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Robin's criterion states that the Riemann hypothesis is true if and only if the inequality σ(n) < e γ • n • log log n holds for all natural numbers n > 5040, where σ(n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the Euler-Mascheroni constant. We require the properties of superabundant numbers, that is to say left to right maxima of n → σ (n) n . In this note, using Robin's inequality on superabundant numbers, we prove that the Riemann hypothesis is true.

Introduction

This is a "Corrigendum" for a paper presentation at the ICRDM 2022 and an extension of the article published by The Ramanujan Journal [1, pp. 14-17], [2, pp. 750-753]. The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 . It is considered by many to be the most important unsolved problem in pure mathematics. It was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. As usual σ(n) is the sumof-divisors function of n d|n d,

where d | n means the integer d divides n. Define f (n) as σ(n)
n . We say that Robin(n) holds provided that

f (n) < e γ • log log n,
where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The Ramanujan's Theorem stated that if the Riemann hypothesis is true, then the previous inequality holds for large enough n. Next, we have the Robin's Theorem: In 1997, Ramanujan's old notes were published where he defined the generalized highly composite numbers, which include the superabundant and colossally abundant numbers [START_REF] Nicolas | Highly Composite Numbers by Srinivasa Ramanujan[END_REF]. Superabundant numbers were also defined by Leonidas Alaoglu and Paul Erdős (1944). Let q 1 = 2, q 2 = 3, . . . , q k denote the first k consecutive primes, then an integer of the form [5, pp. 367]. A natural number n is called superabundant precisely when, for all natural numbers m < n f (m) < f (n).

k i=1 q ai i with a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 is called a Hardy-Ramanujan integer
We know the following property for the superabundant numbers:

Proposition 2 If n is superabundant, then n is a Hardy-Ramanujan integer [6, Theorem 1 pp. 450].
A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n) n 1+ϵ ≥ σ(m) m 1+ϵ for (m > 1).
There is a close relation between the superabundant and colossally abundant numbers.

Proposition 3 Every colossally abundant number is superabundant [6, pp. 455].

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there are some implications in case of the Riemann hypothesis might be false. Putting all together yields the proof of the Riemann hypothesis.

Main Results

The following is a key Lemma.

Lemma 1 If the Riemann hypothesis is false, then there are infinitely many superabundant numbers n such that Robin(n) fails.

Proof This is a direct consequence of Propositions 1, 3 and 4. □

For every prime number q k > 2, we define the sequence:

Y k = e 0.2 log 2 (q k ) (1 -1 log(q k ) )
.

As the prime number q k increases, the sequence Y k is strictly decreasing [2, Lemma 6.1 pp. 750]. We use the following Propositions:

Proposition 5 [2, Theorem 6.6 pp. 752]. Let k i=1 q ai i be the representation of a superabundant number n > 5040 as the product of the first k consecutive primes q 1 < . . . < q k with the natural numbers a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 as exponents. Suppose that Robin(n) fails. Then,

αn < log log(N k ) Y k log log n ,
where N k = k i=1 q i is the primorial number of order k and αn = k i=1 q

a i +1 i q a i +1 i -1
.

Proposition This is the main insight.

Lemma 2 Let k i=1 q ai i be the representation of a superabundant number n > 5040 as the product of the first k consecutive primes q 1 < . . . < q k with the natural numbers a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 as exponents. Suppose that Robin(n) fails. Then,

αn < (N k ) Y k n ,
where N k = k i=1 q i is the primorial number of order k and αn = k i=1 q This is the main theorem.

a i +1 i q a i +1 i -1 . Proof When n >
Theorem 1 The Riemann hypothesis is true.

Proof We know there are infinitely many superabundant numbers [6, Theorem 9 pp. 454]. In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted νp(n).

Equivalently, νp(n) is the exponent to which p appears in the prime factorization of n. For every prime q, νq(n) goes to infinity as long as n goes to infinity when n is superabundant [7, Theorem 4.4 pp. 12], [6, Theorem 7 pp. 454]. Let n k > 5040 be a large enough superabundant number such that q k is the largest prime factor of n k where we know that νq k (n k ) = 1 for n k > 5040 [6, Theorem 3 pp. 450]. Suppose that Robin(n k ) fails and thus, we have that necessarily Y k < 1.03352795481 [2, Theorem 6.7 pp. 753]. In the same way, let n k ′ be another superabundant number such that q k ′ > n k , νq k (n k ′ ) > q k and Robin(n k ′ ) fails too. By Lemma 2, we have

αn k < (N k ) Y k n k and αn k ′ < (N k ′ ) Y k ′ n k ′ .
Hence,

αn k ′ • αn k < (N k ′ ) Y k ′ n k ′ • αn k .
Consequently,

αn k ′ • αn k < (N k ′ ) Y k ′ n k ′ • (N k ) Y k n k . So, (αn k ′ • αn k ) 2 < (N k ′ ) Y k ′ n k ′ • (N k ) Y k n k .
However, we know that

(αn k ′ • αn k ) 2 > 1. Moreover, we can see that (N k ′ ) Y k ′ n k ′ • (N k ) Y k n k ≤ 1
since the following inequalities

Y k ≤ log(n k ′ • n k ) log( Y k √ n k ′ • n k ) ≤ log(n k ′ • n k ) log((N k ′ ) Y k ′ Y k • N k ) could simultaneously hold for q k ′ > n k and νq k (n k ′ ) > q k such that log( Y k √ n k ′ • n k ) ≥ log ( k i=1 q νq i (n k ′ ) 1.03352795481 i ) • ( k ′ i=k+1 q Y k ′ Y k i ) ≥ log((N k ′ ) Y k ′ Y k •N k ), because of Y k ′ Y k < 1 and lim k→∞ Y k = 1.
In this way, we obtain the contradiction 1 < 1 under the assumption that Robin(n k ) fails. To sum up, the study of this arbitrary large enough superabundant number n k > 5040 reveals that Robin(n k ) holds on anyway. Accordingly, Robin(n) holds for all large enough superabundant numbers n. This contradicts the fact that there are infinite superabundant numbers n, such that Robin(n) fails when the Riemann hypothesis is false according to Lemma 1. By reductio ad absurdum, we prove that the Riemann hypothesis is true. □

Conclusions

Practical uses of the Riemann hypothesis include many propositions that are known to be true under the Riemann hypothesis and some that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hypothesis could spur considerable advances in many mathematical areas, such as number theory and pure mathematics in general.

Proposition 4

 4 If the Riemann hypothesis is false, then there are infinitely many colossally abundant numbers n > 5040 such that Robin(n) fails (i.e. Robin(n) does not hold) [3, Proposition 1 pp. 204].

  Proposition 1 Robin(n) holds for all natural numbers n > 5040 if and only if the Riemann hypothesis is true [3, Theorem 1 pp. 188].

  6 [7, Lemma 3.3 pp. 8]. Let x ≥ 11. For y > x, we have

	log log y log log x	<	y x	.