section on fractional sums and integrals involving the Hurwitz-Lerch zeta function.

Drawing from existing literature, it becomes evident that finite sums and products involving special functions and trigonometric functions serve a practical purpose. In this research, our objective is to establish a comprehensive theorem that encompasses the finite sum of Hurwitz-Lerch Zeta functions, expressed in relation to Hurwitz-Lerch Zeta functions themselves. This theorem entails a linear combination of Hurwitz-Lerch Zeta functions, offering potential advantages in the field of analysis.

In this current study, we aim to build upon previous research that focused on the finite sum of special functions. To achieve this, we employ the contour integral method [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF], specifically applied to equation (5.74.4) mentioned in [START_REF] Hobson | A Treatise on Plane Trigonometry[END_REF]. Consequently, we obtain the contour integral representation as a result given by;

(1.1) 1 2πi C n p=1 4 3 1-p a w w -k-1 sin 3 3 p-1 (m + w) sec (3 p (m + w)) dw = 1 2πi C 3 2 a w w -k-1 3 -n tan (3 n (m + w)) -tan(m + w) dw
where a, m, k ∈ C, Re(m + w) > 0, n ∈ Z + . Using equation (1.1) the main Theorem to be derived and evaluated is given by

(1.2) n p=1 n p=1 -i3 1-p log k (a) + 2 k (i3 p ) k e 2im3 p-1 -3Φ -e 2i3 p m , -k, 1 3 - 1 2 i3 -p log(a) +3e 2im3 p-1 Φ -e 2i3 p m , -k, 2 3 - 1 2 i3 -p log(a) -2e 4im3 p-1 Φ -e 2i3 p m , -k, 1 - 1 2 i3 -p log(a) = - 1 2 i3 1-n (3 n -1) log k (a) + 2 k+1 (i3 n ) k e 2im3 n Φ -e 2i3 n m , -k, 1 - 1 2 i3 -n log(a) -i k e 2im 3 n Φ -e 2im , -k, 1 - 1 2 i log(a)
The expression provided involves the variables k, a, m, which can be any complex numbers, and n, which represents any positive integer. This expression is subsequently utilized to obtain specific instances using trigonometric functions. The derivations employed in this process are based on the approach presented in our previous work referenced as [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. This approach incorporates a variant of the generalized Cauchy's integral formula, as given by;

(1.3)

y k Γ(k + 1) = 1 2πi C
e wy w k+1 dw, In this context, we consider variables y and w belonging to the set of complex numbers (C), while C represents a general open contour in the complex plane. The bilinear concomitant, as described in the reference [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF], vanishes at the endpoints of the contour. This approach involves utilizing a specific form of equation (1.3), multiplying both sides by a function, and subsequently summing the resulting finite terms on both sides. As a result, a finite sum expressed in terms of a contour integral is obtained. Additionally, by multiplying both sides of equation (1.3) by another function and summing infinitely on both sides, the contour integrals in both equations become identical.

The Hurwitz-Lerch Zeta Function

In our analysis, we employ equation (1.11.3) from the reference [START_REF] Erdéyli | Higher Transcendental Functions[END_REF], where Φ(z, s, v) denotes the Hurwitz-Lerch zeta function. This function serves as a generalization of both the Hurwitz zeta function ζ(s, v) and the Polylogarithm function Li n (z). The Lerch function can be expressed using a series representation, which is given by.

(2.1) Φ(z, s, v) = ∞ n=0 (v + n) -s z n
where |z|< 1, v ̸ = 0, -1, -2, -3, .., and is continued analytically by its integral representation given by

(2.2) Φ(z, s, v) = 1 Γ(s) ∞ 0 t s-1 e -vt 1 -ze -t dt = 1 Γ(s) ∞ 0 t s-1 e -(v-1)t e t -z dt
where Re(v) > 0, and either |z|≤ 1, z ̸ = 1, Re(s) > 0, or z = 1, Re(s) > 1.

Contour Integral Representation for the Finite Sum of the Hurwitz-Lerch Zeta Functions

In this section we derive the contour integral representations of the left-hand side and right-hand side of equation (1.1) in terms of the Hurwtiz-Lerch zeta and trigonometric functions.

3.1. Derivation of the left-hand side first contour integral. We use the method in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. The cut and contour are in the first quadrant of the complex w-plane with 0 < Re(w + m). The cut approaches the origin from the interior of the first quadrant and goes to infinity vertically and the contour goes round the origin with zero radius and is on opposite sides of the cut. Using a generalization of Cauchy's integral formula (1.3) we first replace y by log(a) + ix + y then multiply both sides by e itx then form a second equation by replacing x by -x and subtracting both equations to get

(3.1) e -imx (log(a) -ix + y) k -e 2imx (log(a) + ix + y) k k! = - 1 2πi C 2ia w w -k-1 e wy sin(x(m + w))dw
Next we replace y by ib(2y + 1) and multiply both sides by (-1) y e ibm(2y+1) and take the infinite and finite sums over y ∈ [0, ∞) and p ∈ [1, n], respectively and simplify in terms of the Hurwitz-Lerch Zeta function to get

(3.2) n p=1 i2 k 3 2-p (i3 p ) k e im(3 p -3 p-1 ) k! Φ -e 2i3 p m , -k, 1 2 3 -p -i log(a) -3 p-1 + 3 p -e 2im3 p-1 Φ -e 2i3 p m , -k, 1 2 3 -p -i log(a) + 3 p-1 + 3 p = - 1 2πi ∞ y=0 n p=1 C
2i(-1) y a w w -k-1 e ib(2y+1)(m+w) sin(x(m + w))dw

= - 1 2πi n-1 p=0 C ∞ y=0
2i(-1) y a w w -k-1 e ib(2y+1)(m+w) sin(x(m + w))dw

= - 1 2πi C n p=1
2i(-1) y a w w -k-1 e ib(2y+1)(m+w) sin(x(m + w))dw

= 1 2πi C 3 2-p a w w -k-1 sin 3 p-1 (m + w) sec (3 p (m + w)) dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where we replaced x = 3 p-1 , b = 3 p and Im(n(m + w)) > 0 and Re(n(m + w)) > 0. We apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, n].

3.2. Derivation of the generalized Hurwitz-Lerch zeta contour integral. Using a generalization of Cauchy's integral formula (1.3), first replace y → log(a) + 2ib(y + 1) then multiply both sides by -2i(-1) y e 2ibm(y+1) and take the infinite sums over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get

(3.3) - i2 k+1 (ib) k e 2ibm Φ -e 2ibm , -k, 1 -i log(a) 2b k! = 1 2πi ∞ y=0 C
(-1) y a w w -k-1 e 2ib(y+1)(m+w) dw

= - 1 2πi C ∞ y=0 (-1) y a w w -k-1 e 2ib(y+1)(m+w) dw = 1 2πi C a w w -k-1 tan(b(m + w)) -ia w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞). 3.2.1. Derivation of the additional contour. Using a generalization of Cauchy's integral formula (1.3), first replace y → log(a) then multiply both sides by -i and simplify to get 

(3.4) - i log k (a) k! = - 1 2πi C ia w w -k-1 dw 3.
n p=1 i2 k+1 3 1-p (i3 p ) k e 2im3 p Φ -e 2i3 p m , -k, 1 -1 2 i3 -p log(a) k! = - 1 2πi C n p=1 3 1-p a w w -k-1 tan (3 p (m + w)) + i3 1-p a w w -k-1 dw
where the additional contour integral is given by;

(3.6)

n p=1 i3 1-p log k (a) k! = 1 2πi C n p=1 i3 1-p a w w -k-1
3.4. Derivation of Right-hand side first contour integral. Here we use equation ( 3.3) substitute b = 1 to get;

(3.7) 3i(2i) k e 2im Φ -e 2im , -k, 1 -1 2 i log(a) k! = - 1 2πi C 3 2 a w w -k-1 tan(m + w) + 3 2 ia w w -k-1 dw
where the additional contour integral is given by;

(3.8) 3i log k (a) 2k! = 1 2πi C 3 2 ia w w -k-1 dw

Derivation of Right-hand side second contour integral

Here we use equation ( 3.3) substitute b = 3 n to get;

(4.1) - i2 k 3 1-n (i3 n ) k e 2im3 n Φ -e 2i3 n m , -k, 1 -1 2 i3 -n log(a) k! = 1 2πi C 1 2 3 1-n a w w -k-1 tan (3 n (m + w)) - 1 2 i3 1-n a w w -k-1 dw
where the additional contour integral is given by;

(4.2) - i3 1-n log k (a) 2k! = - 1 2πi C 1 2 i3 1-n a w w -k-1 dw
5. The sum and product involving Special functions.

In the proceeding section we will evaluate and derive sum and product formulae involving special functions. Similar forms were derived by authors and publication details are provided for each derivation. 

n p=1 -i3 1-p log k (a) + 2 k (i3 p ) k e 2im3 p-1 -3Φ -e 2i3 p m , -k, 1 3 - 1 2 i3 -p log(a) +3e 2im3 p-1 Φ -e 2i3 p m , -k, 2 3 - 1 2 i3 -p log(a) -2e 4im3 p-1 Φ -e 2i3 p m , -k, 1 - 1 2 i3 -p log(a) = - 1 2 i3 1-n (3 n -1) log k (a) + 2 k+1 (i3 n ) k e 2im3 n Φ -e 2i3 n m , -k, 1 - 1 2 i3 -n log(a) -i k e 2im 3 n Φ -e 2im , -k, 1 - 1 2 i log(a)
Proof. Observe that the addition of the right-hand sides of equations (3.2) and (3.5), (3.6), is equal to the addition of the right-hand sides of equations (3.7), (3.8), (4.1) and (4.2) so we may equate the left-hand sides and simplify using equation (5.74.4) on page 90 in [START_REF] Hobson | A Treatise on Plane Trigonometry[END_REF] and the Gamma function to yield the stated result. □

Example 5.2. The Degenerate Case.

(5.2)

n p=1 3 -p sin 3 m3 p-1 sec (m3 p ) = 1 8 3 -n tan (m3 n ) -tan(m)
Proof. Use equation (5.1) and set k = 0 and simplify using entry (2) in Table below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □ Example 5.3. Extended Nielsen-Legendre Form.

(

n p=1 3 -p z -1 -3 -p e -3 -p logΓ(3 -p z-1) Γ 3 1-p z Γ 3 -p z + 6 Γ 3 -p z + 5 6 3 1-p 1 - 3 p 2z Γ 1 2 2 3 -p z -1 -23 -p = 1 (2z -1)Γ z -1 2 2 1 2 (3 1-n -1) π 1 2 (3 1-n -3) z3 -3 8 (3(9 -n -1)z-4 3 -n +4) 1 - 3 n 2z 3 -n Γ(z)Γ 3 -n z -3 -n Γ 3 -n z - 1 2 3 -n 5.3) 
Proof. Use equation (5.1) and set m = 0 and simplify to yield the Hurwitz zeta function using entry (4) in Table below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next we take the first partial derivative with respect to k and set k = 0 and simplify in terms of the log-gamma function, using equation (64:10:2) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next we take the exponential function of both sides and simplify in terms of the gamma function. The log Γ(z) is analytic throughout the complex z plane, except for a single branch cut discontinuity along the negative real axis. The log(Γ(z)) has a more complex branch cut structure. Similar finite product forms featuring powers of 2 are given in equation (1.6.7) in [START_REF] Nielsen | Handbuch der Theorie der Gammafunktion[END_REF] and equation (1.3.5.1) in [START_REF] Erdéyli | Higher Transcendental Functions[END_REF]. □ Example 5.4. Extended Nielsen-Erdeyli-Knar form.

(5.4)

3 -9z/8 ∞ p=1 3 p Γ (3 1-p z) 3 B 1 6 , 3 -p z 3 B 1 2 , 3 -p z 2 B 5 6 , 3 -p z 3 πΓ (3 -p z) 9 = Γ(z) Γ z + 1 2
Proof. Use equation (5.3) and take the limit as n → ∞ and simplify the right-hand side. Similar forms are given in equations (1.6.8-9) in [START_REF] Nielsen | Handbuch der Theorie der Gammafunktion[END_REF], equation (1.3.6) in [START_REF] Erdéyli | Higher Transcendental Functions[END_REF] and equation [START_REF] Prudnikov | Integrals and series[END_REF] in [START_REF] Pearson | Viète's Formula, Knar's Formula, and the Geometry of the Gamma Function[END_REF].

□ -2 -1 1 2 z -4 -2 2 4 6 Figure 1. Plot of Γ(z) Γ(z+ 1 
2 )

, z ∈ R. [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next take the exponential function of both sides and simplify. Other forms of this finite product is given by equation (9.34a) in [START_REF] Da | Transcendental Representations with Applications to Solids and Fluids[END_REF]. □ (5.7)

Φ ′ 3 √ -1, 0, a = log Γ a 6 Γ a+3 6 + 3 √ -1 log Γ a+1 6 Γ a+4 6 +(-1) 2/3 log Γ a+2 6 Γ a+5 6 - 1 2 i √ 3 -i log(6)
Proof. Use equation (5.6) and set z = i 2/3 and simplify using entry (4) in Table below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next take the first partial derivative with respect to s and set s = 0 and simplify in terms of the log-gamma function using equation (64:10:2) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □ Example 5.8. Finite product involving the cosine function raised to a complex power. Proof. Use equation (5.1) and set k = 1, a = 1, m = x and simplify using the method in section (8.1) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. □

Conclusion

In this paper, we have presented a method for deriving sums, products and transformation formulae involving trigonometric and special functions along with some interesting definite integrals similar to those published by Nielsen, Knar and Erdeyli, using contour integration. The results presented were numerically verified for both real and imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.
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